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Abstract

This study starts from the hypothesis, first advanced by McDonald and
Shillcock (2001), that the word frequency effect for a large part reflects local
syntactic co-occurrence. It is shown that indeed the word frequency effect
in the sense of pure repeated exposure accounts for only a small proportion
of the variance in lexical decision, and that local syntactic and morpholog-
ical co-occurrence probabilities are what makes word frequency a powerful
predictor for lexical decision latencies. A comparison of two computational
models, the cascaded dual route model (Coltheart, Rastle, Perry, Langdon,
& Ziegler, 2001) and the Naive Discriminative Reader (Baayen, Milin, Fil-
ipovic Durdjevic, Hendrix, & Marelli, 2010), indicates that only the latter
model properly captures the quantitative weight of the latent dimensions
of lexical variation as predictors of response times. Computational mod-
els that account for frequency of occurrence by some mechanism equivalent
to a counter in the head therefore run the risk of overestimating the role
of frequency as repetition, of overestimating the importance of words’ form
properties, and of underestimating the importance of contextual learning
during past experience in proficient reading.

Frequency is known as one of the most robust predictors of human performance in general
(Hasher & Zacks, 1984). For lexical processing as gauged by the visual lexical decision task,
Word Frequency is the predictor that explains the greatest proportion of the variance in
response latencies. Unsurprisingly, frequency of occurrence plays a pivotal role across very
different models of reading. The interactive activation model of McClelland and Rumel-
hart (1981), the dual route model of Coltheart et al. (2001), and the bilingual interactive
activation model of Van Heuven, Dijkstra, and Grainger (1998) all code frequency into the
resting activation levels of logogen-like word units. Higher-frequency words are assumed to
have higher resting activation levels, allowing such words to reach a threshold activation
level more quickly than lower-frequency words. Murray and Forster (2004) argue lexical
access involves serial perusal of frequency-ordered lexical entries. In the Bayesian Reader
of Norris (2006) as well as in the Shortlist-B model of Norris and McQueen (2008), word
frequency comes into play, in the calculation of the posterior probability of a word given the
visual or auditory input, as the estimate of that word’s long-term a-priori probability. In
the speech production model of Levelt, Roelofs, and Meyer (1999), word frequency is taken
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to reflect either a word form’s activation threshold, or a word’s verification time. What all
these models share is the assumption that word frequency is a kind of ‘counter in the head’:
pure repetition of the experience of reading, hearing, or producing a word are supposed to
increase this counter. The counter can be conceptualized as a resting activation level, the
determinant of a position in a serial access system, or as a parameter of a verification time,
but the basic underlying idea remains the same: Repeated exposure as such leads to better
entrenchment in memory.

Examples of approaches in which frequency of occurrence plays an indirect role are
the models of Rumelhart and McClelland (1986) and Harm and Seidenberg (2004). These
subsymbolic models are trained on lists of isolated words. Crucially, the frequency with
which words are presented is proportional to their actual frequency. In practice, some
function of frequency (such as the square root transformation, as in the model of Harm and
Seidenberg) is used to avoid that high-frequency words come to dominate learning.

The present paper argues that frequency of occurrence, when understood in the sense
of repeated experience, plays only a minor role in lexical processing. If this hypothesis is
correct, models encoding the word frequency effect by means of some form of a counter in
the head are fundamentally wrong. In fact, even connectionist models such as developed by
Harm and Seidenberg (2004) then underestimate the extent to which the word frequency
effect reflects contextual learning.

In what follows, the lexical variables that will play a role in the statistical analyses
are introduced first. It will be shown that of all these lexical variables, word frequency is
undoubtedly the best predictor of visual lexical decision latencies (R2 =0.39). However,
90% of the variance in word frequencies is predictable from other lexical properties. When
these other frequencies are partialled out of the frequency effect, resulting in an estimate of
frequency as a measure of pure repetition, its explanatory power drops to a mere R2 = 0.04.
Furthermore, lexical variables other than frequency account for roughly the same amount
of variance as frequency by itself.

Two very different conclusions can be arrived at on the basis of these facts. One con-
clusion would be that frequency is apparently the fundamental predictor. Given the choice
between two models capturing the same proportion of the variance in the response variable,
where one model has only a single predictor and the other many different predictors, the
simplest model investing only one degree of freedom is preferable. This line of reasoning
supports a research strategy in which additional predictors are accepted into a model only
when they explain variance over and above the variance already accounted for by word
frequency. Furthermore, the strong position of word frequency as the dominant predictor
suggests that frequency is an intrinsic property of individual lexical units. In many studies,
the existence of a frequency effect for a given unit (syllable, simple word, complex word,
phrase) is often interpreted as empirical evidence for the existence of cognitive represen-
tations for such units. This is the dominant view in research on lexical processing, and
is formalized in both spreading activation, subsymbolic connectionist, serial search, and
Bayesian computational models.

The conclusion defended in the present study is a very different one, namely that the
word frequency effect is an epiphenomenon of learning to link form to lexical meaning. On
this account, frequency reflects a wide range of lexical distributional properties that are all
co-determining learning, and that the learning experience is what drives speed of lexical
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processing. To clarify this idea, consider the N-count measure specifying the number of
orthographic neighbors of a word. One way of modeling the effect of neighborhood density
is to code it into a unit’s resting activation level. Another way of modeling this effect is to
allow neighbors to compete with the target word in an interactive processes of excitation
and inhibition. The first solution is not adopted by any theory, as it does not explain
why a neighborhood density effect might arise. Nevertheless, interactive activation models
that capture effects of neighborhood density do code frequency into their resting activation
levels, even though this does not explain why and how frequency effects arise. For a deeper
understanding of the frequency effect, why it exists, and why it is so correlated with many
other lexical distributional properties, a very different approach is called for.

The remainder of this paper is structured as follows. First, the data set and the
variables that will inform the discussion are introduced. The next section establishes to
what extent frequency can be predicted from other variables. This section is followed by a
principal components regression analysis aimed to establish the latent dimensions of lexical
variation and their processing consequences. The resulting model is then compared with the
processing costs of two computational models, the DRC model developed by Coltheart et al.
(2001) and the Naive Discriminative Reader model proposed by Baayen et al. (2010). It will
be shown that the latter model reflects the processing costs of the latent dimensions most
faithfully. Crucially, this is achieved on the basis of simple and well-motivated principles of
learning, without having to posit representations to which counters-in-the-head would be
linked. This study concludes with a discussion of the implications of these findings.

Data and variables

The data set comprises 1042 monomorphemic and monosyllabic words for which
lexical decision latencies can be extracted from the English Lexicon Project website at
http://elexicon.wustl.edu/default.asp, subject to the condition that information on
the variables listed in Table 1 is also available.

Table 1 begins with listing a single frequency measure, calculated from three separate
frequency measures: the frequency of the word as listed in the celex lexical database
(Baayen, Piepenbrock, & Gulikers, 1995), and the hal and subtlwf frequencies made
available on the English Lexicon Project web page. Each of these three frequency measures
was log-transformed and scaled (centered and divided by the standard deviation).

As these measures enter into strong correlations, a principal components orthogonal-
ization was carried out, resulting in three uncorrelated principal components. The first,
henceforth referred to as Frequency, entered into a strong negative correlation (r =-0.63)
with the (inverse-transformed) lexical decision latencies (henceforth RTlexdec). All three
frequency measures had positive loadings on this principal component, indicating it repre-
sents their common frequency component.

The second principal component did not enter into a correlation with the RTs, and
is not considered further. The third principal component revealed a small but significant
correlation with the response latencies (r =0.17). Inspection of the loadings indicated that
it contrasted hal frequency with subtlwf frequency, suggesting a difference in genre. In
what follows, this principal component is referenced as Genre. A second variable assessing
a genre (or register) difference is the log of the ratio of the frequencies of a word in the
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Frequency First PC for HAL, CELEX, SUBTITLE
Genre Third PC for HAL, CELEX, SUBTITLE
Written-Spoken Ratio log written/spoken frequency (BNC)
BNC Dispersion dispersion in BNC
Contextual Diversity contextual deversity (from ELP)
Syntactic Entropy entropy of left-positional syntactic family members
Syntactic Left Family Size log count of different words immediately preceding

the target word
Prepositional Relative Entropy distance from prepositional prototype
Adjectival Relative Entropy distance from adjectival prototype
Inflectional Entropy entropy of inflectional paradigm
Noun-Verb Ratio log noun/verb frequency (CELEX)
Morphological Family Size log count of different words with the target word

as constituent
Complex Synsets count of morphologically complex synsets in WordNet
OLD Orthographic Levenshtein Distance
Ncount Coltheart’s Neighborhood count
Length word length in letters
Mean Bigram Frequency geometric mean bigram frequency (CELEX)
RTlexdec -1000/RT
DRC simulated response latency Dual Route Cascaded model
NDR simulated response latency Naive Discriminative Reader

Table 1: Variables considered in this study. With the exception of RTlexdec, DRC, NDR, all variables
were scaled.

written and spoken subcorpora of the British National Corpus (Burnard, 1995), henceforth
Written-Spoken Ratio.

Two measures, Contextual Diversity and BNC Dispersion, gauge to what extent words
are used uniformly or non-uniformly across corpora. Consider two nouns with roughly equal
frequency, such as time and well. In the British National Corpus, time occurs in 3726
different texts, whereas well occurs in only 513. This greater dispersion of time indicates
that it is used more frequently in different texts than is well. In what follows, the number
of texts in the British National Corpus in which a word occurs will be referred to as its
BNC Dispersion. The English Lexicon Project website offers a similar dispersion measure
for the film subtitle corpus, named Contextual Diversity, defined as the percentage of
films containing the word. Adelman, Brown, and Quesada (2006) claim that contextual
diversity, and not word frequency, is the crucial determinant of word naming and lexical
decision times.

In a similar vein, McDonald and Shillcock (2001) present data suggesting that the
microcontext of words around a given target word is crucial to lexical processing, rather
than just a word’s frequency as such. Let pi|ω denote the probability that in texts word
wi occurs close to a target word ω. Here, close is technically defined as occurring within a
window of n words around ω, where n is usually small (4 or 5). Let qi denote the overall
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probability of word wi in the corpus. Then the relative entropy

REω =
∑
i

pi|ω log2(pi|ω/qi) (1)

specifies the extent to which word usage around ω differs from general word use. The greater
this relative entropy is, the more collocationally restricted ω is. The prediction is that the
more a word is restricted collocationally, the longer its response latency will be. This is
indeed what McDonald and Shillcock found. Their relative entropy measure tended to
explain substantially more variance than did their frequency measure, although frequency
remained significant as predictor when relative entropy was included in their regression
models.

In the present study, we explore the importance of a word’s textual microcontext with
several related predictors: Syntactic Left Family Size, Syntactic Entropy, Adjectival Relative
Entropy, and Prepositional Relative Entropy. A word’s syntactic left family size is the total
number of different words immediately preceeding that word. A target word’s syntactic
entropy is the average amount of information carried by the probability distribution of a
word’s left syntactic family S,

Hsynt =
−

∑
w∈S pw log2 pw

s
, (2)

where s is the syntactic family size and pw is the relative frequency of w in S,

pw =
frequency(pw)∑
k∈S frequency(pk)

. (3)

A word’s adjectival relative entropy specifies, for a given noun, the extent to which the prob-
ability distribution of adjectives preceding that noun differs from the general distribution
of adjectives preceding any noun. Let qa denote the probability of adjective a preceding
any noun, and let pa,N denote the probability of that adjective preceding a specific noun
N . The adjectival relative entropy can now be defined as

REN =
∑
a

pa,N log2(pa,N/qa). (4)

In what follows, the adjectival relative entropy is calculated conditional on a determiner
preceding the adjective. Finally, a word’s prepositional relative entropy specifies, for a
given noun, the extent to which the probability distribution of a preposition preceding that
noun in a phrase consisting of a preposition, followed by the indefinite article, followed by a
noun, differs from the general distribution of prepositions preceding indefinite nouns. It is
defined analogously to (4). These four measures probe only a subset of the many possible
aspects of a word’s syntactic microcontext. All four enter into positive correlations with
the relative entropy measure proposed by McDonald and Shillcock. Twelve of the words
listed in the appendix of their study are also part of the materials considered in the present
study. For three of our four measures, the expected positive correlation reaches significance
(Left Syntactic Family Size: r = -0.61 (t(10) = -2.45, p = 0.0342); Syntactic Entropy: r
= 0.62 (t(10) = 2.48, p = 0.0325); Adjectival Relative Entropy: r = 0.62 (t(10) = 2.51,
p = 0.0307); Prepositional Relative Entropy: r = 0.27 (t(10) = 0.87, p = 0.4025)). Thus,
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any conclusions based on these four measures can be expected to generalize to McDonald
and Shillcock’s relative entropy measure as well.

Table 1 lists four morphological predictors. Inflectional Entropy is the amount of
information carried by a word’s inflectional paradigm. It is defined analogously to a word’s
syntactic entropy, replacing the set of syntactic family members by the set of a word’s
inflected variants. The Noun-Verb Ratio is the log of the ratio of the frequency of the word
used as a noun and its frequency used as a verb, using the frequency counts as available in
celex. A word’s Morphological Family Size is the count of different words in which a given
target word occurs as a constituent (see, e.g., Schreuder & Baayen, 1997; Prado Mart́ın,
Bertram, Häikiö, Schreuder, & Baayen, 2004). Complex Synsets is the count of complex
words that are synonyms of the target word according to WordNet (Miller, 1990).

At the word level, four predictors are included: the words’ neighborhood density,
gauged either by Coltheart’s N (Ncount, (Coltheart, 1978)) or by the Orthographic Lev-
enshtein Distance measure of Yarkoni, Balota, and Yap (2008). Word length is assessed
through a word’s number of letters, and letter pair familiarity through the geometric mean
bigram frequency.

The primary response variable in the present study is mean visual lexical decision
latency (RTlexdec, averaged over subjects), as available in the English Lexicon Project.
These latencies were inverse transformed to remove most of the rightward skew in the
distribution of latencies.

Two simulated response variables are also included in Table 1. The first, DRC,
represents the number of cycles required for a word to reach threshold in the cascaded
dual route model of Coltheart et al. (2001), using the implementation available at http://
www.maccs.mq.edu.au/~ssaunder/DRC. The DRC model is an interactive activation model
with two routes from form to articulation, several layers of units, controlled by 31 free
parameters. This model was developed primarily for simulating the process of reading
aloud, but Coltheart and collaborators also explored the model’s potential for modeling
lexical decision. For lexical decision, however, they reported poorer performance than for
word naming. Surprisingly, for the present data set, the drc cycles correlate better with the
elp lexical decision latencies (R2 =0.18) than with the elp naming latencies (R2 =0.08).
We will therefore use the DRC cycles as a proxy for a measure of processing costs as gauged
by an interactive activation model.

The second simulated response latency, NDR, specifies the predictions of the Naive
Discriminative Reader model proposed by Baayen et al. (2010). In what follows, we examine
only the version of this model that is completely parameter-free. The model has two layers
only, one layer representing letter unigrams and bigrams, and a second layer representing
lexical and grammatical meanings. Connections from the form layer to the semantic layer
are estimated using the equilibrium equations for discriminative learning (Danks, 2003) as
defined by the Rescorla-Wagner equations (Wagner & Rescorla, 1972). The predictions of
the model are fully determined by the co-occurrence matrix of letter unigrams and bigrams,
and by the co-occurrence matrix of meanings and unigrams and bigrams. The present
implementation is trained on 11,172,554 two and three-word phrases from the British Na-
tional Corpus, comprising 26,441,155 word tokens of 24710 monomorphemic words and com-
pounds, derived and inflected words containing these monomorphemic words. A simulated
response latency is obtained by summation of the weights connecting a word’s constituent
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unigrams and bigrams to the word’s meaning, and taking the log of the reciprocal of the
resulting sum. The reciprocal transformation reflects the hypothesis that a meaning with
more bottom-up support becomes available more quickly. The following log-transform is
required to remove the rightward skew from the distribution of response latencies. The
resulting distribution of simulated response latencies is approximately normal.
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Figure 1. Proportion of variance in lexical decision latencies explained by single-predictor models.

Figure 1 summarizes visually the amount of variance in the empirical (inverse trans-
formed) lexical decision latencies explained by each of the variables listed in Table 1. At
the extremes, we find that Mean Bigram Frequency has no explanatory value, and that
of all predictors, Frequency is the best predictor, followed by BNC Dispersion, Contextual
Diversity and the paradigmatic measures Syntactic Entropy, Syntactic Family Size, Morpho-
logical Family Size, and Complex Synsets. The Naive Discriminative Reader outperforms
the Cascaded Dual Route model. Measures of word form, including neighborhood den-
sity measures and length, have little explanatory value for this data set in single-predictor
models.

Although Frequency emerges as the best single predictor, as expected, frequency of
occurrence, in the sense of pure repetition, turns out not to be a particularly important
predictor. This can be seen by fitting a regression model predicting frequency from other
lexical distributional proporties.

Predicting frequency

The rationale of predicting frequency from syntactic family size, morphological family
size, inflectional entropy, noun-verb ratio, syntactic entropy, synonymy, written-spoken fre-
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quency ratio, prepositional and adjectival relative entropy, contextual diversity, and BNC
dispersion, is twofold. First, the regression model will be informative about the extent to
which frequency is collinear with other variables. Second, by taking residuals of a model re-
gressing frequency on these predictors, an upper bound is obtained for a frequency measure
that reflects pure repetition in experience.

edf Ref.df F p-value

Syntactic Family Size 3.3271 3.3271 4.3556 0.0033
Morphological Family Size 2.9451 2.9451 28.2602 0.0000
Inflectional Entropy 1.6296 1.6296 41.8813 0.0000
Noun-Verb Ratio 7.6803 7.6803 21.2528 0.0000
Syntactic Entropy 7.3443 7.3443 4.9663 0.0000
Complex Synsets 1.0000 1.0000 9.2426 0.0024
Written-Spoken Ratio 6.4714 6.4714 8.8714 0.0000
Prepositional Entropy 1.8186 1.8186 3.4901 0.0351
Contextual Diversity 7.6564 7.6564 29.7048 0.0000
BNC Dispersion 4.4591 4.4591 109.3060 0.0000

Table 2: Estimated degrees of freedom and significance for 10 predictors of Frequency of Occurrence

Table 2 summarizes a generalized additive model (Wood, 2006) fitted to the Fre-

quency measure. For each predictor, a nonlinear functional relation with the response
variable was allowed for by using a restricted cubic spline with generalized crossvalidation
to optimize the number of smoothing parameters. The column labeled ‘edf’ presents the
estimated degrees of freedom. When equal to 1, as in the case of the synset measure, the
effect is linear. Predictors that did not reach significance were removed from the model
specification. The condition number of the predictors listed in Table 2 is modest (13.98),
indicating that the results are unlikely to be distorted or unstable due to collinearity. The
gam model explains no less than 91% of the variance in the frequencies.

Figure 2 presents the partial effects of the significant predictors of frequency. Note-
worthy is the U-shaped effect of Noun-Verb Ratio and the strong, nearly linear effect of BNC
Dispersion. The effect size of the latter is much greater than that of the related contextual
diversity measure derived from the film subtitle corpus.

The residuals of the generalized additive model fitted to the lexical decision latencies
provide an estimate of a measure for frequency in the sense of pure repeated exposure,
henceforth ‘Repetition Frequency’. Repetition Frequency is significantly correlated with the
original frequency measure: r = 0.3 (t(1040) = 10.16, p = 0). Its correlation with lexical
decision latencies is small but significant: r = -0.19 (t(1040) = -6.24, p = 0). (For the
inverse transformed naming latencies of the English Lexicon Project, there is no significant
correlation: r = -0.05 (t(1040) = -1.74, p = 0.0823).) This suggests that frequency-as-
repetition explains only a small proportion of the variance in response latencies. It should be
kept in mind that the proportion of variance explained probably is inflated, as the measures
that we are bringing into the model equation are quite simple, and do not fully capture all
contextual and morphological correlational structure contributing to the Frequency measure.
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Figure 2. Partial effects of 10 predictors for frequency of occurrence.

To place the effect of Frequency in perspective vis-a-vis the other predictors, it is
worth noting that a model with just Frequency as predictor (using a spline to capture
nonlinearity) reveals an R2 equal to 0.43, which is matched well by the R2 of a model
including all predictors except Frequency, 0.47. The problem that arises at this point is
that we are dealing with a cluster of predictors that are all correlated, and that all are
to some extent predictive for response latencies. Frequency is clearly the best predictor
of all, but unfortunately it is unclear what a simple frequency count actually represents.
It comprises pure repetition, and in addition to that, many aspects of experience that are
contextual in nature, both with respect to morphology and with respect to syntax. What
we need is to clarify how the different lexical predictors cluster, and how these clusters
predict response latencies. A technique for assessing such underlying clusters is principal
components analysis.

Principal components orthogonalization

A principal components orthogonalization of Repetition Frequency and all other lexi-
cal variables resulted in 17 principal components, of which 8 turned out to be predictive for
lexical decision. These components are listed in Table 3, together with the loadings of the
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original predictors on these components. PC1 (28.1% of the variance in predictor space)
is dominated by measures of contextual and morphological diversity (syntactic family size
and syntactic entropy, BNC dispersion, morphological family size, and adjectival relative
entropy). Genre has a high negative loading on PC4 (8.2%), while Contextual Diversity
and Repetition Frequency have medium positive loadings on this principal component. PC5
(5.9%) primarily represents Repetition Frequency. PC9 (4.1%) is characterized by a large
negative loading for Written-Spoken Frequency Ratio. PC13 (1.7%) represents BNC disper-
sion, Inflectional Entropy and Noun-Verb Ratio, all of which have large positive loadings,
and to some extent the synset count (which has a medium negative loading). PC14 (1.1%)
is dominated by BNC dispersion, and PC16 (0.5%) by word form measures such as length,
Ncount and OLD. Finally, PC17 (0.1%) represents Syntactic Family Size and Syntactic
Entropy. Although the higher principal components capture only a fraction of the variance
in predictor space, they nevertheless turn out to have some (modest) predictivity for the
response variable.

PC1 PC4 PC5 PC9 PC13 PC14 PC16 PC17

Syntactic Entropy -0.42 0.07 -0.05 -0.15 0.13 0.29 -0.01 0.71
Adjectival Relative Entropy -0.35 0.10 -0.00 -0.25 0.23 -0.13 -0.06 -0.01
OLD -0.15 0.11 -0.19 -0.13 0.03 0.13 0.62 0.03
Prepositional Relative Entropy -0.11 0.05 -0.23 0.06 0.03 0.00 0.00 0.02
Length -0.09 0.08 0.05 0.18 -0.01 0.24 -0.54 -0.00
Written-Spoken Ratio -0.07 -0.34 0.38 -0.60 -0.15 -0.04 0.03 0.01
Bigram Frequency -0.02 0.05 0.16 0.30 -0.01 -0.23 0.39 0.01
Inflectional Entropy -0.00 -0.08 0.07 -0.10 0.53 -0.26 0.00 -0.01
Repetition Frequency 0.00 0.38 0.80 0.09 0.07 0.03 -0.01 0.04
Genre 0.05 -0.74 0.07 0.19 0.21 0.06 -0.04 0.01
Noun-Verb Ratio 0.09 0.13 -0.07 -0.00 0.56 -0.29 -0.03 0.00
Ncount 0.13 -0.10 0.20 0.18 0.01 0.25 0.40 0.03
Contextual Diversity 0.25 0.33 -0.18 0.00 -0.00 0.02 -0.02 0.00
Complex Synsets 0.33 0.07 -0.05 -0.42 -0.21 0.13 -0.00 -0.03
Morphological Family Size 0.34 0.08 -0.04 -0.36 0.13 -0.19 -0.01 0.02
BNC dispersion 0.39 0.01 0.01 -0.04 0.42 0.64 0.03 0.02
Syntactic Family Size 0.42 -0.08 0.01 0.13 -0.16 -0.32 -0.04 0.70

Table 3: Loadings of lexical predictors on predictive principal components.

In order to assess the relative weight of these principal components as determinants
of lexical processing costs, a generalized additive model was fitted to the lexical decision
latencies. Results are summarized in Table 4. The proportion of variance explained (0.49) is
similar to that explained by a straightforward model with the original (collinear) predictors
(0.47, model not shown).

Figure 3 presents the increase in the proportion of variance explained as successive
terms are added to the model specification. Each successive term in this display is supported
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linear (parametric) terms

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.6403 0.0033 -494.2403 0.0000
PC5 -0.0139 0.0034 -4.0897 0.0000
PC13 -0.0236 0.0061 -3.8431 0.0001
PC14 -0.0191 0.0076 -2.5197 0.0119
PC17 -0.0088 0.0222 -0.3940 0.6937
PC14:PC17 -0.1318 0.0443 -2.9761 0.0030

splines and tensor smooths

edf Ref.df F p-value

spline PC1 3.1974 3.1974 237.2121 0.0000
spline PC4 2.2729 2.2729 74.3134 0.0000
tensor PC9, PC16 6.8860 6.8860 5.9650 0.0000

Table 4: Estimated degrees of freedom and significance for the predictors in the PCA-based gener-
alized additive model for lexical decision.

by an F -test comparing the model with and without that term. PC4, the first component
on which Repetition Frequency has a high loading, explains only a small proportion of the
variance, even when the linearity assumption for PC4 is relaxed. Adding PC1 to the model
leads to a dramatic increase in explained variance, indicating that syntactic family size
and entropy, morphological family size, BNC dispersion, and adjectival entropy constitute
the lexical distributional main dimension predicting the lexical decision latencies. Further
components, among which PC5, the component on which Repetition Frequency has the
highest loading, improve the goodness of fit by only small increments.

The partial effects of the predictors are presented visually in Figure 4. The upper
left panel presents the effect of PC1, the component explaining the greatest proportion
of variance in the response latencies (37.7%). The effect of PC1 starts out as linear, but
levels off for higher values. Words occurring in more different texts, co-occurring with more
different words, and appearing in more other words as constituents have high loadings on
PC1, and hence afford shorter response latencies. Conversely, words with high syntactic
entropy or a high adjectival relative entropy are costly to process. The effect size of this
component, as gauged by the difference in the latencies for the highest and smallest values
on the horizontal axis, is large.

The effect of Genre (PC4) indicates that words that are more frequent in the film
subtitle corpus, and that are used more often in speech, are responded to faster than words
that are more frequent it the HAL corpus or in the written sections of the British National
Corpus. The effect size of this predictor is also substantial, but, as documented in Figure 3,
the amount of variance explained by this predictor (7.8%) is modest.

Repetition Frequency has a high positive loading on PC5. Its effect is modest, how-
ever. Confidence intervals are relatively wide, and bringing PC5 into the model specification
leads to an increase in the proportion of variance explained of only 0.9 percent.

The three dominant predictors loading on PC13 are those of Noun-Verb Ratio, In-
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Figure 3. Successive contributions to R-squared of predictor principal components of the model
fitted to the lexical decision latencies.

flectional Entropy, and BNC Dispersion, all of which have positive loadings. Words that
are used more often as a noun than as a verb, words with more information rich inflectional
paradigms, and words used in many different texts in the British National Corpus, are re-
sponded to faster. The effect size of this component is quite small, capturing only 0.6% of
the variance in the latencies.

The final two panels of Figure 4 present the regression surfaces modeled by tensor
products for PC14 and PC17 (bottom left panel, 0.6%) and PC9 and PC16 (bottom right
panel, 0.5%). The first interaction suggests a minor trade-off between syntactic family size
and entropy (PC17) and dispersion (PC14). Latencies are shorter for words with greater
BNC dispersion if their syntactic microcontext is rich. For words with lower syntactic family
size and entropy, the effect of dispersion reverses into inhibition. As there are relatively
few words with lower values on PC17, this interaction may not be robust. Finally, the
principal component representing word form, PC16, enters into an interaction with PC9,
which is dominated by Written-Spoken Frequency Ratio, which has a large negative loading
on this component. For words typically used in writing (to the left in this panel), a greater
neighborhood density is inhibitory. This effect disappears for words encountered more often
in speech (in the right part of the plot).

When the simulated latencies predicted by the Naive Discriminative Reader are added
as a further predictor to the model, a small but significant increase in explained variance
(0.3%, p = 0.023) is obtained. No such increment is visible for the cycles predicted by the
DRC model (p > 0.5). From this, we conclude that the simulated latencies generated by
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Figure 4. Partial effects of the PCA predictors for inverse-transformed lexical decision latencies.
Hsynt: Syntactic Entropy, REadj: Adjectival Relative Entropy, Fmorf: Morphological Family Size,
Disp: BNC Dispersion, Fsynt: Syntactic Family Size; CD: Contextual Diversity; FreqResid: Repe-
tition Frequency; REprep: Prepositional Relative Entropy; Hi: Inflectional Entropy, Bigram: Mean
Bigram Frequency. Predictors with high loadings are highlighted by an exclamation mark.

the Naive Discriminative Reader model provide a context-sensitive distributional measure
that complements the other predictors in the model.

In summary, when the predictor space is parsed into a series of orthogonal clusters
of predictors, the principal component accounting for the greatest part of the variance
represents variation in the paradigmatic dimensions of syntax and morphology. Syntactic
and morphological family size, dispersion, and syntactic (relative) entropy measures are
jointly most predictive, accounting for some 36.7% of the variance. Repetition Frequency
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does contribute, but even when PC4 and PC5 are considered together, only 8.8% of the
variance is accounted for. This finding replicates the results obtained by (McDonald &
Shillcock, 2001).

In their study, McDonald and Shillcock hinted at a possible link with the work of Lund
and Burgess (1996), a study showing that lexical meanings can be approximated using co-
occurrence probabilities. McDonald and Shillcock suggest that possibly their contextual
distinctiveness measure might be tapping into semantic memory, with repetition frequency
playing a role at the level of word forms.

However, it is conceivable that contextual discriminative learning is sufficient to ex-
plain the effects of contextual distributional measures. In order to clarify the role of con-
textual co-occurrence and paradigmatic structure as co-determinants of lexical processing
vis-a-vis the role of a word’s form properties — length, neighborhood size, and (repeti-
tion) frequency — traditionally studied in psycholinguistics, the next section compares the
predictions of two computational models, the DRC model of Coltheart and collaborators,
which is a form-driven model, and the Naive Discriminative Reader model, which seeks to
understand comprehension as being driven by the learning of the mapping of form to mean-
ing. In the NDR model, importantly, lexical meanings are learned from contextually rich
input (word bigrams and trigrams) rather than from words in isolation (unigrams). The
assumption that lexical learning is contextual is motivated by the simple fact that words are
usually encountered in multi-word utterances rather than in the word lists on which most
models of reading tend to be trained. We shall see that contextual learning is sufficient to
correctly predict the main trends visible in the principal components regression model.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 74.0940 0.3530 209.9159 0.0000
PC1 -0.9081 0.1615 -5.6234 0.0000
PC2 1.1158 0.2055 5.4286 0.0000
PC5 -0.9193 0.3535 -2.6006 0.0094

Table 5: Parameter estimates and significance for the significant principal components in the gener-
alized additive model fitted to the simulated lexical decision latencies predicted by DRC model.

GAMS for the DRC and NDR models

Table 5 summarizes the generalized additive model fitted to the predicted latencies
(in cycles required to reach threshold) of the DRC model. Initially, exactly the same model
as summarized in Table 4 was fitted to the cycles, but only PC1 and PC5 reached signif-
icance. Inspection of the predictivity of other principal components indicated that PC2
(characterized by a large negative loading for the neighborhood N-count and large positive
loadings for mean bigram frequency, OLD , and length) was also a significant predictor of
the number of cycles. All three predictors turned out to be linear, with slopes of similar
(absolute) magnitude. A comparison with the model fitted to the observed latencies indi-
cates that the DRC model overestimates the importance of repetition frequency (PC5) as
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well as the importance of OLD, N-count and word length. This may be due to the model’s
predictions being tailored for word naming, even though, as observed above, the item-wise
correlations of the numbers of cycles with the observed latencies are stronger for lexical
decision than for word naming. The amount of variance explained was small (0.06).

linear (parametric) terms

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.6138 0.0306 118.2121 0.0000
PC5 0.0382 0.0309 1.2346 0.2173
PC13 -0.4881 0.0564 -8.6471 0.0000
PC14 -0.7799 0.0697 -11.1887 0.0000
PC17 0.1243 0.2021 0.6151 0.5386
PC14:PC17 0.8334 0.4077 2.0440 0.0412

splines and tensor smooths

edf Ref.df F p-value

spline PC1 1.2955 1.2955 920.4332 0.0000
spline PC4 2.1346 2.1346 7.2547 0.0006
tensor PC9, PC16 6.4966 6.4966 19.2523 0.0000

Table 6: Parameter estimates and significance for the predictors in the PCA-based generalized
additive model fitted to the simulated lexical decision latencies using the naive discriminative reader
model.

A very different pattern of results emerged for the Naive Discriminative Reader model.
When the principal componen regression model for the observed response latencies was
fitted to the simulated latencies, the results summarized in Table 6 and visualized in Figure
5 were obtained. First of all, it is noteworthy that only PC5, the component dominated by
Repetition Frequency, was not significant. PC1 is the strongest predictor in the model, and
in this respect faithfully mirrors the model for the observed latencies. The NDR does not
capture well the effect of Genre (PC4), which is unsurprising as the model was not exposed
to texts from different genres: It was trained only on written texts from the British National
Corpus.

The interaction of PC14 by PC17 (lower left panel of Figure 5) does not well reflect the
pattern observed for the empirical latencies (lower left panel of 4). The general facilitation
afforded by PC14 is present, but the effect of PC17 is not captured correctly. It seems that
the devision of labor between PC1 and PC17, both of which have high loadings for Syntactic
Family Size, is at issue. For the empirical latencies, the facilitatory effect of PC1 levels off
for higher values of PC1. This is not the case for the simulated latencies. Instead, for
higher values of PC14, higher values of PC17 are now taking over the function of predicting
elevated latencies.

Finally, the interaction of PC9 by PC16 captures some of the main trends visible in the
contour plot for corresponding interaction characterizing the observed latencies. Response
times tend to increase for increasing PC9, and for both observed and simulated latencies,
larger values of PC16 come with greater latencies. For the observed reaction times, this cost
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of a dense neighborhood reverses into facilitation for greater values of PC9. This reversal
is absent in the simulation.
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Figure 5. Partial effects of the PCA predictors for simulated lexical decision latencies using the
naive discriminative reader model. Hsynt: Syntactic Entropy, REadj: Adjectival Relative Entropy,
Fmorf: Morphological Family Size, Disp: BNC Dispersion, Fsynt: Syntactic Family Size; CD:
Contextual Diversity; FreqResid: Repetition Frequency; REprep: Prepositional Relative Entropy;
Hi: Inflectional Entropy, Bigram: Mean Bigram Frequency. Predictors with high loadings are
highlighted by an exclamation mark.

Figure 6 summarizes the contributions to the proportion of explained variance as suc-
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cessive terms are added to the model. The general pattern is similar to that characterizing
the observed latencies (see Figure 3), with the greatest explanatory power contributed by
PC1. The reason that the Naive Discriminative Reader is not selecting Repetition Fre-
quency, or word form properties, as key predictors is that it is trained not on isolated words
but on words in context. As a consequence, it is able to become sensitive to lexical co-
occurrence and thereby to better approximate human sensitivity to how words are actually
used in text.

Comparing the DRC and NDR models, the conclusion is clear. The NDR model
outperforms the DRC, not only in terms of the correlation of simulated response times and
actual response times (R2 =0.18 for DRC, and 0.25 for NDR), but also qualitatively, in
terms of what dimensions of distributional variation are predictive. For a model that is
completely driven by the distributional properties of its corpus input, and that does not use
even a single free parameter, this result is encouraging. It should be kept in mind, however,
that the DRC model is primarily a model of word naming, and that the present comparison
does not do justice to the explanatory value of the DRC model as a theory of reading aloud.
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Figure 6. Successive contributions to R-squared of predictor principal components of the generalized
additive model fitted to the simulated lexical decision latencies using the naive discriminative reader
model.

General Discussion

Following the lead of McDonald and Shillcock (2001) and Adelman et al. (2006), the
present study addressed the question to what extent the learning experience of a proficient
reader is best characterized by repeated exposure. Although frequency of occurrence in
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text corpora presents an obvious measure of how often a word has been encountered, word
frequency is highly correlated with many other lexical properties. This raises the question
of what makes frequency such a powerful predictor. Adelman et al., and McDonald and
Shillcock argue that the variety of contexts in which a word occurs is the crucial component
of the word frequency effect in lexical decision.

A principal components analysis of 17 lexical predictors revealed that most of the
variance in lexical space is carried by a principal component on which contextual measures
(syntactic family size, syntactic entropy, BNC dispersion, morphological family size, and
adjectival relative entropy) have the highest loadings. Frequency of occurrence, in the sense
of pure repetition frequency, explains only a modest proportion of lexical variability. Fur-
thermore, the principal component representing local syntactic and morphological diversity
accounted for the majority of the variability in the response latencies in the lexical decision
task, whereas the principal component reflecting repetition frequency only explained a small
proportion of the variance in the reaction times. These results support the general findings
of McDonald and Shillcock (2001) and Adelman et al. (2006). Of these two studies, the for-
mer called attention to a word’s local sentential context, while the latter proposed a word’s
dispersion as the crucial predictor. For the present data set, measures of a word’s local
sentential and morphological context emerged as more important than dispersion counts,
suggesting that McDonald and Shillcock’s operationalization of contextual diversity is the
superior approach.

How should the effect of local syntactic and morphological diversity be understood?
To address this question, the predictions of two computational models for reading were
compared: the cascaded dual rout model (DRC) of Coltheart et al. (2001), and the Naive
Discriminative Reader model of Baayen et al. (2010). The fitted latencies predicted by
the DRC model showed a pattern that differed substantially from that observed for the
observed latencies. It overestimated the effect of repetition frequency as well as the effects
of a word’s form properties, and it underestimates the importance of a word’s local syntactic
and morphological diversity.

The reason for this imbalance is simple: the DRC model codes frequency straightfor-
wardly into the resting activation levels of logogen-like units. The model assumes that the
frequency effect in reading is simply an effect of repeated exposure, and therefore misses the
local syntactic and morphological diversity that is also part of the word frequency effect.
Without further extensions enabling sensitivity to local contextual diversity, the model will
remain blind to this aspect of readers’ experience with words and its consequences for lexical
access.

The DRC model is not the only model that is challenged by the importance of local
contextual diversity. Consider, by way of example, the Bayesian Reader model of Norris
(2006). According to this model, the probability of a word W given input I is given by its
a-priori probability Pr(W ), multiplied by the word’s likelihood Pr(I|Wi) given the input:

Pr(Wi|I) =
Pr(Wi) Pr(I|Wi)∑

j=n Pr(Wj) Pr(I|Wj)
. (5)

Norris estimates the a-priori probability of a word from its relative frequency. From a bag
of words perspective, this is reasonable: The more tokens a word contributes to the bag, the
more likely it is that a token drawn from the bag will represent that word. The underlying
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assumption, however, is that there is some counter in the head that keeps track of a word’s
long-term probability. It is difficult to see how (5) would have to be extended to provide
an insightful explanation of why and how contextual experience comes to co-determine the
speed and accuracy of lexical processing.

The Naive Discriminative Learner model (Baayen et al., 2010) approaches this prob-
lem from a perspective that is more similar to that of the connectionist models of Seidenberg
and McClelland (1989) and Harm and Seidenberg (2004). The latter model, for instance, is
trained to map form onto meaning. After training, a single forward pass of activation from
the input features to the semantic features represents the process of lexical access. The
model is trained on isolated words, but in principle training could be extended to proceed
on the basis of words in context. This would also relieve the modeler of having to scale down
the frequencies of the most frequent words, which otherwise tend to adversely dominate the
learning process (see, e.g, chapter 10 of Prado Mart́ın, 2003).

The Naive Discriminative Reader also takes lexical access to involve a single pass of
activation from word form units (letter unigrams and bigrams) to word meanings. As in the
abovementioned subsymbolic connectionist models, the weights on the connections from
form to meaning are learned from the distributional properties of the input. The NDR,
however, is a symbolic model with only two layers, that, in its simplest form (used in the
present study) is completely parameter free. Importantly, learning in the NDR takes place
not on the basis of isolated words, but on the basis of word n-grams.

The latencies predicted by the NDR for lexical decision show a qualitative pattern in a
principal components regression that closely resembles the principal components regression
model fitted to the empirical latencies. The model correctly predicts that a word’s local
syntactic and morphological micro-context is the most powerful predictor. Because the
NDR is currently ignorant about semantic associations between meanings, the fact that
it nevertheless captures syntactic and morphological co-occurrence effects indicates that
it is not strictly necessary to assume that these effects arise at deeper, semantic levels
of processing, as suggested by McDonald and Shillcock (2001). Of course, since learning
also takes place at the level of integrating words into meaningful sentences, there is a real
possibility that local co-occurrence effects at higher levels of processing also are involved,
as argued by these authors. Further research will have to clarify this question.

The NDR also predicts that repetition frequency is totally irrelevant, even though for
the observed latencies, repetition frequency did explain a small but significant proportion of
the variance. The absence of an effect of repetition frequency in the NDR is a consequence of
the weights being set on the basis of cooccurrence probabilities. In such an approach, pure
repetition as such is not driving learning, and hence not co-determining simulated lexical de-
cision latencies. It is possible that the NDR is overly pessimistic about the role of repetition
frequency. This might be due to training on too restricted a sample (only 26,441,155 words
from one corpus, presented for learning in highly restricted phrasal contexts). However, it
is equally possible that the present estimate of the importance of repetition frequency for
the empirical latencies, which is an upper bound, is substantially inflated due to the crude-
ness of the statistical measures used to gauge syntactic and morphological micro-contextual
effects. This issue clearly requires further research. Interestingly, the dismissal of frequency
as repetition by the NDR fits well with the experience of research using machine learning
techniques (e.g., (Daelemans, Zavrel, Sloot, & Bosch, 2007; Daelemans & Bosch, 2005)) that
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the token frequencies of linguistic patterns do not enhance classification accuracy (Walter
Daelemans, p.c.).

Discriminative learning as a model for human lexical learning and its processing con-
sequences offers predictions that for the current data are on a par, or better than those of
other current computational models of reading, without any free parameters. If this ap-
proach is indeed on the right track, an important theoretical consequence is that current
lexical predictors all provide univariate simplified ‘cross-slices’ of a multidimensional space
that is crucially determined by the co-occurrence properties of lexical experience. Regres-
sion models based on large numbers of such predictors will remain incomplete, and will be
plagued by issues of collinearity. Real progress will have to be evaluated in terms of how well
computational models, as implementations of theories of lexical access, trained on realistic
data, predict lexical processing.

Another important theoretical consequence is that a moratorium is required for ver-
bal models supposedly explaining experimental data. Consider, for instance, the ubiquitous
interpretation of frequency effects as indicating the existence of lexical representations. Al-
though this interpretation is logically possible, it is not logically compelling, as shown by
the emergence of frequency effects for complex words in the NDR model, which does not in-
corporate any representations for complex words or word n-grams. The only way in which
the explanatory value of competing theories of lexical access in reading can be properly
evaluated is on the basis of the accuracy of the predictions of implemented computational
models and the number of free parameters invested by these models. From this perspec-
tive, the number of studies in the literature arguing from insecure premises about what
representations and processes are involved in lexical processing is depressingly large.

A final question that requires further thought is why word frequency emerges as the
single most powerful predictor of processing costs. The answer provided by the NDR model
is simple and straightforward: The learning of words amounts to learning to associate com-
plex multi-featured information in the input with unitary representations of word meanings.
The way in which meanings are represented in the NDR is obviously much too simplistic
(see, e.g. Barsalou, 2003). Knowing what a word means involves a rich array of multi-modal
memory representations of past experience and categorization. Nevertheless, a conjecture
following from the success of the NDR approach to reading is that whatever binds this
multi-faceted past experience, and drives the focal nature of frequency as lexical predictor,
is an essential part of what makes words symbols.
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