
Earley Parser

Christopher Millar and Ekaterina Volkova
Seminar für Sprachwissenschaft

Universität Tübingen
January 2007

E a r l e y P a r s e r : B o t t o m - u p p a r s e r s

 In general, breadth-first bottom-up parsers
are attractive since:

● they work on-line;
●can handle left-recursion;
●can be doctored to handle ε-rules.

E a r l e y P a r s e r : B o t t o m - u p p r o b l e m

 Still the question remains:
 How to curb their needless activity?

 A method that will restrict the fan-out to
reasonable proportions while still retaining full
generality was developed by Earley .

E a r l e y P a r s e r : B a s i c C o n c e p t

Main problem: the spurious reductions can
never derive from the start symbol.
Solution: give a method to restrict the
reductions only to those that derive from the
start symbol.
The resulting parser takes at most n3 units of
time for input of length n rather than Cn.

E a r l e y P a r s e r : D e f i n i t i o n

Earley’s parser can also be described as a
breadth-first top-down parser with bottom-
up recognition, Still, we prefer to treat it as a
bottom-up method, for it can handle left-
recursion directly but needs special measures
to handle ε-rules.

E a r l e y P a r s e r : E a r l e y I t e m
 An Earley item is an item with an indication of
the position of the symbol at which the
recognition of the recognized part started.

E->E•QF@3
 The sets of items contain exactly those items...
 a) of which the part before the dot has been
recognized so far ...and...

 b) are useful in reaching the start symbol.

Position
 An Earley item is an item with an indication of
the position of the symbol at which the
recognition of the recognized part started.

E->E•QF@3
 The sets of items contain exactly those items
 a) of which the part before the dot has been
recognized so far and

 b) are useful in reaching the start symbol.

E a r l e y P a r s e r : M e t h o d s

The Earley Parser uses methods called
Scanner, Completer and Predictor.

● Scanner is like “shift”.
● Completer is like “reduce”.
● Predictor is unique to the Earley parser.

E a r l e y P a r s e r : S c a n n e r

Scanner

E a r l e y P a r s e r : C o m p l e t e r

Completer

E a r l e y P a r s e r : P r e d i c t o r

Predictor

E a r l e y P a r s e r : T h e S i g m a

The Scanner, Completer and Predictor deal with
four sets of items for each token in the input.

We'll refer to a token as sigma@p or as

δp

E a r l e y P a r s e r : T h e F o u r S e t s

sigma@p is surrounded by four sets:
● itemset@p-1
●completed@p
●active@p
●predicted@p

E a r l e y P a r s e r : i t e m s e t @ p - 1

itemset@p-1

E a r l e y P a r s e r : c o m p l e t e d @ p

completed@p

E a r l e y P a r s e r : a c t i v e @ p

active@p

E a r l e y P a r s e r : p r e d i c t e d @ p

predicted@p

E a r l e y P a r s e r : T h e F o u r S e t s , c o n t .

● itemset@p-1 - items available just before
sigma@p;

● completed@p - items that have become
completed after sigma@p;

● active@p - non-completed items after sigma@p:
● predicted@p - the set of newly predicted items.

E a r l e y P a r s e r : T h e S c a n n e r

The Scanner :
 looks at sigma@p -> goes through itemset@p-1

-> makes copies of all items that contain •sigma
-> changes them to sigma • -> adds them...

 a) to the set completed@p if the item@p was
completed ...or...

 b) to the set active@p if the item@p is not yet
completed

E a r l e y P a r s e r : T h e S c a n n e r , c o n t .

Rules not containing •sigma are discarded!

E a r l e y P a r s e r : T h e C o m p l e t e r

The Completer inspects completed@p, which
contains the completely recognized items and
can now be reduced.

E a r l e y P a r s e r : T h e C o m p l e t e r , c o n t .

 For each item of the form R --> sigma@m the
Completer goes to itemset@(m-1), and calls
the Scanner; which goes to work on R.

E a r l e y P a r s e r : T h e C o m p l e t e r

 The Scanner will make copies of all items in
itemset@(m-1) featuring a •R, replace the •R
by R• and store them in either completed@p
or active@p. At this stage items could be
added to the set completed@p.

E a r l e y P a r s e r : T h e C o m p l e t e r

Eventually the Completer stops completing.
(When it has completely completed

the set completed@p :))

E a r l e y P a r s e r : T h e P r e d i c t o r

The Predictor goes through the sets active@p
(which was filled by the Scanner) and
predicted@p (which is empty initially), and
considers all non-terminals which have a •
before them.

E a r l e y P a r s e r : T h e P r e d i c t o r , c o n t .

 For each expected non-terminal N and each
rule for that non-terminal N --> P..., the
Predictor adds an item to the set predicted@p.

E a r l e y P a r s e r : T h e P r e d i c t o r , c o n t .

 This may introduce
new predicted non-
terminals (for instance,
P) to predicted@p
which causes more
work for the Predictor.

E a r l e y P a r s e r : T h e P r e d i c t o r , c o n t .

Eventually the Predictor stops predicting.

E a r l e y P a r s e r : R e c o g n i t i o n

 The sets active@p and predicted@p together
form the new itemset@p. If the completed set
for the last symbol in the input contains an
item S-->...•@1. Then the input is recognized.

E a r l e y P a r s e r : E x a m p l e

Consider an example with the following
grammar and the input: a - a + a.
S --> E
E --> EQF
E --> F
Q --> +
Q --> -
F --> a

E a r l e y P a r s e r : E x a m p l e , c o n t .

There is one Predictor, Scanner and Completer
stage for each symbol.

Parsing begins by calling the Predictor on the
initial active set containing S --> E@1 which
generates itemset@0.

E a r l e y P a r s e r : δ @ 0

 The Predictor, reads
active@0, {S-> •E@1 } and
predicted@0, which is
initially empty, and fills the
set predicted@0.

{act.@0} U {pred.@0} =
{itemset@0}

E a r l e y P a r s e r : δ @ 1

 After scanning δ@1 the
Completer completes
some rules, and puts the
other possible rules in
active@1. Predictor
makes predictions from
those that are in the
active set.

E a r l e y P a r s e r : δ @ 2

 Continue as before
until the input is
consumed.

E a r l e y P a r s e r : δ @ 3

 As you can see we
already have few
possibilities...

E a r l e y P a r s e r : δ @ 4

E a r l e y P a r s e r : δ @ 5

 S --> E• @1 is in the
set completed and the
last input symbol has
been read.

 Therefore the sentence
is recognized!!!

E a r l e y P a r s e r : C o m p a r i s o n t o C Y K

Similarities:
● are Chart Parsers
● worst case memory requirements O(n2)
● worst case time complexity O(n3)
● use bottom-up recognition
● use a top-down parser to build trees

E a r l e y P a r s e r : C o m p a r i s o n t o C Y K

The Early Parser however eliminates rules which
will not be useful as we go along, with non
ambiguous grammars such as the example shown
we get a worst time complexity of O(n2).

E a r l e y P a r s e r : R e c o g n i t i o n C h a r t

E a r l e y P a r s e r : C Y K R e c o g n i t i o n C h a r t

E a r l e y P a r s e r : P a r s i n g T r e e

 As with the CYK
parser, a simple
top-down Unger-
type parser can be
used to reconstruct
all possible parse
trees from a chart.

E a r l e y P a r s e r : A W o r s e E x a m p l e

We get worst case behaviour when we have to
deal with ambiguous grammars like:

S --> SS
S --> x

E a r l e y P a r s e r : A W o r s e E x a m p l e , c o n t .

E a r l e y P a r s e r : A W o r s e E x a m p l e , c o n t .

E a r l e y P a r s e r : A W o r s e E x a m p l e , c o n t .

E a r l e y P a r s e r : A W o r s e E x a m p l e , c o n t .

The active@p and predicted@p sets keep
growing untill the final symbol is read. When
building a parse tree from the resulting chart we
find two possible derivations, but if the input
would be longer the the situation would be
worse!

E a r l e y P a r s e r : ε - r u l e s

The Earley parser doesn't like ε-rules!
(Does anybody like them?)

E a r l e y P a r s e r : ε - r u l e s , c o n t .

Consider the following non-e-free grammar with
the input a a / a.
S --> E E --> EQF E --> F

Q --> *
Q --> /
Q --> e
F --> a

E a r l e y P a r s e r : ε - r u l e s , c o n t .

After reading a1 we have a situation where every
time the predictor predicts a ∙Q it must also
predict a Q∙

E a r l e y P a r s e r : ε - r u l e s , c o n t .

 This can effect
the behaviour of
the Completer
which is working
on itemset@1.

E a r l e y P a r s e r : ε - r u l e s , c o n t .

In the end we can find a parse with this grammar.

E a r l e y P a r s e r : ε - r u l e s , c o n t .

What would happen to the itemset if we had a
rule Q --> QQ ?

E a r l e y P a r s e r : ε - r u l e s , c o n t .

An Early parser would resolve it but not without
inefficiency.
E --> E∙QF E --> EQ∙F
Q --> ∙QQ Q --> Q∙Q Q --> QQ∙
Q --> *
Q --> / ε-rules add significantly to the
F --> a complexity time

E a r l e y P a r s e r : P r e d i c t i o n L o o k a h e a d

Prediction Lookahead reduces the number of
incorrect predictions made by the Predictor by
considering next input symbol before adding
items to predicted@p. It uses a set of FIRST
terminal symbols, for each non terminal.

E a r l e y P a r s e r : P r e d i c t i o n L o o k a h e a d

S -> A | AB | B FIRST(S) = {p, q}
A -> C FIRST(A) = {p}
B -> D FIRST(B) = {q}
C -> p FIRST(C) = {p}
D -> q FIRST(D) = {q}

E a r l e y P a r s e r : P r e d i c t i o n L o o k a h e a d

Without
lookahead

E a r l e y P a r s e r : P r e d i c t i o n L o o k a h e a d

With
lookahead

E a r l e y P a r s e r : C o n c l u s i o n

Earley Parser shows a very successful
combination of strong sides of top-down and
bottom-up methods, handles well left recursion
and ε-rules, and, being armoured by lookahead,
takes the optimal possible amount of memory.

E a r l e y P a r s e r : C o n c l u s i o n

Earley rules!

