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1 Introduction

The English sentence you want milk can be uttered in a variety of circumstances, such as a mother
about to feed her baby (answer: bweeeh), a father asking a toddler whether she would like a glass
of milk (answer: yes please), or an air hostess serving black tea in economy class (answer: sure).
Furthermore, similar sentences (you want coffee, you want water, would you like coffee, would you
like a cup of coffee) are also produced and understood in a wide variety of contexts. What are the
cognitive principles that allow us to produce and understand many different sentences across an
even greater kaleidoscope of contexts and situations?

In this chapter, we discuss three very different approaches that seek to answer this fundamental
question about how language works. We begin with the oldest one, the structuralist tradition and
its formalist offshoots, which posits that rules obtained by a process of abstraction are essential to
understanding language. The second approach argues that generalizations are achieved not through
abstraction, but by analogical reasoning over large numbers of instances of language use stored in
memory. The third approach takes the perspective that to understand language and productivity
in language, it is essential to take into account well-established basic principles of discrimination
learning.

2 Abstraction

In traditional abstractionist approaches to language, it is assumed that the contexts in which a ques-
tion such as you want milk is uttered are so varied, that the properties characterizing these contexts
must be powerless as predictors of a given utterance. What the child has to learn is to abstract
away from all the irrelevant contextual information, and identify a level of elemental representations
that capture abstract commonalities in instances of useage. The common core of all utterances of
you want milk is thus identified as roughly an abstract tri-partite knowledge structure comprising
the phonological elements ([(ju)w(w6nt)w(mIlk)s]), a syntactic structure comprising the elements
([NP you [VP want [NP milk]]]), and a semantic structure comprising the elements desire(you,
milk). Rules link the volitional agent element in the semantic structure to the subject element
of the syntactic structure, and yet other rules spell out the pronoun element you as a strings of
phonemic elements [ju]. Typically, the knowledge base is kept as lean as possible, by storing in
memory only the most elementary units (phonemes, morphemes, semantic primitives) and the rules
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for combining these units into well-formed sequences. Thus, the semantic structure desire(you,
milk) would not be available in memory as such. Instead, a more abstract structure, desire(x,
y) would be stored in memory, where x is a symbolic placeholder for any volitional agent able or
imagined to be able to have desires, and y any object, person, state, or event that is desired, or can
be imagined to be desirable.

Furthermore, in order to cut down on memory requirements, and to make relations between
words and utterances as transparent as possible, the formalism of inheritence hierarchies as de-
veloped in the context of object-oriented programming languages has been found useful (see, e.g.,
Steels and De Beule, 2006, for fluid construction grammar). Thus, instead of having to store differ-
ent kinds of milk (cow milk, goat’s milk,sheep milk, mother milk, camel milk, coffee milk, coconut
milk, . . . ) and all their properties in separate lexical entries, one can set up one entry for the most
typical kind of milk (e.g., the cow milk as bought in the supermarket),

milk


type: thing
properties: concrete, inanimate, imageable, fluid, . . .
function: to be consumed by drinking
color: white
source: cows

 ,

and keep the entries for the other kinds of milk lean by having them inherit all specifications from
the entry for milk except where specified otherwise:

camel milk :

milk
[

source: female camels
]
.

When a mother offers milk to her child, while uttering you want milk, the semantic structure of the
utterance might be characterized by lexical conceptual structures (Jackendoff, 1990) such as

offer(mother, child, milk)
ask(mother, child, is-true(desire(child, milk))) .

However, these structures are themselves the outcome of the application of more abstract semantic
structures

offer(x, y, z)
ask(x, y, is-true((desire, y, z)))

which also cover utterances such as you want to play and you want to sleep.
Several proposals have been made as to how such abstract structures (and the elements that

they combine) might be identified or acquired. One class of theories holds that the language learner
is genetically endowed with a set of abstract rules, constraints or primitives. This innate knowledge
of an underlying universal abstract grammar would then relieve the learner of having to figure out
the basic principles of human grammars, since these basics can be assumed to be already given. The
learner’s task is then reduced to solving the simpler problems such as figuring out the proper word
order in English for three-argument verbs, given the innate knowledge that verbs can have three
arguments, that word order can be fixed, etc. However, innate rules and constraints by themselves
have no explanatory value, and half a century of research has not lead to any solid and generally
accepted results confirming that the basic principles of formal (computer) languages as developed
in the second half of the twentieth century are part of the human race’s genetic endowment.

It should be noted, however, that in constraint-based approaches (see, e.g., Dressler, 1985;
Prince and Smolensky, 2008), constraints can be argued to have functional motivations (see, e.g.
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Boersma, 1998; Boersma and Hayes, 2001). In phonology, for instance, voiceless realizations might
be dispreferred due to voiced segments, as voiced segments require more articulatory effort, and
hence more energy, than voiceless segments. In syntax, constraints might also be functionally
grounded. For the dative alternation, for instance, a functional rationale motivating the observed
preferences for particular constituent orders would be to provide a consistent and predictable flow of
information, with given referents preceding non-given referents, pronouns preceding non-pronouns,
definites preceding indefinites, and shorter constituents preceeding longer constituents (Bresnan
et al., 2007). However, even for constraints with reasonably plausible functional motivations, it is
unclear how these constraints are learned. The problem here is that what is a hard constraint in
one language, can be a soft constraint in another, and not a constraint at all in yet a third language.
Sceptics of functional explanations will argue that functionally motivated constraints are unhelpful
because it is not clear under what circumstances they are more, or less, in force.

Would it be possible to induce rules without invoking innate principles or supposed functional
constraints? The minimum generalization learning algorithm proposed by Albright and Hayes
(2003) seeks to do exactly this in the domain of morphology. This algorithm gradually learns more
abstract rules by iteratively comparing pairs of forms. Each comparison identifies what a pair of
forms have in common, and wherever possible creates a more abstract rule on the basis of shared
features. For instance, transposed to syntax, the minimum generalization learning algorithm would,
given the utterances you want milk and you want juice, derive the structure

offer(mother, child, z)
ask(mother, child, is-true(desire(child, z)))

z

 type: thing
properties: concrete, inanimate, imageable, fluid, . . .
function: to be consumed by drinking


by deletion of the feature-value pairs [source:cow] and [source:fruit] in the respective semantic struc-
tures of the individual sentences. For the pair of utterances you want to play and you want to eat,
the shared abstract structure would be

offer(mother, child, z)
ask(mother, child, is-true(desire(child, z)))

z

 type: event
properties: volitional agent, social activity, . . .
agent: the child

.

When in turn these structures are compared for further abstraction, all that remains is

offer(mother, child, z)
ask(mother, child, is-true(desire(child, z)))

which in turn, when the utterances are used with different interlocutors, will undergo further ab-
straction to

offer(x, y, z)
ask(x, y, is-true((desire, y, z))).

A salient property of abstractionist theories is that although the rules and constructions are de-
duced from a systematic and comprehensive scan of all pairs of utterances, the utterances themselves
are discarded once the rules and constructions have been properly inferred. From the perspective
of language processing, however, this raises several questions. First, if utterances are required for
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rule deduction, and hence have to be available in memory, why would they be discarded once the
rules have been discovered?

Second, rule deduction requires a comprehensive set of utterances, but in real life, utterances
become available one by one over time. Do we have to assume that at some point in late childhood,
rule deduction is completed, the language has been learned, and that therefore the traces of past
experience with the language can be erased from memory? Such a fundamental discontinuity in the
learning process seems at odds with recent evidence that language learning is a process that continues
throughout one’s lifetime (see, e.g., Ramscar et al., 2014, 2013d). Third, the number of utterances
to be stored in memory for rule deduction may be prohibitively large. Corpus surveys show that in
English there are hundreds of millions of sequences of just four words. Some studies have reported
frequency effects for sequences of words (Bannard and Matthews, 2008; Arnon and Snider, 2010;
Tremblay and Baayen, 2010). These frequency effects have been argued to support the existence of
representations of multi-word sequences in the mental lexicon (or mental constructicon). However,
as pointed out by Shaoul et al. (2013), knowledge about word sequences appears to be restricted
to sequences no longer than four, perhaps five, words. It is therefore unlikely that syntactic rules,
especially those for complex sentences with main and subordinate clauses, could arise by a process
of abstraction from a large set of stored full sentences, as the current evidence suggests that the
brain doesn’t retain memory traces of long complex sentences but only of short sequences of words.

The main strength of abstractionist approaches — thanks to the presupposition that at its heart
language is best understood as a formal calculus — is that these approaches have at their disposal all
the technology developed over many decades in computer science. It is worth noting that, in fact,
most computationally implemented theories of different aspects of linguistic cognition, whatever
the very different schools of thought they come from, make use of abstractionist decompositional
frameworks. Although the lexical conceptual structures of (Jackendoff, 1990) and Lieber (2004) look
very different from the schemata of Langacker (1987) and Dabrowska (2004a), differences concern
what aspects of human experience are found worthy of being formalized and how they should be
formalized, whereas both approaches share the conviction that abstraction is at the heart of the
language engine.

This can also be seen in the treatment of conceptual blending (for details on blending, see the
chapter on blending) by Veale et al. (2000). Consider the production of metaphorical expressions
suchs as elephants were the tanks of Hannibal’s army. Veale et al. (2000) propose a computa-
tionally implemented model that generates such conceptual blends from knowledge structures for
elephants, tanks, classical and modern warfare, and Hannibal, in conjunction with an abstract rule
that searches for n-tuples of knowledge structures in one domain (e.g., Roman warfare) that match,
on the basis of their features, n-tuples of knowledge structures in another domain (e.g., modern
warfare). Given matching features (such as elephants being the strongest and most dangerous units
in ancient warfare, and tanks being the strongest and most dangerous units in modern warfare),
the algorithm can blend elephants were the strongest units of Hannibal’s army with tanks are the
strongest units of a modern army to create elephants were the tanks of Hannibal’s army. To do
so, the algorithm abstracts away from concrete examples, and searches for correspondences across
knowledge domains.

The tools of computer science provide the language engineer with valuable control over how
a given computational operationalization will function. A further advantage is that, in principle,
computational implementations can be evaluated precisely against empirical data. However, this
technology also has its share of disadvantages. First, both representations and rules typically require
extensive labor-intensive hand-crafting.

Second, and more importantly, language is fundamentally contextual. A sentence such as She cut
her finger with a knife typically suggests that the finger was not completely severed from the hand,
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phrase freq. p prep. freq. q

with the onion 8,867 0.305 with 2,171,020 0.074
in the onion 7,058 0.243 in 10,212,008 0.347
to the onion 5,734 0.197 to 4,148,449 0.141
from the onion 2,213 0.076 from 2,150,946 0.073
on the onion 1,922 0.066 on 4,010,429 0.136
into the onion 1,337 0.046 into 1,296,889 0.044
up the onion 1,091 0.038 up 403,114 0.014
... ... ... ... ... ...
over the onion 826 0.028 over 269,847 0.009
total 29,048 1.000 29,401,403 1.000

Table 1: Frequencies and relative frequencies of English prepositional phrases (left: specific to onion,
right: summed across all nouns) that enter into the calculation of prepositional relative entropy.

whereas the sentence the lumberjacks cut trees for a living typically means that trees were cut down
and severed from their roots. The interpretation of the verb in Outlines of animals were cut out of
paper is different yet again. Here, the verb indicates creation by means of cutting. Interestingly, the
context in which a word such as cut is used generates expectations that arise surprisingly early in
the comprehension processing record (see, e.g., Elman, 2009, for a review), much earlier than one
would expect given theories that assume an initial stage of purely form-based processing. Within
the abstractionist enterprise, one can of course distinguish between different senses of cut (WordNet
distinguishes 41), each with its own semantic structure, with sufficiently narrowly defined features
to make a sense fit only in very specific contexts (see also the chapter on polysemy). But the
problem here is that the expectations that readers form about how to understand cut depend on
subjects such as she, lumberjacks, and outlines of animals. While one might consider specifying in
the lexical representation for lumberjack that this is a person whose profession it is to cut down
trees, it stretches belief that outlines of animals (a lexical entry used by Google as a caption for
images of outlines of animals1) would have an entry in the mental lexicon specifying that these are
cutable.

A further challenge for traditional abstractionist theories comes from paradigmatic effects in
language processing. The paradigmatic dimension of language is difficult to capture in abstractionist
frameworks. Consider prepositional phrases in English, such as with the onion, over the onion,
in the onion, . . . . When abstraction is taken as the basis of generalization, then a structure
such as [ppP [np the [n N]] captures crucial aspects of the abstract knowledge of prepositional
phrases, in conjunction with the set of prepositions and the set of nouns in the lexicon. All prior
experiences with actual prepositional phrases (with the onion, over the onion, in the onion, . . . )
are lost from memory. The abstractionist grammar thus reduces a rich slice of experience to a
prepositional symbol, freely replaceable without reference to context by a single instance from the
set of prepositions, followed by a definite determiner, in turn is followed by a noun symbol that is
again selected without reference to context, from the set of nouns.

However, native speakers of English know, albeit implicitly, much more about how prepositions
are actually used in English. Speakers of English know, without being aware of this at conscious
levels of reflection, that some prepositions are quite atypical for onion, whereas other prepositions
are rather popular with onion. To see this, consider Table 1. The second column of this table
lists the frequencies with which prepositions occur with the noun onion in the British National

1As of October 20, 2014.
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Corpus (Burnard, 1995). The third column lists the corresponding relative frequencies (or sample
probabilities), obtained by dividing the counts in the second column by the total of the counts in that
column. The fifth column lists the counts of occurrences of these prepositions with any noun, and
the final column lists the corresponding probabilities. What this table shows is that with the onion
is used much more frequently with onion compared to nouns in general, with relative frequencies of
0.305 verses 0.074 respectively. By contrast, on the onion is used somewhat less frequently than on
followed by an arbitrary noun. Does this matter? To judge from both behavioral (Baayen et al.,
2011) and electrophysiological (Hendrix and Baayen, 2014) evidence, it does. Nouns that make use
of prepositions in a way that is very different from how an average noun uses its prepositions, show
very different processing profiles. A measure capturing how well the use of prepositions by a specific
noun corresponds to how prepositions are used in general is the Kulback-Leibler divergence, also
known as relative entropy:

relative entropy(p, q) =
∑
i=1

(pi ∗ log2 (pi/qi)), (1)

where p and q refer to the probability distributions in columns 3 and 6 of Table 1. It turns out that
when the relative entropy for a noun is large, i.e., when the noun makes atypical use of prepositions,
response latencies to the noun, even when presented in isolation in the visual lexical decision task,
are longer. Furthermore, in speech production, as gauged by a picture naming paradigm, relative
entropy is an effective statistical predictor of the brain’s electrophysiological response (Hendrix and
Baayen, 2014). Crucially, the effect of relative entropy arises irrespective of whether nouns are
presented in isolation, or whether nouns are presented in the context of a particular preposition.
What matters is how different a noun’s use of prepositions is from prototypical prepositional use in
English. This paradigmatic effect poses a fundamental challenge to abstractionist theories, precisely
because an abstract representation of “the” prepositional phrase has been crafted to have amnesia
about how a noun is actually used.

3 Analogy

In traditional grammar, analogy is used to denote an incidental similarity-based extension of a
pattern that is not supported by a general rule. In more recent theories, however, analogy is seen
as a much more foundational process of which rules are a special, typically more productive, case
(see, e.g., Langacker, 1987; Pothos, 2005).

In morphology, Matthews (1974) and Blevins (2003) developed a framework, known as Word and
Paradigm Morphology, in which words, rather than morphemes and exponents, are the basic units
in the lexicon. Proportional analogy (hand: hands = tree: trees) is posited as driving production
and comprehension of novel forms. Explicit algorithms for capturing the core idea of analogy-driven
prediction have been developed within the context of a class of computational approaches commonly
referred to as exemplar models.

Exemplar models start off with the assumption of extensive storage in memory of instances of
language use, typically referred to as exemplars. Instead of seeking to account for the productivity
of language through abstract rules operating over hand-tailored representations, exemplar models
base their predictions about novel forms on the exemplars in memory, in combination with a general,
domain a-specific similarity-driven algorithm. One of the earliest linguistic exemplar models was
developed by Skousen (1989), who grounded his approach, analogical modeling of language (aml),
in probability theory (Skousen, 2002, 2000). Skousen’s algorithm searches for sets of exemplars
with characteristics that consistently support a particular outcome, where an outcome can be a
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construction, a phonetic feature (such as voicing alternation Ernestus and Baayen, 2003), or the
choice between rival affixes (Arndt-Lappe, 2014). Given the resulting subset of consistent exemplars,
the analogical set, the different outcomes are ranked by the number of exemplars supporting these
outcomes. The best-supported, highest-ranked outcome is selected as the most likely outcome.

Skousen’s aml model is computationally expensive for data with many features. The memory
based learning (mbl) framework of Daelemans and Van den Bosch (2005) sidesteps this computa-
tional problem. Just as aml, it searches for the set of nearest neighbors, and selects as its choice the
outcome with the best support in the nearest neighbor set. In the very simplest set-up, the nearest
neighbors are those instances in memory that share most features with a given case for which the
appropriate outcome class has to be determined. This simplest set-up is not very useful, however,
because in the presence of many irrelevant predictors, classification accuracy can plummet. By
weighting features for their relevance for a given choice problem, accuracy can be improved dramat-
ically while keeping computational costs down. By way of example, consider the choice of the plural
allomorph in English, which is [iz] following sibilants, [s] following voiceless consonants, and [z] else-
where. Knowledge of a word’s final consonant nearly eliminates uncertainty about the appropriate
allomorph, whereas knowledge of the initial consonant of the word is completely uninformative.
Since manner of articulation and voicing of the final consonant are informative features, they can
be assigned large weights, whereas manner and voicing for initial consonants can be assigned low
weights. The values of these weights can be estimated straightforwardly from the data, for instance,
by considering to what extent knowledge of the value of a feature reduces one’s uncertainty about
the class outcome. The extent to which uncertainty is reduced then becomes the weight for the
importance of that feature.

An important observation coming from the literature on memory based learning is that forgetting
is harmful (Daelemans et al., 1999). The larger the set of exemplars is, the better mbl is able to
approximate human performance. The message here is exactly the opposite of that of abstractionist
models, which seek to keep the knowledge base as lean as possible. However, differences are not
so large as they would seem. As pointed out by Keuleers (2008), minimum generalization learning
and memory based learning (under certain parameter configurations) are mathematically nearly
indistinguishable. But whereas minimum generalization learning first deduces rules, then forgets
about exemplars, and uses rules at run-time (greedy learning), memory-based learning simply stores
exemplars, and runs its similarity-based algorithm at runtime (lazy learning).

Another similarity between mgl and mbl is that a new model is required for each individual
problem set within a domain of inquiry. For instance, when modeling phonological form, one model
will handle past tenses, another model the choice between the allomorphy of nominalizations in
-ion, and yet a third model the allomorphy of the plural suffix. Thus, both approaches work with
different rules (or schemas) for different phenomena, and differ only as to how these rules/schemas
are implemented under the hood.

Exemplar models such as aml and mbl offer several advantages. First, because analogical rules
are executed at run-time, new exemplars in the instance base will automatically lead to updated
prediction performance. In mgl, by contrast, once the rule system has been deduced, it remains
fixed and cannot be updated for principled reasons. (Technically, of course, the rules can be re-
calculated for an updated set of exemplars, but doing so implies that the exemplars are held in
reserve, and are not erased from memory.)

Another important advantage of aml and mbl is that getting these algorithms to work for
a given data set requires very little hand-crafting. These algorithms discover themselves which
features are important.

Of course, these models also have disadvantages. First, compared to handcrafted abstractionist
systems developed over many years and fine-tuned to all kinds of exceptions, aml and mbl may
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show lack of precision. Second, it remains to be seen how plausible the assumption is of storing each
and any exemplar in memory. Above, the hundreds of millions of four-word sequences were already
mentioned that would have to be stored in an English mental lexicon. For languages with highly
productive inflectional systems, millions of forms are in use just at the word level. Furthermore, the
rampant variability in the speech signal makes it highly unlikely that each pronunciation variant of
every word ever heard would be stored in memory.

4 Hybrid models

Hybrid models hold that schemata (or rules) and exemplars exist side by side. For instance, Lan-
gacker (2010) argues for a hybrid approach when he states that “structure emerges from usage, is
immanent in usage, and is influenced by usage on an ongoing basis”. The co-existence of rules and
exemplars (see also Langacker, 1987; Dabrowska, 2004b) implies a system with redundancy, such
that, for instance, in comprehension, an interpretation can be arrived at either by retrieving the
appropriate holistic exemplar, or by application of a rule or schema to the relevant exemplars of
smaller units. For morphological processing, Baayen et al. (1997) similarly argued for the existence
of whole-word representations for complex words, side by side with a parsing mechanism operating
on the morphemic constituents of these words.

The redundancy offered by hybrid models is generally taken to make the processing system
more robust. For instance, when one processing route fails to complete, another processing route
may still be effective. In horse race models, which make the assumption that processing routes run
independently and in parallel, statistical facilitation can take place. If processing time is determined
by the first route to win the race, and if the distributions of the completion times of the different
routes overlap, then, across many trials, the average processing time of the combined routes will be
shorter than the average processing time of the fastest route by itself (Baayen et al., 1997).

However, hybrid models also comes with several disadvantages. From exemplar models, hybrid
models inherit the problem of a high-entropy exemplar space. It might be argued that not all
exemplars are stored, but only large numbers of exemplars. However, this raises the question of
under what circumstances exemplars are, or are not, stored. Positing a frequency threshold for
storage runs into logical difficulties, because any new exemplar will start with an initial frequency
of 1, far below the threshold, and hence will never be stored.

From abstractionist models, hybrid models inherit the problem of selecting the correct analysis
from the multitude of possible analyses (Bod, 1998, 2006; Baayen and Schreuder, 2000). When
schemata are assumed to be in operation at multiple levels of abstraction, how does the system
know which level of abstraction is the appropriate one? How is competition between more concrete
and more abstract schemata resolved?

5 Discrimination

We agree with Langacker (2010) that usage shapes the grammar on an ongoing basis. But we
believe that in order to justice to the insights driving abstractionist approaches, exemplar models,
and hybrid models, while avoiding their weak points, it is essential to turn to learning theory.

Modern learning theory begins with Ivan Pavlov and his famous observations about bells and
dog-food. Pavlov first noticed that his dogs salivated in the presence of the technician who usually
fed them. He then devised an experiment in which he rang a bell before he presented the dogs with
food. After a few repetitions, the dogs started to salivate in response to the bell, anticipating the
food they expected to see (Pavlov, 1927). Pavlov’s initial results led to a straightforward theory of
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learning that seems obvious and feels intuitively right: If a cue is present, and an outcome follows,
an animal notices the co-occurrence and subsequently learns to associate the two.

It turns out, however, that this simple associative view of learning provides a one-sided and
misleading perspective on the actual learning process and its consequences. For example, a dog
trained to expect food when a bell is rung, can later be given training in which a light is flashed
simultaneously with the bell. After repeated exposure to bell and light, followed by food, only a light
is flashed. Will the dog drool? Surprisingly, the answer is no: the dog doesn’t drool. Even though
the light consistently co-occurred with the food in training, the dog does not learn to associate it
with the food, a phenomenon known as blocking.

The problem for, e.g., memory-based learning is that it would pick out the light as an informative
cue for food. After all, whenever the light is present, food is present. Since there is no uncertainty
about the food given the light, the model predicts that the light should be an excellent cue, and
that this cue should build strong expectations for food, contrary to fact.

The learning equations that Rescorla developed together with Wagner (Wagner and Rescorla,
1972), however, perfectly capture this finding. The reason that the light never becomes an effective
cue for food is that the bell is already a perfectly predictive cue for the food. Because there are no
situations in which the light predicts food but the bell does not, the light does not add any new
information: it is not predictive of the food over and above the bell. As this and many similar
experiments have revealed, associative learning is sensitive to the informativity of co-occurrences,
rather than their mere existence.

The learning theory of Rescorla (1988) not only predicts a substantial body of findings in the
animal literature, but has recently also been found to predict aspects of first language acquisition
as well as implicit learning in adults (see, e.g., Ramscar and Yarlett, 2007; Ramscar and Gitcho,
2007; Ramscar et al., 2010, 2013c). This learning theory specifies how the association weights from
the cues in the environment (such as a bell and a flashing light in the case of Pavlov’s dog) to an
outcome (e.g., food) should be modified over time. The basic insights are, first, that if a cue is not
present, association weights from that cue to outcomes are left untouched. For instance, whiskers
are visual cues to various animals, such as cats, rabbits, rats, and mice. If there are no whiskers
to be seen, then the weights on the links between whiskers and cats, rabbits, rats, and mice, are
left unchanged, even though these animals might be present (as when they are observed from the
back). When whiskers are seen, and a cat is present but no rabbits, rats, or mice, then the weight
from whiskers to cat is increased. At the same time, the weights from whiskers to rabbits, rats,
and mice are decreased, even though these animals have whiskers. This is a crucial element of
Rescorla’s theory, that sets it apart from its associationist, even behaviorist, predecessors. Learning
is sensitive not only to associations forming when cues and outcomes co-occur. Learning is also
sensitive to the success and failure of the implicit predictions that prior experiences relating cues to
outcomes generate. Whiskers do not only predict cats, but also rabbits and other rodents. When
these predictions turn out to be false, the weights that connect whiskers to the animals that were
mispredicted to be present will be tuned down. As a result of this, outcomes (cats, rabbits, mice,
rats) compete for the cues, while at the same time, cues compete for outcomes.

Baayen et al. (2011) used the Rescorla-Wagner equations to build a computational model for
the reading of words, as gauged by the visual lexical decision task. The basic structure of the
model is very simple, and is exemplified by Figure 1. The bottom layer of the network has nodes
representing letter pairs (digraphs). The top layer of the network specifies lexemes, in the sense of
Aronoff (1994), that is, as lexical nodes that are the symbols linking up to rich form information
(such as letter digraphs) on the one hand, and rich world knowledge (not shown in Figure 1) on
the other hand. Thus, lexemes are symbolic focal points mediating between linguistic form and
experience of the world, that themselves are neither form nor meaning.
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qaai id sa hi

qaid said hid

Figure 1: A Rescorla-Wagner network with five digraphs as cues, and three lexemes as outcomes.

Of course, this raises the question how the elements of form (n-graphs, n-phones) and the
elements of experience (the lexemes) themselves are learned. Here, we assume that these units
are simply available to the learner. Any computational implementation has to work with units
that are primitives to that implementation, but that themselves have arisen as the outcome of
other classification processes. One kind of learning process that might give rise to these units is
unsupervised category induction (see, e.g., Love et al., 2004, for a computational implementation,
and also the chapter on categorization).

The first word, the legal scrabble word qaid (‘tribal chieftain’), has one letter pair, qa, that
uniquely distinguishes it from the two other lexemes. The Rescorla-Wagner equations predict that
this cue is strongly associated with qaid, and negatively associated with said and hid. Conversely,
the letter pair id occurs in all three words. Hence it is not very useful for discriminating between
the three lexemes. As a consequence, the weights on its connections are all small. The total support
that cues in the input provide for a lexeme, its activation, is obtained by summation over the weights
on the connections from these cues (for qaid, the cues qa, ai, and id) to the outcome (the lexeme of
qaid). This activation represents the learnability of the lexemes given the cues.

The naive discriminative learner model of Baayen et al. (2011) takes this simple network archi-
tecture and applies it rigorously to word triplets in the British National Corpus. For each word
triplet, all the letter digraphs in the three words were collected. These served as cues. From the
same words, all “content” lexemes and “grammatical” lexemes (number, tense, person, etc.) were
collected and served as outcomes. The Rescorla-Wagner equations were then used to adjust the
weights from the digraph cues to the lexeme outcomes.2 For any given word in the corpus, its
activation was obtained by summing the weights from its orthographic cues to its lexemes. For
words with multiple lexemes, such as a plural or a compound, the activations of its lexemes were
summed. It turns out that these activation weights are excellent predictors of lexical decision laten-

2In the actual implementation, a mathematical shortcut, due to Danks (2003), was used for estimating the weights.
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cies: words with longer responses are the words with lower activations, i.e., the words that cannot
be learned that well given their orthographic properties. The activation weights turn out to mirror
a wide range of effects reported in the experimental literature, such as the word frequency effect,
orthographic neighborhood effects, morphological family size effects, constituent frequency effects,
and paradigmatic entropy effects (including the abovementioned prepositional relative entropy ef-
fect). What is especially interesting is that the model covers the full range of morphological effects,
without having any representations for words, morphemes, exponents, or allomorphs.

In this approach, the morphology and syntax is implicit in the distribution of cues and outcomes,
which jointly shape a network that is continuously updated with usage. Since morphology and
syntax are implicit in the usage, we refer to this approach as implicit morphology and implicit
grammar. Interestingly, this approach to language dovetails well with the mathematical theory of
communication developed by Shannon (1948).

When a photograph is sent over a cable from a camera to a laptop, it is not the case that the
objects in the photograph (say a rose on a table, next to which is a chair), are sent down the wire one
by one (first the chair, and than the rose plus table). To the contrary, the picture is transformed
into a binary stream that is optimized for the transmission channel as well as protected against
data loss by error-correcting code. The laptop is able to reconstruct the picture, not by applying a
grammar to reconstruct the picture from the signal, but by making use of the same coding scheme
that the camera used, to select the appropriate distribution of pixel colors over the canvas from the
possible distributions of pixel colors that coding schemes allow for.

To make this more concrete, consider a coding scheme devised to transmit for experiences: the
experience of a fountain, the experience of a fountain pen, the experience of an orange, and the
experience of orange juice. Assume a code, shared by encoder and decoder, specifying that the
four experiences are signalled by the digit strings 00, 01, 10, and 11 respectively. When seeking to
communicate the experience of a fountain pen, the speaker will encode 01, and thanks to the shared
code, the listener will decode 01 into the experience of a fountain pen. There is no need whatsoever
to consider whether the individual ones and zeroes compositionally contribute to the experiences
transmitted.

Thus, we can view language-as-form (ink on paper, pixels on a computer screen, the speech
signal, gestures) as a signal that serves to discriminate between complex experiences of the world.
The success of the signal hinges on the interlocutors sharing the code for encoding and decoding the
signal (Wieling et al., 2014). The same code that allows the speaker to discriminate between past
experiences in memory and encode a discriminated experience in the language signal, is then used
by the listener to discriminate between her past experiences. Discrimination is important here, as
speakers will seldom share the same experiences. Consider, for example, a speaker mentioning a
larch tree. The interlocutor may not know what exactly a larch tree is, because she never realized
the differences between larches, spruces, and pine trees. Nevertheless, the communicative event may
be relatively successful in the sense that the listener was able to reduce the set of potential past
experiences to her experiences of trees. She might request further clarification of what a larch tree
is, or, not having any interest in biology, she might just be satisfied that some (to her irrelevant)
subspecies of trees is at issue. Thus implicit grammar views the language signal as separating
encoded relevant experiences from the larger set of a listener’s irrelevant experiences.

Thus far, we have discussed comprehension. What about speech production? The model we
are developing (see also Baayen and Blevins, 2014), proposes a two-layered knowledge structure,
consisting of a directed graph specifying the order between production outcomes on the one hand,
and of Recorla-Wagner networks associated with the vertices in the network on the other hand.
Figure 2 presents such a knowledge structure for the sentences John passed away, John kicked the
bucket, John died, John passed the building, and John went away to Scotland. The left panel presents
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the directed graph specifying the potential paths defined by these sentences, and the right panel
summarizes the connection strengths between lexemic cues (rows) and word outcomes (columns)
in tabular form. These connection strengths are obtained with the Rescorla-Wagner equations (for
detailed discussion of these equations, see Ramscar et al. (2010) and Baayen et al. (2011)) applied
to all sentences containing John.

John

passed

away

kicked

the

bucket

died

building

went

to

Schotland

died kicked passed went

building -0.273 0.045 0.455 -0.091

considerate -0.364 -0.273 0.773 0.045

die 0.455 0.091 -0.091 -0.182

go -0.273 0.045 -0.045 0.409

John -0.091 0.182 0.318 0.136

neutral 0.636 -0.273 -0.227 0.045

pass -0.273 0.045 0.455 -0.091

rude -0.364 0.727 -0.227 0.045

Schotland -0.273 0.045 -0.045 0.409

1

Figure 2: An example of a directed word graph, with the path for John passed away highlighted,
and the Rescorla-Wagner control network at the node John.

All sentences in this simple example begin with John, hence this is the top node. Given John,
the possible continuations are kicked, passed, died, and went. When the speaker has the inten-
tion of communicating in a considerate way that John died (indicated by the lexemes John, die,
considerate, highlighted in the table of weights), then the word passed has a total activation of
1 (the sum of the highlighted weights in the passed column), whereas the other continuations have
activations of zero. Thus, sentences emerge as paths through the directed graph, where each choice
where to go next is governed by the accumulated knowledge discriminating between the different
options, guided by past experience of which lexemes predict which word outcomes.

Knowledge structures such as illustrated in Figure 2 can be formulated for sequences of words,
but also for sequences of diphones or demi-syllables. It is currently an open question whether
separate structures above and below the word are really necessary. What is important is that the
digraphs provide a very economical storage format. In a word graph, any word form is represented
by a single vertex. In a diphone graph, any diphone is present only once. This is a large step away
from standard conceptions of the mental lexicon informed by the dictionary metaphor, in which a
letter or diphone pair is represented many times, at least once for each entry. The directed graph
also sidesteps the problem of having to assume distinct exemplars for sequences of demi-syllables
or sequences of words. In the present example, for instance, an opaque idiom (kick the bucket), a
semi-transparent idiom (to pass away), and a literal expression (die) are represented economically
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with dynamical control from the Rescorla-Wagner networks.
From the discriminative perspective, questions as to how opaque and semi-transparent idioms

are “stored” in the mental dictionary, decomposed, or not decomposed, simply do not arise because
words are now part of a signal for which traditional questions of compositionality are simply not
relevant. Thus, in implicit grammar, rules, schemata, constructions, inheritence hierarchies, mul-
tiple entries of homonyms in dictionary lists, and all other constructs based on formal grammars
are unnecessary. These constructs may provide high-level descriptions of aspects of language which
may be insightful for the analyst reflecting on language, but in the discriminative approach, they
have no cognitive reality.

The knowledge structures of implicit grammar do not permit redundancy, in the sense that
different sets of representations, and different rules for achieving the same result, would co-exist.
The theory acknowledges that the linguistic signal is rich, and that the experiences we encode in the
signal are richer by many orders of magnitude. But redundancy in the sense of having multiple ways
in which to achieve exactly the same goal is ruled out. The directed graph and the Rescorla-Wagner
networks define one unique most-probable path for the expression of a given message.

Research on child language acquisition (e.g., Bannard and Matthews, 2008; Tomasello and
Tomasello, 2009) has shown that children are conservative learners who stay very close to known
exemplars, and initially do not use constructions productively. One explanation holds that initially,
children work with large unanalyzed holistic chunks, which they learn, over time, to break down
into smaller chunks, with as end product the abstract schemata of the adult speaker (Dabrowska,
2004b; Dabrowska and Lieven, 2005; Borensztajn et al., 2009; Beekhuizen et al., 2014). Implicit
grammar offers a very different — and currently still speculative — perspective on the acquisition
process.

Consider a child inquiring about what activity her interlocutor is engaged in. Typically, an
English-speaking child in North America or the U.K. will have ample experience with such questions,
which often arise in the context of reading a picture book (“What’s the bear doing? It’s eating
honey!”). However, with very little command over her vocal apparatus, in the initial stage of speech
production, the full message (a question about the event an actor is engaged in) has to be expressed
by the child in a single word, e.g., “Mommy?”. However, single-word expressions will often not be
effective, as “Mommy?” could also be short-hand for what adults would express as “Mommy, where
are you?” or “Mommy, I’m hungry”. From a learning perspective, the word uttered (Mommy), and
the lexemes in the message (question, event, Mommy) constitute the cues in a learning event
with the success of the communicative event as outcome. Over the course of learning during the
one-word stage, the lexemes question, event, agent will acquire low or even negative weights
to communicative success. Only Mommy will acquire substantial positive weights, thanks to the
single-word utterances being successful for attracting attention.

By the end of the one-word stage, the child has a production graph with only vertices and no
edges. Once the child succeeds in uttering sentences with more than one word (What’s Mommy
doing), thanks to increasing motor control over the articulators, the chances of successful communi-
cation rise dramatically. This will prompt the reuse of multi-word sequences, and the construction
of edges between the vertices in the graph, together with the Rescorla-Wagner networks that dis-
criminate between where to go next in the graph given the child’s communicative intentions. The
first path in the graph will be re-used often, consolidating both the edges between the vertices in
the directed graph, as well as the associated Rescorla-Wagner control networks, which, in terms
of what the child actually produces, will enable the child to demonstrate increasing fluency with
multiword productions.

In this approach to learning, the empirical phenomenon of children proceeding in their produc-
tion from a prefab such as “What’s Mommy doing?” to utterances of the form “What’s X V-ing”,
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child milk
want

mother

offer offer

mealtime

offer(mother, child, z)
ask(mother, child, is-true(child(desire, z)))

z

 type: thing
properties: concrete, inanimate, imageable, fluid, . . .
function: to be consumed by drinking


Figure 3: Semantic representations in the style of cognitive grammar (after Dabrowska (2004, page
221) and Jackendoff’s lexical conceptual structures.

analysed in cognitive grammar as schematization, in implicit grammar does not involve any ab-
straction. What is at stake, instead, is learning to think for speaking (Slobin, 1996). During the
one-word stage, children gradually learn that many aspects of the experiences they want to express
cannot be packed into a single word. Once they have accumulated enough articulatory experience
to launch word sequences, they can develop their production graph and the associated control net-
works. As this graph is expanded, syntactic productivity, which is already nascent in small worlds
such as shown in Figure 2, will increase exponentially.

It is worth noting that the process of chunking in acquisition, with the child as a miniature
linguist trying to find units at varies hierarchical levels in the speech signal, is also is at odds with the
act-r theory of cognition, according to which chunking evolves in the opposite direction, starting
with the small chunks that are all that can be handled initially, and that only with experience over
time can be aggregated into the greater chunks representing the automatization of cognitive skills
(Anderson, 2007).

Theoretical frameworks have developed different notational schemes for describing the semantics
of utterences such as you want milk, as illustrated in Figure 3 for cognitive grammar (top) and
lexical conceptual structures in the style of Jackendoff (1990). From the perspective of implicit
grammar, the knowledge summarized in such representations is valueable and insightful, but too
dependent on a multitude of interpretational conventions to be immediately implementable in a
discriminative learning model. What needs to be done is to unpack such descriptions into a set
of basic descriptors that can function as lexemes in comprehension and production models. For
instance, offer(mother, child, milk) has to be unpacked into lexemes not only for offer, mother,
child, and milk, but also for the mother as the initiator of the offering, the milk as the thing offered,
etc. In other words, the insights expressed by the different frameworks can and should be made
available to the learning algorithms in the form of lexemic units. How exactly these units conspire
within the memory system defined by the directed graph and its control networks is determined by
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how they are used in the language community and the learning algorithms of the brain.
Implicit grammar is a new computational theory which is still under development. We have

illustrated that this theory makes it possible to reflect on language and cognition from a very
different perspective. Computational simulations for comprehension indicate that the model scales
up to corpora with many billions of words. For speech production, simulations of the production
of complex words promise low error rates (Baayen and Blevins, 2014), but whether the same holds
for sentence and discourse production remains to be shown.

Implicit grammar is a theory that grounds language in discrimination learning. There is, of
course, much more to language and cognition than implicit discriminative learning. For discussion of
the role of higher-order cognitive processes in resolving processing conflicts and integrating implicit
learning with speakers’ goals, and also the importance of the late development of these higher-order
processes, see Ramscar and Gitcho (2007); Ramscar et al. (2013a,b). A further complication is
that with the advent of the cultural technology of writing, literate speakers bring extensive meta-
linguistic skills into the arena of language use and language processing. How exactly the many
multimodal experiences of language use at both implicit and conscious levels shape how a given
speaker processes language is a serious computational challenge for future research, not only for
implicit grammar, but also for abstractionist and exemplar approaches, as well as hybrid models
such as cognitive grammar.

6 Concluding remarks

When comparing different algorithms, it is important to keep in mind, irrespective of whether they
come from abstractionist, exemplar-based, or discriminative theories, that they tend to perform
with similar precision. For instance, Ernestus and Baayen (2003) compared aml, stochastic opti-
mality theory, and two classifiers from the statistical literature, among others, and observed very
similar performance. Keuleers (2008) showed equivalent performance for memory-based learning
and minimum generalization learning for past-tense formation in English. Baayen et al. (2013)
compared two statistical techniques with naive discrimination learning, and again observed similar
performance. This state of affairs indicates that the typical data sets that have fuelled debates over
rules, schemas, and analogy, tend to have a quantitative structure that can be well-approximated
from very different theoretical perspectives. Therefore, the value of different approaches to lan-
guage, language use, and language processes will have to be evaluated by means of the simplicity
of computational implementations, the neuro-biological support for these implementations, and the
extent to which the models generate concrete, falsifiable predictions regarding unseen data.
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