Introduction to Computational Linguistics

PD Dr. Frank Richter

fr@sfs.uni-tuebingen.de.

Seminar für Sprachwissenschaft Eberhard-Karls-Universität Tübingen Germany

Part-of-speech (POS) Tagging

- Part-of-speech tagging refers to the assignment of (disambiguated) morpho-syntactic categories, in particular word class information, to individual tokens.
- Part-of-speech tagging requires a pre-defined tagset and a tagset assignment algorithm.
- Disambiguation of part-of-speech labels takes local context into account.

Criteria for the Construction of Tagsets

Geoffrey Leech proposed general guidelines for the design of tagsets:

- Conciseness: Brief labels are often more convenient to use than verbose, lengthy ones.
- Perspicuity: Labels which can easily be interpreted are more user-friendly than labels which cannot.
- Analysability: Labels which are decomposable into their logical parts are better (particularly for machine processing).

Tagset Design and Use

- Standardization
 - Cross-linguistic guidelines for tagsets and tagging corpora have been proposed by the Text-Encoding Initiative (TEI)
- Tagset size
 - Trade-off between linguistic adequacy and tagger reliability
 - The larger the tagset, the more training data are needed for statistical part-of-speech taggers

Tagsets for English (1)

Tagsets are often developed in conjunction with corpus collections.

- The Brown Corpus tagset
 - First used for the annotation of the Brown Corpus of American English
 - Later adapted for the annotation of the Penn Treebank of American English

Tagsets for English (2)

CLAWS

- First designed for the annotation of the Lancaster-Oslo-Bergen corpus (LOB corpus). LOB is the British English counterpart of the Brown Corpus of American English
- Later adapted for the annotation of the British National Corpus (BNC), the largest corpus of British English with approximately 100 million words of running text

Part-of-speech Tagging – An Example

Example from BNC using C7 (adapted version of CLAWS) tagset:

Perdita&NN1-NP0; ,&PUN; covering&VVG; the&AT0; bottom&NN1; of&PRF; the&AT0; lorries&NN2; with&PRP; straw&NN1; to&TO0; protect&VVI; the&AT0; ponies&NN2; '&POS; feet&NN2; ,&PUN; suddenly&AV0; heard&VVD-VVN; Alejandro&NN1-NP0; shouting&VVG; that&CJT; she&PNP; better&AV0; dig&VVB; out&AVP; a&AT0; pair&NN0; of&PRF; clean&AJ0; breeches&NN2; and&CJC; polish&VVB; her&DPS; boots&NN2; ,&PUN; as&CJS; she&PNP; 'd&VM0; be&VBI; playing&VVG; in&PRP; the&AT0; match&NN1; that&DT0; afternoon&NN1; .&PUN;

Part-of-speech Tagging – An Example

The codes used are:

AJ0:	general adjective	POS:	genitive marker
AT0:	article	PNP:	pronoun
	neutral for number		
AV0:	general adverb	PRF:	of
AVP:	prepositional adverb	PRP:	prepostition
CJC:	co-ord. conjunction	PUN:	punctuation
CJS:	subord. conjunction	TO0:	infinitive to
CJT:	that conjunction	VBI:	be
DPS:	possessive determiner	VM0:	modal auxiliary
DT0:	singular determiner	VVB:	base form of verb

Part-of-speech Tagging – An Example

The codes used are:

NNO:	common noun,	VVD:	past tense form of verb
	neutral for number		
NN1:	singular common noun	VVG:	-ing form of verb
NN2:	plural common noun	VVI:	infinitive form of verb
NP0:	proper noun	VVN:	past participle form of verb

General Issues visible in the Example

- Tags are attached to words by the use of TEI entity references delimited by & and ;.
- Some of the words (such as *heard*) have two tags assigned to them. These are assigned in cases where there is a strong chance that there is not sufficient contextual information for unique disambiguation.
- Approximation of a logical tagset (possible trade-off with mnemonic naming conventions).

Tagsets for other Languages

German: Stuttgart/Tübingen Tagset (STTS) Link: www.sfs.uni-tuebingen.de /Elwis/stts/stts.html

 MULTEXT-East: Tagsets for Bulgarian, Czech, Estonian, Hungarian, Romanian, Slovene)
 Link: www.racai.ro/~tufis/

The Stuttgart-Tübingen Tagset STTS

- The STTS is a set of 54 tags for annotating German text corpora with part-of-speech labels.
- The STTS guidelines (available on the website) explain the use of each tag by illustrative examples to aid human annotators in consistent corpus annotation by STTS tags.
- It was jointly developed by the Institut für maschinelle Sprachverarbeitung of the University of Stuttgart and the Seminar für Sprachwissenschaft of the University of Tübingen.

Automatic POS Tagging: Basic Issues

- Use a word list or lexicon and disambiguate or tag without lexicon or word list?
- If there is more than one possible tag for a word, how to select the correct one?
- The unkown word problem: What happens if the word is not in the word-tag list?
- How rich is the tagset?
 - word = full form (incl. morphological information), or
 - word = lemma (word class information without morphology)?

POS Tagging: Main Approaches

- Rule-based approach:
 Write local disambiguation rules.
- Stastistical approach:

Compile statistics from a corpus to train a statistical model.

Machine learning approach:

Compile (weighted) patterns of features and values from a corpus to train a classifier.

Rule-Based Approach

- Leading ideas:
 - Usually only local context needed for disambiguation.
 - Formulate context-sensitive disambiguation rules.
- Example:

Problems with Rule-Based Approach

- Rules can only be used when necessary context is not ambiguous.
- There are too many ambiguous contexts.
- The rules are dependent on the tagset.
- Manual encoding is time-consuming.
- Only local phenomena can be described.

Statistical Approach

- Collect table of tag frequencies from hand-annotated training corpus.
 - E.g.: freq(DT NN) = 10 171, freq(TO NN) = 5
- But the frequency for rare tags is low.
 - freq(NN POS) = 36, freq(POS) = 71
 - in comparison: freq(NN) = 24211
- Solution: Compute conditional probability:
 - P(NN|DT) = (P(DET NN))/(P(NN)) = 0.420,
 - P(POS|NN) =(P(NN POS))/(P(POS)) = 0.507

Obtaining Probabilities

- Conditional probabilities for tag sequences and for word (given a tag) are computed from the frequency tables generated from training corpus.
- The size of the training corpus needed for good results is proportional to the size of the tagset.

Advantages of Statistical Approach

- Very robust, can process any input strings
- Training is automatic, very fast
- Can be retrained for different corpora/tagsets without much effort

Disadvantages of Statistical Approach

- Requires a great amount of (annotated) training data.
- The linguist cannot influence the performance of the trained model.
- Changes in the tagset \rightarrow changes in the word list (+ changes in the morphology) + changes in the corpus
- Can only model local dependencies.

Freely Available POS Taggers

 TnT Computerlinguistik Saarbrücken, HMM tri-gram tagger,

www.coli.uni-sb.de/~thorsten/tnt/

- Brill Tagger transformation-based error-driven, www.cs.jhu.edu/~brill/
- Amalgam Tagger Email mail-in tagger platform, supports eight types of tagging for English, www.comp.leeds.ac.uk/amalgam/amalgam /amalghome.html