Introduction to Computational Linguistics

PD Dr. Frank Richter

fr@sfs.uni-tuebingen.de.

Seminar für Sprachwissenschaft Eberhard-Karls-Universität Tübingen Germany

Incremental Linguistic Analysis

- tokenization
- morphological analysis (lemmatization)
- part-of-speech tagging
- named-entity recognition
- partial chunk parsing
- full syntactic parsing
- semantic and discourse processing

Regular Expressions

Given an alphabet Σ of symbols the following are all and only the regular expressions over the alphabet $\Sigma \cup \{\emptyset, 0, |, *, [,]\}$:

Meaning of Regular Expressions

$$L(\emptyset) = \emptyset$$

the empty language

$$L(0) = \{0\}$$

the empty-string language

$$L(\sigma) = \{\sigma\}$$

$$L([\alpha \mid \beta]) = L(\alpha) \cup L(\beta)$$

$$L([\alpha \ \beta]) = L(\alpha) \circ L(\beta)$$

$$\mathsf{L}([\alpha^*]) = (\mathsf{L}(\alpha))^*$$

 Σ^* is called the universal language. Note that the universal language is given relative to a particular alphabet.

Remarks on Regular Expressions

- $\mathbf{Ø}^* =_{def} \{0\}$
- ▶ The empty string, i.e., the string containing no character, is denoted by 0. The empty string is the neutral element for the concatenation operation. That is:

for any string
$$w \in \Sigma^*$$
: $w0 = 0w = w$

Square brackets, [], are used for grouping expressions. Thus [A] is equivalent to A while (A) is not. We leave out brackets for readability if no confusion can arise.

Regular Expressions: Syntax

- () is (sometimes) used for optionality; e.g. (A);
 definable in terms of union with the empty string.
- ? denotes any symbol; $L(?) = \Sigma$ (our ? corresponds to # in the textbook by Kozen)
- A⁺ denotes iteration; one or more concatenations of A. Equivalent to A (A*).
- Note the following simple expressions:
 - [] denotes the empty-string language
 - ?* denotes the universal language (corresponds to @ in Kozen)

Deterministic Finite-State Automata

Definition 1 (DFA) A deterministic FSA (DFA) is a quintuple $(\Sigma, Q, i, F, \delta)$ where

 Σ is a finite set called *the alphabet*,

Q is a finite set of states,

 $i \in Q$ is the *initial state*,

 $F \subseteq Q$ the set of *final states*, and

 δ is the transition function from $Q \times \Sigma$ to Q.

Finite-state Automata

Definition 2 (FSA) A finite-state automaton is a quintuple $(\Sigma, Q, i, F, \Delta)$ where

 Σ is a finite set called *the alphabet*,

Q is a finite set of states,

 $i \in Q$ is the *initial state*,

 $F \subseteq Q$ the set of *final states*, and

 $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ is the set of edges (the transition *relation*).

Nondeterministic Finite-state Automata

Definition 3 (NFA) A nondeterministic finite-state automaton is a quintuple $(\Sigma, Q, S, F, \Delta)$ where

 Σ is a finite set called *the alphabet*,

Q is a finite set of states,

 $S \subseteq Q$ is the set of *initial states*,

 $F \subseteq Q$ the set of *final states*, and

 $\Delta \subseteq Q \times \Sigma^* \times Q$ is the set of edges (the transition *relation*).

Some Important Properties of FSAs (1)

- Determinization: For every nondeterministic finite-state automaton there exists an equivalent deterministic automaton.
- Minimization: For every nondeterministic finite-state automaton there exists an equivalent deterministic automaton with a minimal number of states.

What is in a State

Definition 4

Given a DFA M = $(\Sigma, Q, i, F, \delta)$,

a state of M is triple (x, q, y)

where $q \in Q$ and $x, y \in \Sigma^*$

The directly derives relation

Definition 5 (directly derives)

Given a DFA $(\Sigma, Q, i, F, \delta)$,

a state (x, q, y) directly derives state (x', q', y'):

$$(x,q,y) \vdash (x',q',y')$$
 iff

- 1. there is $\sigma \in \Sigma$ such that $y = \sigma y'$ and $x' = x\sigma$ (i.e. the reading head moves right one symbol σ)
- **2.** $\delta(q,\sigma)=q'$

The derives relation

Definition 6 (derives)

Given a DFA $(\Sigma, Q, i, F, \delta)$,

a state A derives state B:

$$(x,q,y) \vdash^* (x',q',y')$$
 iff

there is a sequence $S_0 \vdash S_1 \dots S_k$

such that $A = S_{\theta}$ and $B = S_k$

Acceptance

Definition 7 (Acceptance)

Given a DFA $M=(\Sigma,Q,i,F,\delta)$ and a string $x\in\Sigma^*$, M accepts x iff

there is a $q \in F$ such that $(0, i, x) \vdash *(x, q, 0)$.

Language accepted by M

Definition 8 (Language accepted by M)

Given a DFA $M=(\Sigma,Q,i,F,\delta)$, the language L(M) accepted by M is the set of all strings accepted by M.