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Abstract: Two sets of data are discussed in terms of an exemplar resonance model of 
the lexicon.  First, a cross-linguistic review of vowel formant measurements indicate that 
phonetic differences between male and female talkers are a function of language, 
dissociated to a certain extent from vocal tract length.  Second, an auditory word 
recognition study (Strand, 2000) indicates that listeners can process words faster when 
the talker has a stereotypical sounding voice.  An exemplar resonance model of 
perception derives these effects suggesting that reentrant pathways (Edelman, 1987) 
between cognitive categories and detailed exemplars of them leads to the emergence of 
social and linguistic entities.

1. Introduction

This paper approaches the topic of sociophonetic variation from the viewpoint of speech perception 
theory.  The connection between these two areas of research arises because acoustic/phonetic 
variability of the sort that often marks social identity poses a most significant and interesting challenge 
to theories of speech perception.

Sociophonetic variation is more interesting than anatomical variation because it points the speech 
perception theorist to what in my opinion is a more nearly correct view of speech perception.  We 
have tended to assume that all acoustic/phonetic variability is lawful and perhaps hardwired in the 
neural circuitry for speech perception (Sussman, 1986; Fowler, 1986).  However, when we recognize 
sociophonetic variability, with its phonetically arbitrary social signaling values, it becomes necessary 
to give up on hardwiring as the key to overcoming variability in speech perception.

My own research has tended to focus on the sociophonetic variation found in gender differences. This 
is because speech perception theorists have typically treated gender variation as (1) a source of 
substantial phonetic variation, and (2) lawfully derived from typical vocal tract length differences, and 
therefore a candidate for processing via a hardwired “normalization” algorithm. Recent research 
(summarized in Johnson, 2005) suggests that the cross-language and within-language phonetic 
arbitrariness of gender and its implications for spoken language processing is very important for the 
theory of speech perception.

Perhaps also the research reported here will also be of some interest to researchers whose main focus is 
on sociophonetics because identifying cross-linguistic arbitrary gender differences supports the idea 
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that people “perform” gender to some extent.

Section 2 describes some cross-linguistic phonetic differences between male and female talkers, in 
support of the idea that gender differences are purely due to anatomical differences.  Section 3 reviews 
Strand’s (2000) finding that gender stereotypes influence spoken word processing.  Section 4 presents 
the exemplar resonance model that accounts for these findings.

2. The Cross-linguistic phonetics of gender.

In Johnson (2005), I presented the results of a cross-lingusitic survey that showed that men and 
women’s vowel formants differ from language to language.  This exercise built on an earlier small 
survey reported by Bladon, Henton & Pickering (1984).  They found that vowels produced by men are 
on average lower by about one Bark (critical band of auditory frequency resolution) from vowels 
produced by women.  They also reported that the male/female difference varies from language to 
language in a sample of six languages.  

Figure 1 shows some new data, again as in Johnson, 2005, drawn from published studies, see appendix 
1.  The frequencies of F1 and F2 across [i], [e], [a], [o], and [u] (except as noted in the appendix) were 
converted into auditory frequencies on the Bark scale (Schroeder et al., 1979) and the male/female 
difference for each vowel was calculated.  Then the male/female differences were averaged over the five 
vowels to produce the “Gender difference” valued plotted on the horizontal axis in figure 1.

The data in figure 1 support the initial observation reported by BHP and illustrate that male/female 
vowel formant differences (one of the main ways that male and female speech differs acoustically) are 
variable across languages and dialects of the same language. Together with data on the acquisition of 
phonetic gender differences (see Johnson, 2005), these data suggest that gender differences are not 
solely due to vocal tract anatomical differences between men and women.  The performance of gender 
may come into play.

However, the cross-linguistic differences that we see in figure 1 could be due to the luck of the draw.  
If, for example, in Behne et al.’s study of Norwegian vowels, the male participants happened to have 
unusually long vocal tracts or the female participants unusually short vocal tracts, then the large 
difference between male and female vowel formants in Norwegian may not have anything to do with 
Norwegian generally, but only with these particular talkers.  Of course, with a large enough random 
sample, we expect our findings such as these vowel formant measurements to be representative, but 
phonetic samples are often not very large or random.  But even if the phonetic data are representative, 
of Norwegian men and women, it might be that Norwegian men and women generally differ more in 
vocal tract length than do, for example, Danish men and women.

One special feature of the languages surveyed in figure 1 is that demographic data are available for each 
population (Tolonen et al., 2000).  In particular, we have available data on the average height of men 
and women in these populations.  Because research by anesthesiologists has shown that body height is 
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highly correlated with vocal tract length (r(292) = 0.79, Cherng et al., 2002), it seems likely that we 
could make some predictions about male and female vowel formant differences on the basis of the 
Tolonen et al. body height data, and then compare these predictions with the data observed in the 
survey.  

For example, the Tolonen et al. (2000) data find that men in Norway average 176 cm in height while 
women average 161.5 cm.  This height difference of 15.5 cm is larger than any other difference among 
the languages represented in figure 1.  So, vowel formants should be more different for Norwegian men 
and women than for the other languages in the vowel survey. 
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Figure 1. Average vowel formant difference between vowels produced by men and 
vowels produced by women, for 17 languages.
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However, as figure 2 shows, the relationship between body height differences between men and women 
and vowel formant (F2) differences between men and women is not tight at all.  The general trend is as 
we expect - the larger the height difference in the Tolomen et al. (2000) data, the larger the difference 
between male and female vowel formants.  However, height difference only accounts for 24% of the 
vowel formant difference between men and women. Danish men and women’s vowels differ quite a bit 
less than we would expect given their height difference, while the Norwegian and Californian men and 
women differ more than the linear regression line predicts.

There are two possible sources of the looseness of the relationship shown in figure 2.  First, it may be 
that the phonetic samples and the demographic samples do not overlap with each other sufficiently to 
allow for accurate prediction of vowel formants of one group of people from the body heights of 
another group drawn from the same population. A second possibility is that men and/or women 
“perform” gender differently in these languages.  This was the interpretation given in Johnson (2005).
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Figure 2. The difference in vowel formant frequency (F2) between male and female 
talkers on the vertical axis, as a function of the difference in the average body height 
between men and women in the countries where these languages are spoken on the 
horizontal axis. 

Figure 3 supports the second alternative. This figure shows the average formant frequency 
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measurements and average body height measurements that are summarized as male/female differences in 
figures 1 and 2.  The key observations to draw from this figure are that average body height is pretty 
well correlated with with F3 frequency, but that F1 and especially F2 are not so predictable from 
height.

Figure 3.  The average vowel formant frequency and average height for female (F) or 
male (M) speakers of the 17 languages shown in figures 1 and 2.  The lowest trend line 
shows the linear regression fit between the first formant F1 and average height. The 
middle trend line shows the regression fit between F2 and height, and the highest line 
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shows the fit between F3 and height. Separate fits for male and female F2 frequency are 
drawn with solid lines.

Table 1 quantifies these observations. The correlations for F3, even with this small number of data 
points (n=17), was reliable for women and nearly so for men, while F1 and F2 could not be reliably 
predicted from body height.  Additionally, the slope of the regression line of F2 for men was positive, 
indicating a tendency for lower F2 for men with shorter vocal tracts.  These data support the idea that 
the phonetic samples are representative of vocal tracts of speakers of these languages - this is indicated 
by the F3/height correlations - but that the weak relationship between vocal tract length differences and 
male/female vowel formant differences (figure 2) is due to aspects of the performance of gender.  

This analysis of overall trends in average vowel formant frequencies neglects a number of possible 
“gender dialect” features that have been noted in previous research (Fant, 1975), but the overall 
conclusion is clear. People (perhaps especially men) perform gender.  The implications of this result 
for the theory of speech perception have been explored before before (Johnson, 1989, 1997a,b, 2005) - 
listeners must compensate for gender differences in a way that pays special attention to the typical or 
expected difference between men and women for a particular speech community. Johnson (1997a) 
proposed that this community-sensitive evaluation of gender differences could be accomplished in an 
exemplar-based system of categorization (Nosofsky, 1986; Hintzman, 1986).  Before discussing some 
additional details about how a resonance-exemplar model might accomplish this, the next section 
describes some recent data that show that listeners are sensitive to gender stereotypes in auditory word 
recognition.

-0.5950.790*F3

-0.0550.387*F2

-0.0450.345*F1all

-0.0460.34*F3

-0.0070.002F2

-0.0300.029F1female

-0.0230.162+F3

0.0180.023F2

-0.0300.072F1male

slopeR2

Table 1.  Regression fits (R2) and the slope of the best fitting regression line, for the 
regression analyses shown in figure 3 (* p<0.01, + p<0.2).  
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3. A stereotype effect in auditory word recognition.

We have seen that some of the particulars of speech production are performed differently by men and 
women.  This seems to be a sensible interpretation of how we have F3 predictable from height while 
F1 and F2 are not.

This section reviews a recent experiment (Strand, 2000) that shows that gender sterotypicality matters 
in speech perception.  The purpose of this section is to tie the performance of gender together with 
representation of speech in long term memory.  If gender is a social category and sounding male or 
female is a matter of performance, then the perceptual process is likely to be sensitive to stereotypical 
gender characteristics.

Strand (2000) asked 24 listeners (15 female, 9 male) to rate, on a nine-point scale, how different a 
group of talkers sounded.  There were 10 men and 10 women in the set of talkers to be judged, and the 
listeners heard all possible pairs of these talkers speaking a word drawn from a list of 24 phonetically 
balanced, monosyllabic, high frequency words.  Another group of 10 listeners (2 male, 8 female) heard 
the same talkers and words and were asked to simply identify the gender of the talker as “male” or 
“female”.  The amount of time that it took the listener to identify the talker’s gender was recorded to 
within the nearest millisecond. 

These two sets of data (talker difference, and speeded gender identification) were used to identify 
stereotypical and nonstereotypical male and female talkers.  A multidimensional scaling (MDS) map of 
the talkers was produced from the talker difference data.  In this map the male talkers clustered 
together leaving only a couple of speakers on the periphery of this cluster of male voices.  Similarly, 
there were female talkers who clustered with each other and a few who were more peripheral to the 
female group. In the speeded gender classification results male talkers who clustered tightly with other 
male talkers were generally identified as “male” more quickly than male talkers who were peripheral to 
the male group. The same relationship held between the perceptual talker space for women and the 
“female” speeded gender classification response times.  Strand selected a stereotypical male as a talker 
from the male cluster who was identified as “male” more quickly than any of the other male voices, and 
a nonstereotypical male who was peripheral to the male group in the perceptual talker map, and was 
identified as “male” more slowly than the other men.  Stereotypical and nonsterotypical women’s 
voices were also selected by these criteria.

Another group of listeners (14 female, 10 male) were then asked to “name” words produced by the 
four talkers identified as stereotypical and nonstereotypical male and female.  Each listener heard 48 
phonetically balanced, monosyllabic, high frequency words produced by each of the four talkers (4 
presentations of each word). These were counterbalanced for order of the blocks with each speaker 
presented 12 times in each block and no word repeated in a block.  The listener’s task was to repeat 
aloud the word that the talker said and the response measure was the amount of time it took to repeat 
the word, as measured by a voice-activated switch.
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Figure 4. Results of the speeded word naming task (Experiment 5) in Strand (2000).

Strand’s (2000) reaction time data are shown in figure 4.  The primary finding of this study is that 
listeners took longer to begin repeating the words produced by the nonstereotypical talkers 
(F[1,23]=183.9, p < 0.01].  This voice stereotypicality effect was also significant in an analysis of 
covariance that took stimulus word duration as a covariant of reaction time. The apparent interaction in 
figure 4, in which the nonstereotypical male’s words were processed more slowly than the 
nonstereotypical female’s words, appears to be due mainly to different stimulus word durations and 
not a genuine interaction in processing time.

The general finding is clear.  Listeners come to the task of speech perception/auditory word recognition 
with gender expectations.  Linguistic material produced by voices that do not fit those expectations is 
not processed as efficiently as is material produced by stereotypical voices.  The next section presents 
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a resonance-exemplar model that is capable of producing emergent categories of talker, and incidentally 
linguistic analysis.

4. An exemplar-based model of perception.

The model presented in this section builds on the one described earlier in Johnson (1997b). Resonance 
(Carpenter & Grossberg, 1987) or reentrant mapping (Edelman, 1987), which has precursors in 
cognitive science at least since Wiener (1950), is used in this version of the model to provide interaction 
between auditory, visual, and declarative knowledge representations.  Hintzman’s (1986) MINERVA 
used a similar mechanism that he called an “echo”.

Before turning to a discussion of resonance, the next section digresses briefly for a discussion of 
declarative and recognition memory.

4.1. Remembering John Choi: Declarative versus recognition memory

My memories of the late John Choi (1991, 1992, 1995, Choi & Keating, 1991) are based on my 
personal interactions with him in  dinners, road trips, club hopping, meetings, formal presentations, 
and heart to heart chats.  I can describe some of these experiences in words.  Such as the loud, rambling 
discussion we had about phonetics while we were driving from Berkeley to Los Angeles on the I-5, 
smoking and listening to loud music. I remember watching with awe his impersonation of a Korean 
soldier (made more believable by the fact that he had served in the Korean army).  I remember how fast 
he could chop garlic, and how reluctant yet determined he was to keep asking hard questions of Donca 
Steriade at a phonology group meeting.  

More to the point of this paper, I have memories of John’s physical appearance.  The deep brown of 
his eyes, the fuzzy cut of his hair, the breadth of his shoulders and the spindliness of his legs. And of 
his voice, the highish pitch and careful enunciation. But the descriptions of these memories is different 
from the mental images themselves.  To a person who didn’t know him, my descriptions are probably 
not enough to pick him out of a set of photographs or recognize his voice among a set of recordings 
because recognition requires access to the particulars, before they have been filtered through a verbal 
description.

Psychologists call these two types of memory declarative memory and recognition memory. The fact 
that I can remember who was the seventeenth president of the United States is a case of declarative 
memory.  I had no experience of Andrew Johnson or his impeachment. These are only facts that I was 
taught in school.  If I were to try to describe the man it would be only from the photograph or two that 
I have seen of him, and the sketchy stories that I have heard. However, my experience of the thirty-
sixth president, while still relatively impoverished is a good deal richer.  As with Andrew Johnson, I 
can recite (or declare) some of the facts that I learned about Lyndon Johnson.  But I also have the image 
of him on television declaring his intention to not run for reelection. Somehow, stored with that black 
and white television image I have recorded the texture and color of the shag carpet that I was lying on 
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when I saw the broadcast. Though I can only give a rough description of that experience, I am pretty 
sure that I would recognize the difference between an authentic recording and an imitation even though 
I saw that speech more than thirty years ago.

Linguistic descriptions of language are declarative memories.  The linguist who experiences the 
language, who listens to a consultant pronounce words and sentences, produces a description of the 
experience.  Though our descriptions may be carefully accurate, and our analyses clever in discovering 
and describing the patterns in these descriptions, we nonetheless and by necessity give a sketchy 
report of the vast richness of the experience.  And for most linguists, this experience is itself only a 
shadow of the linguistic experience of our language consultants.  As in records of the recent past, such 
as the life of John Choi, or of more distant lives such as Andrew Johnson, a descriptive record of 
language is a very valuable thing.

However, keeping in mind the intrinsic value of grammars and dictionaries, the key idea of the 
exemplar-based approach is that people remember, as the core of the cognitive representation of 
language, linguistic episodes not linguistic descriptions.  We operate from mental images - detailed 
memories of specific linguistic experiences - rather than from impoverished descriptions of such 
experiences.  

4.2 An Exemplar-resonance model.
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Exemplars
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Figure 5. Schematic illustration of an exemplar resonance model of speech perception.  
An incoming utterance is encoded by the auditory system as an auditory spectrogram, 
which is then compared with a large set of exemplars of similar auditory images. 
Activation from the exemplars feeds up to linguistic categories and to gender categories.  
Reentrant loops feed activation back down to the exemplar store setting up a resonance 
in the system.
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Figure 5 illustrates the exemplar resonance model used in the simulation here.  In this model, which 
builds on the one presented in Johnson (1997b), an exemplar memory retains the auditory/phonetic 
details of linguistic episodes associated with both words and gender.  The computer simulation thus 
takes as input speech sound files, encodes them as auditory spectrograms in an exemplar-based 
memory system.  Similarity between input speech and exemplars determines the activation of each of 
the exemplars in response to the input and then connection weights between exemplars and category 
nodes feeds activation from exemplars to categories.  These operations are formalized in Nosofsky’s 
(1986) Generalized Context Model with three formulas.

    

† 

dij = ( xi - x j)
2Â (1) Auditory distance

The auditory distance between two sound files i and j from auditory spectrograms, xi and xj, where x is 

an auditory spectrogram.

  

† 

aij = e
-cdij (2) Exemplar activation

The amount of activation on exemplar i caused by input token j is an exponential function of the 
auditory distance between the exemplar and the input token.

  

† 

Ekj = Ekj + aijwkiÂ (3) Category activation/evidence

The evidence that input token j is an example of category k is then a sum of the activations of all of the 
exemplars of category k.  In the simulations here, the weights w between exemplars and categories are 
equal to 1 if the exemplar was categorized k and equal to 0 if the exemplar was not categorized k (see 
Kruschke, 1992 for a back-propagation method of weight training in an exemplar-based model of 
memory).  Initially Ekj is set to 0 in these simulations, though one could imagine a scheme in which the 

initial evidence would reflect topdown expectations.  Evidence accumulates over several cycles of 
resonance, as will be discussed below.

The “categories” in this model are a fudge. For instance, the node labeled “see” is shorthand for all of 
the non-auditory aspects of the linguistic episodes that include mention of this word.  This could 
include some specifically linguistic information such as gestural intentions of the speaker for self-
spoken instances of “see”, or the orthographic representation seen in episodes of reading along with 
someone.  Non-auditory aspects of linguistic episodes might also include observed gestures (such as 
the observation of someone pointing while saying “see?”) or other aspects of the visual or conceptual 
scene experience simultaneously with the auditory image.  Ultimately the conception envisioned is that 
of Edelman (1987), that the mental representation of a word emerges from correlated multi modal 
experiences of the word. The correlations/generalizations do not need to be, and perhaps cannot be, 
abstracted and stored separately from the episodic memory.  
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However, in practical terms, it is desirable to permit a single node in the simulation represent this 
collection of non-auditory episodic experience so the model can be focussed on auditory/perceptual 
emergent generalizations.  

    

† 

ai = ai + wki(Ekj n) (4) Resonance

Resonance is added to the model by feeding activation down from the category nodes to the exemplars.  
Whether an exemplar i receives increased activation from category node k is determined by the weight 
w between the exemplar and the category w (formula 4).  The effect of this operation is to spread 
activation from one activated exemplar to all other exemplars that share category memberships with the 
activated one.  This will then tend to produce a blurring of auditory details, and will tend to centralize 
the response of the model so that perception is more categorical than it would have otherwise been.

4.3. Simulating results for stereotypical and nonstereotypical talkers.

This simulation used the 960 (20 talkers * 48 words) sound files that were recorded for Strand (2000).  
To test the perception of the stereotypical female talker, for example, the set of exemplars included the 
other 19 talkers and the response of the model was then calculated for the 48 words produced by talker 
F5 (the stereotypical female).  This was repeated for each of the four talkers.  Table 2 shows the 
percent words correctly identified and the percent correct gender identification for each talker in these 
simulations.

7950

5471

1775

7579

M8 - nonstereotypical male

M5 - stereotypical male

F7 - nonstereotypical female

F5 - stereotypical female

% gender correct% words correcttalker

Table 2. Percent words correct and gender correct in simulations of Strand’s (2000) 
auditory word naming experiment.

The gender of the nonstereotypical female was usually incorrectly given as “male” - for over 80% of 
the words - and the nonstereotypical male’s words were often misidentified.  So the performance of the 
model is consistent with listener performance, but at a much lower rates of correct identification 
(especially for the gender identification of the stereotypical male talker.  

The behavior of the exemplar-resonance model can be illustrated by looking at performance on one of 
the words in the data set.  Figure 6 shows the perceptual space for the word “case”.  This figure was 
generated by taking exemplar activations for every sound file compared with every other sound file. 
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The resulting similarity/activation matrix was then visualized using multidimensional scaling with two 
dimensions. In this perceptual space male talkers are separated from female talkers (as indicated by the 
hand-drawn line in the figure.  Interestingly, the nonstereotypical talkers appear close to the line 
dividing male and female talkers.  

Figure 6.  An auditory perceptual map of Strand’s (2000) “case” stimuli. The 
stereotypical talkers are outlined with squares and the nonstereotypical talkers are 
outlined with ovals.
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Now, if we remove talker F5 from the exemplar space and then present her token of “case” to the 
model we get the exemplar activation pattern shown in the upper left graph in figure 7.  The location of 
talker F5 is indicated by the black dot and the magnitude of each exemplar’s activation in response to 
this token is indicated by the size of the plotting symbol. Diamonds show the initial exemplar 
activations and circles show exemplar activations after three resonance cycles.  When the circle is bigger 
than the diamond this indicates that relative exemplar activation is increasing due to resonance and 
when the diamond is bigger activation is decreasing.  In the case of the stereotypical female, the most 
active exemplars are of female talkers, and with resonance the activation of male exemplars decreases.  
A similar pattern was found for the stereotypical male talker.  

In the case of the nonstereotypical female talker the most active exemplars are examples of male 
talkers, and with resonance this pattern only increases.  This token was incorrectly identified as 
“male”.  The situation with the nonstereotypical male talker is different.  The most active exemplar in 
the map is a token of a woman, but the sum of exemplar activations is slightly greater for male 
exemplars.  Thus, the gender is correctly identified, and the activation of male exemplar increases and 
female exemplars decreases with resonance, but the overall response to this talker is rather lower than 
to the other talkers.  
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Stereotypical Female

Non-stereotypical Female Non-stereotypical Male

Stereotypical Male

Figure 7. The growth of exemplar activation over three cycles of resonance in response 
to tokens of Strand’s (2000) stereotypical and nonstereotypical female and male voices 
saying “case”.
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5. Conclusions

This paper has focussed on the perceptual representation of talker gender, arguing that the language-
specificity of male and female vowel formant frequencies (independent of presumed vocal tract length) 
indicates that talkers perform gender. This suggestion, that talkers perform gender, was supported by 
data showing that listeners respond more slowly in a word recognition task to talkers who sound less 
stereotypically male or female.  Finally, we explored some aspects of an exemplar-based model of 
speech perception that performs “speech perception without talker normalization” and found that this 
model is also sensitive to the nonstereotyicality of talkers.  Much remains to be done in the exploration 
of perceptual cognitive representations of talkers and words, and the emergence of these 
representations from perceived instances of speech, but overall the suggestion of this paper is that an 
exemplar-based approach incorporating a mechanism of reentrant mapping, or resonance, may be a 
fruitful line of investigation.
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Appendix 1. List of references and vowels included in the cross-linguistic vowels and body-height 
survey.

i,e,a,o,uEklund & Traunmuller (1997)Swedish

i,e,a,o,uGonzalez (pc)Spanish

i,e,a,o,uJassem (1968)Polish

i,ii,a,aa,o,ooBehne et al., (1996)Norwegian

i,e,a,o,uEaston & Bauer (2000)New Zealand

i,e,a,o,uYang (1996)Korean

i,e,a,o,uCosi, Ferrero, & VaggesItalian

i,e,a,o,uAsta SvavarsdottirIcelandic

i,e,a,o,uTarnoczy (1964)Hungarian

i,e,a,o,uMost et al. (2000)Hebrew

i,e,a,o,uPatzold & Simpson(1997)German

i,e,a,o,uLienard & Di Benedetto (1999)French

i,e,a,o,uAdank, et al. (2004)Dutch

i,e,a,o,uFischer-Jørgenson (1972)Danish

i,e,a,o,uHagiwara (1994)California

i,e,a,o,uAdank, et al. (2004)Belgian Dutch

i,e,a,o,uWatson et al. (1998)Australian
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