Introduction to Computational Linguistics

PD Dr. Frank Richter

fr@sfs.uni-tuebingen.de.

Seminar für Sprachwissenschaft Eberhard-Karls-Universität Tübingen Germany

Example of String Acceptance

Let $M = (\{a, b\}, \{q_0, q_1, q_2\}, q_0, \{q_1\}, \{((q_0, a), q_1), ((q_0, b), q_1), ((q_1, a), q_2), ((q_1, b), q_2), ((q_2, a), q_2), ((q_2, b), q_2), \}).$

Example of String Acceptance

Let $M = (\{a, b\}, \{q_0, q_1, q_2\}, q_0, \{q_1\}, \{((q_0, a), q_1), ((q_0, b), q_1), ((q_1, a), q_2), ((q_1, b), q_2), ((q_2, a), q_2), ((q_2, b), q_2), \}).$

M accepts a and b and nothing else, i.e. $L(M) = \{a, b\}$, since

 $(0, q_0, a) \vdash (a, q_1, 0)$ and $(0, q_0, b) \vdash (b, q_1, 0)$

are the only derivations from a start state to a final state for M.

More Properties of FSAs

Given the FSAs A, A_1 , and A_2 and the string w, the following properties are decidable:

Membership: $w \stackrel{?}{\in} L(A)$ Emptiness: $L(A) \stackrel{?}{=} \varnothing$ Totality: $L(A) \stackrel{?}{=} \Sigma^*$ Subset: $L(A_1) \stackrel{?}{\subseteq} L(A_2)$ Equality: $L(A_1) \stackrel{?}{=} L(A_2)$

Regular Expressions and Automata (1)

Regular Expressions and Automata (2)

The Finite State Utilities

The FSA Utilities toolbox:

- a collection of utilities to manipulate regular expressions, finite-state automata (and finite-state transducers).
- inplemented in Prolog by Gertjan van Noord, University of Groningen
- Home Page: http://odur.let.rug.nl/~vannoord/Fsa/
- command in the SfS network (penthesilea): fsa -tk

Reg. Expressions: Syntactic Extensions

\$A cc

contains

 $A =_{def} [?^* A ?^*]$

for example: \$[a | b] denotes all strings that contain at least one *a* or *b* somewhere.

- A & B Intersection
- A B Relative complement (minus)
- \sim A Complement (negation)

The Bigger Picture

Definition 9 (Regular Languages)

A language *L* is said to be *regular or recognizable* if the set of strings *s* such that $s \in L$ are accepted by a DFA.

Theorem (Kleene, 1956)

The family of regular languages over Σ^* is equal to the smallest family of languages over Σ^* that contains the empty set, the singleton sets, and that is closed under Kleene star, concatenation, and union.

 \Rightarrow The family of regular languages over Σ^* is equal to the family of languages denoted by the set of regular expressions.

Regular Relations

- Regular expressions can contain two kinds of symbols: unary symbols and symbol pairs.
 - Unary symbols (a, b, etc) denote strings.
 - Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.
- The simplest kind of regular expression contains a single symbol. E.g., "a" denotes the set {a}.
- Similarly, the regular expression "a:b" denotes the singleton relation $\{\langle a, b \rangle\}$.
- A regular relation can be viewed as a mapping between two regular languages. The a:b relation is simply the crossproduct of the languages denoted by the expressions a and b.

Finite-State Transducer

Definition 10 (FST) A finite-state transducer is a 6-tuple $(\Sigma_1, \Sigma_2, Q, i, F, E)$ where

 Σ_1 is a finite alphabet, (called the *input alphabet*)

 Σ_2 is a finite alphabet, (called the *output alphabet*)

Q is a finite set of states,

 $i \in Q$ is the *initial state*,

 $F \subseteq Q$ the set of *final states*, and

 $E \subseteq Q \times (\Sigma_1^* \times \Sigma_2^*) \times Q$ is the set of edges.

Constructing Regular Relations

Crossproduct: A .x. B

- The crossproduct operator, .x., is used only with expressions that denote a regular language; it constructs a relation between them.
- [A .x. B] designates the relation that maps every string of A to every string of B. If A contains x and B contains y, the pair $\langle x, y \rangle$ is included in the crossproduct.

Constructing Regular Relations

- Composition: A .o. B
 - Composition is an operation on relations that yields a new relation. [A .o. B] maps strings that are in the upper language of A to strings that are in the lower language of B.
 - If A contains the pair $\langle x, y \rangle$ and B contains the pair $\langle y, z \rangle$, the pair $\langle x, z \rangle$ is in the composite relation.

Properties of Regular Relations

Regular relations in general are not closed under

- complementation,
- intersection, and
- subtraction.

Properties of Transducers

- A transducer is functional iff for any input there is at most one output.
- A transducer is sequential iff no state has more than one arc with the same symbol on the input side.

On-Line Literature, Demos and Tools

Finte State Technology, Lauri Karttunen's Web Page at Xerox

Lauri Karttunen et. al.:

Regular Expressions for Language Engineering

Link: http://www.xrce.xerox.com/ competencies/content-analysis/ fst/home.en.html

Replace Operators

Unconditional obligatory replacement:

 $\mathsf{A} \rightarrow \mathsf{B} =_{def} [[\sim [A - []] [A .x. B]]^* \sim [A - []]]$

Unconditional optional replacement:

Contextual obligatory replacement:
A \rightarrow B || L _ R

meaning: "Replace A by B in the context L _ R."