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Effects of lexical frequency have long informed theories of the mental lexicon. This study
compares two approaches (localist spreading-activation vs. discriminative learning models
integrating distributional semantics) by assessing regression models of spoken word duration
of English homophones grounded in each. The regression models avoid assumption violations
of earlier analyses of the same data set. We point out a major methodological flaw beset-
ting corpus-based research on pronunciation. We also show that the relationship between a
homophone’s form and its semantics is predictive of its duration. Implications for theories
of the mental lexicon are discussed.
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1 Introduction

Word frequency effects have for decades had the status of consensus findings (see e.g.Jurafsky
2003; Baayen et al. 2016 for overviews). One aspect of lexical frequency that has played
a particularly important role in theories of language processing, variation, and historical
change is its effect on spoken word duration (see e.g. Bybee, 2001, 1999, 2002; Pierrehumbert,
2002; Jurafsky et al., 2001; Bell et al., 2003; Warner, 2011; Jurafsky, 2003). The apparent
ubiquity of word frequency effects may have created the impression that frequency is a pre-
theoretical concept. But the very notion of lexical frequency as a property of words implicates
a theoretical construct — the word as a representational unit — that is very far from being a
matter of consensus. The current study puts the question of lexical frequency in the context
of two fundamentally different types of models of the mental lexicon: A well-established class
of LOCALIST MODELS of lexical access and retrieval (Dell, 1986b; Levelt et al., 1999; Schwartz
et al., 2006) vs. a more recent class of models, henceforth DISCRIMINATIVE LEARNING (DL)
models, in which words do not have an existence of their own as representational units within
the lexicon itself (Baayen et al., 2019a; Chuang and Baayen, 2021; Heitmeier et al., 2021).

The consensus about the existence of word frequency effects may also have distracted
somewhat from areas of disagreement. The relationship between frequency, predictability,
and spoken word duration, for example, has received two seemingly opposite interpretations
(see e.g. Seyfarth, 2014; Fox et al., 2015; Lohmann and Conwell, 2020): The phonetic re-
duction of frequent forms has been interpreted as part of a broader pattern of reduction due
to high predictability (Jurafsky, 2003; Aylett and Turk, 2004). But high predictability of
word forms (in morphological paradigms) has also been argued to be associated with pho-
netic strengthening and lengthening (Kuperman et al., 2007; Baese-Berk and Goldrick, 2009;
Cohen, 2014).

Explanations for the shortening of frequent forms (e.g. Bybee, 2006; Bell et al., 2009)
have appealed to many mechanisms at different steps in the processes that take place before
and during word production. Many of these proposals are mutually compatible — spoken
word duration undoubtedly reflects multiple factors — but they occasionally entail different
predictions. The pronunciation of homophones is a case in point. Gahl (2008) argued that,
if the shortening of frequent words solely reflected ”late” stages of lexical production, such
as phonological encoding and /or articulatory processes, a low-frequency word such as thyme
should have the same duration as a high-frequency homophone twin time with identical
phonological form, other things being equal. If, on the other hand, word duration also
reflected the ”earlier” steps of access and retrieval of word meanings, then duration should
reflect each twin’s specific frequency, again other things being equal. Consistent with the
latter possibility, Gahl (2008) observed that spoken word durations of homophones in the
Switchboard corpus of telephone conversations differed even when other factors were brought
under statistical control, such that the more frequent member of a pair of homophones (e.g.
time) tended to be shorter than the less frequent member of the pair (e.g. thyme).

The argument in Gahl (2008) was rooted in a localist model of lexical access and retrieval
(Dell, 1986b). In a DL lexicon without words, there are no ‘items’ of which lexical frequency
could be a property. How, then, can such a lexicon account for effects of word frequency?



We propose that the answer to that question holds the key to reconciling the seemingly
contradictory effects of high predictability leading to shortening, as well as lengthening.
Here, we argue that the DL framework offers a principled explanation for both effects: One
effect reflects the strengthening that comes from better learning and can be estimated as the
predictability of a form, given its meaning. The other effect arises when one steps outside of
the lexicon and asks about the predictability of a target word given all words in an utterance.

A particularly appealing property of DL models is that they allow us to extend the inves-
tigation to effects of word meanings, beyond saying that homophones “differ in meaning”. DL
models integrate distributional semantics (Landauer and Dumais, 1997; Mitchell and Lapata,
2008; Mikolov et al., 2013). To preview our argument: We show that a measure quantifying
the extent to which a homophone’s form is supported by its meaning is a surprisingly strong
predictor of its spoken duration. Before introducing the technical and conceptual properties
of that measure, we must turn again to Gahl (2008)’s model of homophone duration.

The model in Gahl (2008) (henceforth “G2008”, and a follow-up analysis, Gahl 2009,
henceforth “G2009”) did not go unchallenged. Lohmann (2018b) asserted that neither G2008
nor G2009 provided direct evidence of homophone pairs differing in duration depending on
the target-specific frequency (e.g. of time being shorter than thyme). Instead, according to
Lohmann (2018b), the models in G2008 and G2009 only showed that time was shorter than
sage, not that time was shorter than thyme. This characterization is, we believe, misleading.*
We do however concur with Lohmann (2018b) that G2008 and 2009 had many methodological
shortcomings. For example, as pointed out in Lohmann (2018b), the fairly weak correlation
between the duration of low-frequency and high-frequency homophones in the corpus need
not indicate lemma-specific lexical characteristics, but may simply reflect uncertainty about
duration estimates based on small numbers of tokens. Another issue with the regression
models in Gahl (2008, 2009) (and Lohmann 2018b) is that they violated two modeling
assumptions: One is the assumption of a linear relationship between predictors and spoken
word duration. The second assumption concerns the relationship between frequency and
variability in duration. As Lohmann (2018b) points out, the reliability of average duration
as an estimate of a word’s ‘true’ duration decreases with word frequency: The smaller the
sample size, the higher the variance.

Complicating this picture is the fact that the variability in motor execution may in
fact decrease as frequency increases (Tomaschek et al., 2020). If this is correct, then high
variability in token duration of low frequency words may reflect high variability in motor
execution, rather than (or in addition to) uncertainty about a true mean due to small sample
size. The possible connection between frequency and duration variability poses a problem
for any model assuming constant variance of model residuals, which includes those in G2008,
G2009, and Lohmann (2018b). Here, we reanalyze the data analyzed previously in G2008,
G2009, and Lohmann (2018b), but now using statistical models that do better justice to
non-linear relations between predictors and acoustic duration, when present, and that are

! Briefly, Lohmann 2018b omits mentioning the role played by homophone twins in the models: G2008
asserts that the frequency of time is predictive of duration when controlling for the expected duration, given
the target phonemes. The model in G2008 predicts the duration of sage depending on the frequency of sage,
but only when the expected duration of a homophone (e.g. the first name Saige) is taken into account.



also better able to model uncertainty about the mean acoustic duration, by making use of
Gaussian Location-Scale Generalized Additive Models (Wood, 2017).

A methodological goal of the current study is to point out an issue that has crept into re-
search on pronunciation variation. Such studies have generally taken one of two approaches:
The first aggregates information over word types. This is the approach taken in Gahl (2008),
as well as in numerous analyses of controlled, balanced data from experiments (e.g. Mousikou
and Rastle, 2015) and Wright (2004). The second approach considers word tokens. This ap-
proach is the tool of choice in most corpus-based analyses, e.g. Bell et al. (2003), Caselli
et al. (2016), Tanner et al. (2017), Bell et al. (2009), Aylett and Turk (2004), Dilts (2013),
Seyfarth (2014), Hay et al. (2015), and Kilbourn-Ceron et al. (2020). The appeal of that
second approach is the richness of the information that can be considered, such as indexical
information about the talker, or the words preceding or following the target in an utterance.
Indeed, the rise of token-based analyses has gone hand in hand with developments in, and
awareness of, statistical models that make such analyses feasible, possibly creating the im-
pression that token-based models represent the gold standard, with type-based ones a less
sophisticated or less informative alternative. We argue that token-based models introduce
methodological pitfalls and biases that render them potentially problematic when used to
draw inferences about lexical processing.

The main goal of the current study is broader, however. We compare the predictions for
spoken word duration of two different theoretical approaches to the lexicon, by examining the
ability of variables grounded in localist vs. DL models to predict the spoken word duration of
homophones in the Switchboard corpus. The wide-spread consensus around the relationship
between word frequency and spoken word duration makes this empirical domain a prime
testing ground for asking how, and how well, a DL-model can account for effects attributed
to word frequency in localist models. We begin by outlining the two conceptions of the
mental lexicon under discussion, before turning to the choice of variables in our regression
models of homophone duration, the specific implementation of the DL model, our data, and
methods.

2 Background

2.1 Localist models

Most models of the lexicon, unsurprisingly, involve representations of words. The lexicon, in
these models, constitutes a repository of discrete pieces of meaningful linguistic information,
such as words and morphemes, connected to one another and to phonological information.
Access, retrieval, encoding, and recognition are modeled by means of algorithms that produce
predictions of degrees of accessibility, such as interactive activation (Dell, 1986b), spreading
activation (Levelt et al., 1999), or Bayesian inference (e.g. Norris and McQueen, 2008). These
models are localist, in the sense that they work with discrete linguistic units for phonemes,
syllables, morphemes, words, and concepts.

Localist models have yielded numerous testable predictions. Most relevantly to the cur-
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Figure 1: Two examples of localist models, based on Levelt et al., (1999) (left panel) and
Dell (1990) (right panel)

rent discussion, the model depicted in the left-hand panel of Figure 1 leads to the prediction
that homophones, by virtue of having identical word forms (or ‘lexemes’), should show
identical effects of word form frequency. Indeed, there is empirical support for that position:
Low-frequency homophones of high-frequency words behave in some respects as though their
own frequency were also high, an effect known as “frequency inheritance” (Jescheniak and
Levelt 1994; Dell 1990). The model depicted in the right-hand panel of Figure 1 likewise
predicts frequency inheritance (see Dell, 1990). In addition, as argued in Dell and Gordon,
that model leads to the prediction that phonological neighbors should facilitate target re-
trieval in production, via feedback from phonemes shared by the target and its neighbors
(see Chen and Mirman 2012; Middleton et al. 2015 for further discussion). The predicted
effect of PND follows from the model architecture. As Dell (1988) points out, other model
predictions follow from parameters that are specified by the researcher. Effects of lexical
frequency, for example, can be modeled by means of differences in resting activation levels,
with increasing frequency being modeled by setting higher resting activation levels. Numer-
ous studies of neurotypical speakers and individuals with language disorders attest to the
success and theoretical interest of such models (see e.g. Schwartz et al. 2006; Dell et al. 1999;
Levelt et al. 1999; Foygel and Dell 2000).

2.2 Discriminative learning models

Spreading-activation models fall in a broad category of ‘exposure-based” models, in which the
mind is seen as an adaptive system whose behavior is shaped by experience. However, they
are not learning models, but rather depict the result of a presumed process of learning and
development, although an interest in learning was at the heart of many early connectionist
approaches to the lexicon (see, e.g., Rumelhart and McClelland, 1986; MacWhinney and



Leinbach, 1991; Harm and Seidenberg, 2004). More recently, deep learning networks have
been harnessed for the learning of morphology (see, e.g., Kirov and Cotterell, 2018; McCurdy
et al., 2020).

The modeling framework that we make use of in this study, introduced in Baayen et al.
(2019a) also makes use of error-driven learning, but uses a mathematically much simpler
algorithm for learning mappings between form and meaning. Their model, to which we
henceforth refer as the Discriminative Learning Model, or DLM, sets up several simple lin-
ear mappings (depending on modality) between modality-specific form representations and
semantic representations. The model’s semantic representations are inspired by distribu-
tional semantics: Words’ meanings are represented by real-valued vectors, referred to as
“embeddings” in the natural language processing literature. We will refer to these vectors
as ‘semantic vectors’. Semantic vectors can be derived from corpora, or, in the absence of
resources, they can be simulated (see, e.g., Heitmeier et al., 2021; Chuang and Baayen, 2021,
for detailed discussion). The model’s form representations can be set up in many ways, for a
systematic overview, see Heitmeier et al. (2021). Form representations can be derived from
the acoustic signal (Shafaei-Bajestan et al., 2021), from visual bitmaps (Linke et al., 2017),
or they can be set up at a more abstract level as binary vectors specifying which n-phones,
n-grams, or n-syllables jointly define a word’s form.

The mappings from form to meaning (for comprehension) and from meaning to form
(for production) are implemented with simple input-to-output networks, without hidden
layers, the connection weights of which are mathematically equivalent to the beta weights
of multivariate multiple regression. Although the mappings are linear and therefore less
powerful than the mappings that deep learning makes available, they work surprisingly well
for modeling lexical processing. Mappings can also be derived incrementally, by training the
networks word by word, using the update rules of Rescorla and Wagner (1972) and Widrow
and Hoff (1960), which implement incremental linear regression (Shafaci-Bajestan et al.,
2021). Measures derived from the model’s networks have been found to be good predictors
for lexical measures ranging from reaction times in unprimed (Baayen et al., 2019a) and
primed lexical decision (Baayen and Smolka, 2020; Chuang and Baayen, 2021) to spoken
word durations (Chuang and Baayen, 2021; Chuang et al., 2021). Of central importance for
the present study is that the DLM integrates distributional semantics within a model that
includes a production mapping from words’ semantic vectors to their constituent segments.
This makes it possible to examine to what extent words’ meanings co-determine the spoken
word durations of homophones. Below, we introduce several measures for assessing the
learning of homophones’ forms given their meanings, derived from the mappings of the DLM.

In the context of the current discussion, the most conspicuous feature of the DLM is
the fact that it does not imply or make use of words as ‘items’. Model predictions follow
from principles of learning (Rescorla and Wagner, 1972) and the distributional properties
of the data, rather than item-specific specifications designed by the analyst. Because in
the DLM forms and meanings are generated dynamically, on the fly, during production and
comprehension respectively, there are no representations internal to the DLM that a frequency
measure can be associated with. There are two ways in which frequency of occurrence plays



out within a discrimination-learning based approach to language. First, during learning,
higher-frequency words are encountered more often than lower-frequency words, and this
will differentially affect learning. Second, there is more than the ‘lexicon’: words are used
in sentences. We can therefore ask how words are learned in contexts where they appear
together with other words. For reasons detailed below, in this study we propose a measure
that follows the second approach: this measure gauges frequency of occurrence tempered by
cue-competition at the sentence level.

Before introducing the specifics of our implementation of the DLM variables, we turn to
prior work on spoken word duration.

2.3 Predictors of spoken word duration

Numerous factors have been shown to influence spoken word duration in English (for overviews,
see e.g. Aylett and Turk, 2004; Warner, 2011; Jurafsky, 2003; Fink and Goldrick, 2015; Tucker
et al., 2019; Balota and Chumbley, 1985). Broadly, these factors fall into three categories:
Lexical information, such as frequency, phonological neighborhood density (PND), part of
speech, and orthography; indexical information about the talker, such as age and sex; and
linguistic context, such as speaking rate, prosodic boundaries, or the probability of a target
word given the preceding and following context.

The effects of some of these factors are relatively uncontroversial, at least for English and
Dutch, the languages in which they have been studied the most. In English, word duration
has been found to be shorter in male talkers compared to female ones (Bell et al., 2009), and
in nouns compared to other parts of speech (Lohmann, 2018a; Sorensen et al., 1978). Word
duration tends to increase with increasing talker age (Bell et al. 2009; Horton et al. 2010,
but see Gahl and Baayen 2019) and with decreasing frequency and contextual predictability
(Lieberman, 1963; Kilbourn-Ceron et al., 2020; Jurafsky et al., 2001; Aylett and Turk, 2004).

Other effects have not been investigated extensively or are subject to continuing debate.
Among these are morphological complexity (Caselli et al., 2016) and, especially, PND. In-
creasing PND has been associated with longer (Buz and Jaeger, 2016) or shorter (Gahl et al.,
2012; Caselli et al., 2016) whole-word duration. Effects of PND on other aspects of pronun-
ciation have similarly yielded mixed results (see e.g. Scarborough, 2013; Wright, 2004; Gahl
et al., 2012; Goldrick et al., 2013; Fink and Goldrick, 2015; Buz and Jaeger, 2016; Clopper
and Turnbull, 2018; Gahl, 2015; Fricke et al., 2016; Caselli et al., 2016). Indeed, just as
lexical frequency has come to be treated as a consensus variable, PND may be the most
polarizing of variables.

We believe that some of the differences across studies are the result of differences in
the unit of analysis: Some of the literature on PND effects uses data aggregated over word
types. Other studies analyze word tokens. Assessing the consequences for interpretation of
analyzing token-level vs. type-level information is difficult in part because any given study
only reports token-level or type-level results, but not both. In the current study, we report
both type-level and token-level models, in order to draw attention to the consequences of
analyzing tokens vs. types.



3 Methods

3.1 The data set

We analyzed the same data set that was used in Gahl (2008) and Gahl (2009). The initial
word list contained all English lexemes with a word form that is homophonous with the word
form of another lexeme, according to the transcriptions in the CELEX database (Baayen et al.,
1995), and that differed in spelling from their homophone twins. Spoken word duration
of these items were extracted from the time-aligned orthographic transcript (Deshmukh
et al., 1998) of the Switchboard corpus (Godfrey et al., 1992), a corpus of 240 hours of
telephone conversations between strangers. Word forms with identical spelling were pooled:
For example, the plural noun and the third-person singular verb laps were treated as a
single item. In cases of three or more homophonous spellings (e.g. praise, prays, preys),
only the two highest-frequency forms were included in the analysis. Several classes of items
were removed from the word list: (1) spellings associated with more than one phonemic
representation, e.g. tear (homophonous with tier and tare); (2) Pairs involving function
words, such as in, inn and or, ore and interjections, such as whoa, woe; (3) pairs such as
source, sauce that are homophones in the CELEX transcriptions, which are based on British
English Received Pronunciation, but that were unlikely to be homophones in the (American
English) Switchboard corpus; (4) items containing transcription errors in CELEX; and (5)
names of letters in the alphabet. The resulting list contained 409 homophones.

For the analysis of token duration, disfluent tokens, defined as tokens immediately pre-
ceding hesitation sounds or periods of silence of 0.5 seconds or longer, were excluded from
analysis. We initially retained such tokens in our models and allowed the Fluency factor to
interact with talker age and with the relative frequency of target and homophone, to rule
out spurious effect of lexical frequency variable due to fluency. However, the disfluent tokens
were too unevenly distributed to allow meaningful models of the effects of lexical predictors
on these tokens. Excluding the disfluent tokens left 56,024 observations for analysis.

3.2 Measures based on discriminative learning

We now turn to the measures grounded in the DLM, beginning with an alternative to fre-
quency of occurrence and then turning to measures taking semantics into account.

3.2.1 A pLM-based alternative to frequency of occurrence

As frequency of occurrence is a robust predictor of spoken word duration, we first consider
how frequency plays out in discriminative approaches to language. As already mentioned
above, when mappings between form and meaning are estimated using incremental, word-
by-word, learning (see, e.g., Shafaei-Bajestan et al., 2021; Heitmeier et al., 2021), then the
mappings will be more precise for words that have been encountered more often (but see
Ramscar et al., 2013, for how frequency imbalances influence learning). However, modeling
the mapping between meaning and form using incremental learning is beyond the scope of



this study, for two reasons. Firstly, incremental learning using the Widrow-Hoff learning
rule (see also Milin et al., 2020) is computationally highly demanding. Secondly, during
actual word learning, words’ semantic vectors should also be learned incrementally, reflect-
ing speakers’ increasing semantic and textual knowledge. What we have available to us
are semantic vectors, trained on large volumes of text that surpass the experience of any
individual speaker, that represent well-discriminated meanings expected with near-infinite
language experience.

Therefore, instead of seeking to implement incremental learning to capture frequency
effects, we consider instead the question of the learnability of words in sentential context.
A core insight of discrimination learning (see, e.g., Rescorla, 1988; Marsolek, 2008; Ramscar
et al., 2010) is that input features (henceforth, adopting the terminology of (Danks, 2003),
cues) compete for predicting output classes (henceforth, outcomes). Since words normally
do not occur in isolation but in utterances, we examined how well word outcomes can be
learned when there are competing word cues.

More specifically, following Baayen et al. (2019a), we constructed a simple network (with
no hidden layers) that was trained incrementally to predict all words in an utterance from the
very same words in that utterance, using NAIVE DISCRIMINATIVE LEARNING (NDL Baayen
et al., 2011; Milin et al., 2017). The network was trained, using the update rule of Rescorla
and Wagner (1972), on 6,020,399 sentences from the written part of the British National
Corpus (BNC Burnard, 1995). Words with a frequency less than or equal to 200 were not
included, unless they were among the homophones in our dataset. The total number of word
tokens taken into account during training was 87,906,894; the number of different word types
was 23,562. For each sentence, the input to the network specified which words were present
in the sentence, using one-hot encoding for each word. Thus, for a sentence with 10 unique
word types, 10 bits in the input were on, and all other bits were off. The network was given
the task to predict which words occurred in the very same sentence. Thus, the output vector
presented to the model as target was identical to the input vector. Training the model on
the British National Corpus resulted in a network characterized by a 23,562 x 23,562 weight
matrix W. The row vectors of W (with diagonal elements set to zero) perform on a par
with word embeddings based on latent semantic analysis (Landauer and Dumais, 1997), see
Baayen et al. (2019a) for detailed discussion.

The extent to which words support themselves is captured by the diagonal elements
of the weight matrix. Let d; denote the diagonal element of word w;. Values of d; range
between 0 and 1, and hence can be interpreted as probabilities. The amount of information
carried by w;, henceforth Id;, is therefore (see, e.g., Shannon and Weaver, 1949; Moscoso del
Prado Martin et al., 2004; Levy, 2008) given by

1
Id; = log, (d—) .

This measure of information differs from the standard estimate of information based on
frequency only in the way that the probabilities are defined. Instead of using raw word fre-
quencies of occurrence to derive probabilities (Aylett and Turk, 2004), this measure makes
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Figure 2: Log Information (LogId) as a function of log frequency of occurrence for the
homophones in the present study.

use of frequency estimates that are modulated by cue-competition with other words in sen-
tences.

For the present set of homophones, Id; has a distribution with a long right tail. In order
to avoid outlier effects in the regression, we applied a log transformation to Id;, resulting
in a measure (LogId) that is correlated with, but not identical to, frequency of use (see
Figure 2). As predictor for by-word mean reaction times in the British Lexicon Project
(Keuleers et al., 2012), the LogId measure outperforms log frequency of occurrence in the
British National Corpus by 563 AIC units (see the supplementary materials for further
details on the single predictor Gaussian location-scale models that we fitted). We therefore
will consider the Id and LogId measures as predictors for spoken word duration, as a learning-
informed counterpart to standard frequency counts.

3.2.2 Measures incorporating semantics

In order to understand the measures that we have found useful for predicting homophone
duration from homophones’ semantic vectors, we need to provide a brief introduction to
core concepts of the mappings used by the DLM. Consider the following example. The
starting point is a pair of matrices with information about form and meaning, respectively,
and mappings between the two. A form matrix C' and a semantic matrix S for a simple
two-word lexicon are shown in Figure 3. The two words in the example are time and lime.
Importantly, these labels do not exist as “entries” in a lexicon, or as representational units to
which information about form or meaning is linked. The only representations in the model
are the high-dimensional numeric vectors, which are understood to be generated on the fly

10



from auditory or visual input in the case of comprehension, and from conceptualization in
production. Thus the row names time and lime are included in Figure 3 purely as a matter
of convenience.

ti tim ime me i lim S1 S2 S3 S4 S5 S6

nme(l 1 1 10 0) S_tme(m 03 0.1 07 04 1.2)

C= 00 1 1 1 1 06 0.2 09 —0.1 14 04

lime lime

Figure 3: The form matrix C' brings together words’ form vectors, the semantic matrix S
brings together the corresponding semantic vectors.

The row vectors of C' specify which triphones are present in a word’s phonological form.
The triphones are contextualized phones that reflect co-articulation and that also do justice
to the dependence of the identity of phones such as stops on the formant transitions in
adjacent vowels. The row vectors of S are semantic vectors (word embeddings). It is worth
reiterating that form and meaning representations do not have an existence of their own
within the framework of the discriminative lexicon, unlike in models in which processes act
on units such as morphemes or words. Given external form input, a semantic representation
is created dynamically. Similarly, given an internal conceptualization, a form representation
is created on the fly. The “discriminative lexicon” is a lexicon without words.

The DLM sets up mappings between the C and S matrices by using the mathematics of
multivariate multiple regression to solve the equation C'F' = S for comprehension mappings,
and the equation SG = C for production mappings. The resulting transformation matrix
F for the matrices in Figure 3 is a tabulation of beta coefficients, i.e. regression weights.

s1 S2 S3 sS4 S5 S6
#ti —-0.067 0.067 —-0.117 0.25 —-0.1  0.333
tim -0.067 0.067 -0.117 025 —-0.1  0.333
p_ ime 0.117 0.083 0.167 0.10 0.3  0.267
me# 0.117 0.083 0.167 0.10 0.3  0.267
#li 0.183 0.017  0.283 —-0.15 0.4 —-0.067

lim 0.183 0.017 0.283 —-0.15 0.4 -0.067

This matrix of regression weights is mathematically equivalent to the matrix of weights
on the connections in a network linking input dimensions (for comprehension, the columns
of C) to output dimensions (for comprehension, the columns of S). Each beta coefficient
can thus be re-interpreted as the association strength between an input and an output unit.
The number of rows of the network’s weight matrix F' is equal to the number of different
trigrams. The number of its columns equals the dimensionality of the word embeddings.
In this example, this dimensionality is set to 6, but common dimensions for empirical word
embeddings are 200 or 300. However, this dimensionality can be much larger as in the model
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of Baayen et al. (2019a). When the weights of the network are estimated using the multivari-
ate multiple regression equations, they represent the best weights that can be learned with
infinite experience. This way of estimating weights is referred to as LINEAR DISCRIMINA-
TIVE LEARNING (LDL). As mentioned above, the weights of the network can also be learned
incrementally.  When using incremental learning with the learning rules of Rescorla and
Wagner (1972) or Widrow and Hoff (1960), cycling through the training data many times
results in estimates that come ever closer to those shown for F' (see Chuang and Baayen,
2021; Shafaei-Bajestan et al., 2021, for further details). In this study, we make use of LDL,
as modeling with incremental learning is computationally intensive and requires precise data
on lexical acquisition over time that is not available to us.

A production matrix G mapping semantic vectors (embeddings) onto form vectors was
calculated for a dataset of 10,636 words. These words were taken from the dataset studied in
Baayen et al. (2019a), augmented with the homophones studied in G2008. For each of these
words, the constituent triphones were calculated from their DISC phoneme representations
in the CELEX lexical database (Baayen et al., 1995), and used to create the binary form
vectors. For each word, a semantic vector was extracted from Cieliebak et al. (2017), which
provides 200-dimensional embeddings obtained with fasttext (Bojanowski et al., 2017)
applied to tweets. Thus, G is a 5,600 x 200 matrix mapping the row vectors of a 10,636 x
200 semantic matrix S onto the row vectors of a 10,636 x 5,600 form matrix C. Here, we
borrow notation from statistics, as the predicted form vectors C are not identical to words’
actual ‘gold standard’ form vectors in C. However, the more accurate the mapping G is,
the more similar the row vectors of C will be to the row vectors of C.

Two related measures quantifying the support for a homophone’s form provided by its
meaning can now be introduced. Both measures are derived from homophones’ predicted
form vectors ¢, which are row vectors of C. The first measure, Semantics To Form Mapping
Precision, quantifies how close the predicted vector ¢ is to the ‘gold standard’ vector ¢ that
specifies which triphones are present in a word’s form. This measure is defined as the Pearson
correlation of ¢ and ¢. The greater this correlation is, the more accurate the mapping from
meaning to form is.

The second measure quantifies the total support that a word’s triphones receive from its
semantics. We refer to it as Semantic Support For Form. Let C; denote the set of indices
of the triphone cues of word ¢ in the columns of the form matrix C, and let ¢ denote its
estimated form vector. A word’s Semantic Support For Form can now be defined formally
as . Jec; ¢;. Unsurprisingly, these two measures are strongly correlated (r = 0.896), and it
is an empirical question which of the two will be the more precise predictor. We note that
it will not make sense to include both predictors in the same regression model.

3.3 Predictors and predictions
3.3.1 Predictors common to both types of models

There are several predictor variables for spoken word duration, listed in Table 1, that are
independent of localist and DL-specific assumptions about the lexicon. These general vari-
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ables include age and sex of the speaker (cf. Horton et al. 2010; Yuan and Liberman 2008),
and the conditional probability of a target word, given the word(s) preceding and following
it (e.g. Bell et al. (2009); Kilbourn-Ceron et al. (2020)). Another control variable that cuts
across models of the lexicon is the duration that can be expected, given a word’s phonemes.
We estimated the ‘baseline’ duration of a word as the log-transformed sum of the average
duration of the target segments in the Buckeye corpus (Pitt et al., 2007). Homophones have
identical baseline duration estimates, as they have identical segments.

Variables capturing properties of specific tokens entered the type-based regression models
in the form of aggregated information. One such variable is Pause quotient. Words that
occur preceding a pause tend to be longer than pre-pausal words. Furthermore, tokens of
words that frequently occur phrase-finally have been found to be longer, compared to their
baseline, even when not in final position (Séskuthy and Hay, 2017). In a token-based analysis,
a binary variable stating whether a token is pre-pausal is straightforward to include, but for
a type-based analysis, we included as predictor the proportion of tokens of a given target
word that preceded pauses. Similarly, local speaking rate entered the type-based analyses in
aggregated form, as the average of the local speaking rate of the tokens.

Our token-based models did not include by-word random effects. In general, when word
items have very different frequencies, it is advisable to not specify a random effect for word
as the posterior modes may then diverge considerably from normality (Douglas Bates, p.c.).
Furthermore, when item-bound predictors are of interest, as in the present regression study,
the by-item adjustments (posterior modes) are confounded with the item predictors. This
confound is complete for predictors that have non-repeating values: in this case, there is
a one-to-one relation between predictor values and posterior modes. In GAMs, this gives
rise to concurvity values near 1 when smoothing splines are used. When predictors have
values that are instantiated across multiple tokens of the same type, whether a predictor will
survive inclusion of a random effect will depend, in unpredictable ways, on which values of
the predictor are repeated by these tokens.

3.3.2 Variables specific to localist models

We now turn to predictors that are specific to localist theories of the mental lexicon. These
variables were also included in G2008, with the exception of PND. A key localist variable,
given the theoretical interest of homophone frequency effects, was lexical frequency, i.e. the
frequency of each target lemma (e.g. time vs. thyme). In models attributing frequency
effects to mechanisms that affect homophone twins equally, such as retrieval of a word
form (lexeme) or articulatory fluency, the frequency variable of interest would be the form
frequency, i.e. the cumulative frequency of both homophones. We expected spoken word
duration to reflect lemma-specific frequency and therefore included Lemma Frequency as a
predictor, defined as the log-transformed frequency of the lemma provided by the CELEX
database. We expected spoken word duration to decrease with increasing frequency of each
target lemma. We further expected lemma frequency to be a stronger predictor than form
frequency. We tested that prediction in a comparison of models using lemma frequency vs.
form frequency.
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We included a further frequency measure, Relative Frequency, estimated as the (log-
transformed) frequency of each target homophone in the CELEX database (Baayen et al.,
1995), divided by the frequency of its homophone twin. The relative frequency is thus
greater than zero for the higher-frequency member of the pair, and smaller than zero for the
lower-frequency member of the pair. The same variable was used in Lohmann (2018b). This
variable makes it possible to take into account the fact that the more frequent a word is, the
more it can exceed its homophone twin in frequency, by including an interaction between
Lemma Frequency and Relative Frequency. If the frequency of the homophone is indeed
a co-determinant of its duration, as argued by G2008, then homophones with higher relative
frequency should have shorter durations.

A binary variable Morphological Complexity was included to distinguishing morpho-
logical simple vs. complex target words, e.g. lazx vs. lacks. Finally, Phonological Neighbor-
hood Density (PND) was included as predictor. Neighborhood density was estimated as the
number of words differing from the target word by addition, deletion, or substitution, based
on the English Lexicon Project (Balota et al., 2007). We expect spoken word duration to
decrease as PND increases (Gahl et al., 2012).

3.3.3 Variables specific to the DLM

Four predictors are specific to the bLM. Three of these have already been introduced:
Semantics To Form Mapping Precision, Semantic Support For Form, and LogId. The
fourth measure is the Pearson correlation between the semantic vectors of a homophone pair,
again using the tweet-based fasttext word embeddings of dimension 200 (Cieliebak et al.,
2017), henceforth Homophone Semantic Similarity. This measure informs us about how
similar in meaning the words of a homophone pair are.

With respect to the predictions for the learning-based measures, we note the follow-
ing. The theory of the discriminative lexicon predicts that duration should be longer for
higher values of Semantics to Form Mapping Precision and for Semantic Support For
Form. The reason is straightforward: forms that are inappropriate given the semantics to be
expressed should be realized with zero length. As a mapping is learned better for a form-
meaning pair, a word will be produced with greater duration, other things (such as contextual
predictability) being equal. For empirical evidence, the reader is referred to Baayen et al.
(2019a); Chuang et al. (2020c); Tomaschek et al. (2021a).

With respect to Homophone Semantic Similarity, our hypothesis is that greater simi-
larity will afford longer duration, the reason being that greater similarity reduces the stress in
the mapping from meaning to form, and thus will provide stronger support for words’ forms.
The mapping from semantic space to form space has to associate different meanings with
different forms for a large part of the vocabulary. Mapping different meanings onto the same
form is less often required, and because it is more exceptional, learning will be more tenta-
tive. Importantly, forcing a model, designed to map distinct semantic vectors onto distinct
form vectors, to map onto identical form vectors induces frailty in the mapping (see Chuang
et al., 2020a, for detailed simulation studies on homophone-induced frailty). Conversely, the
more similar in meaning homophones are, the more they approximate non-homophones, and
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hence the better the corresponding form vectors are expected to be learned.

Finally, for the information measures LogId and its untransformed counterpart Id, higher
values are predicted to give rise to longer mean spoken word durations. With respect to the
variance in spoken word durations, we expected greater amounts of information to give rise
to greater variance, as the network on which the information measures are based has had
reduced opportunities for learning words with higher information load. In addition, since
the actual context in which words were spoken in the Switchboard corpus is more likely
to be different from the context of learning in the British National Corpus, the estimates
based on the British National Corpus are expected to be more off for the Switchboard
Corpus especially for lower-frequency, high-information words, leading to greater variance in
context-specific spoken word durations.

(Classical lexical-distributional predictors that have no theoretical motivation within the
DLM framework, are phonological neighborhood density, biphone probability, lemma fre-
quency, and relative frequency. We also did not include the orthography-phonology consis-
tency measure, because developing a learning-based consistency measure within the model
as laid out in Baayen et al. (2019a) is beyond the scope of the present study.

It is debatable whether Baseline Duration should be included in a statistical model
grounded in discriminative learning, as the model does not incorporate phones as theoret-
ically motivated units. However, as the model represents words’ forms with indicators of
words’ triphones, the number of bits that are on for a row vector ¢ of C' is the same as the
number of a words’ phonemes (except for words with repeated phones, as ¢ vectors only
register the presence of triphones and not their location or number). We therefore included
Baseline Duration as a control variable, which also facilitated comparing localist and DL
models.

For three words (the names Phil, Marz, Thais), values for LogId and Id were unavailable.
The analyses of the predictors grounded in the DLM are therefore based on 403 of the 406
homophones in the analyses with localist predictors.

3.4 Statistical modeling strategy

We made use of the Gaussian Location Scale Additive Model, using the packages mgcv
(Wood, 2011, 2004, 2017) and itsadug (van Rij et al., 2020) in R (R Core Team, 2017). The
Generalized Additive Model (GAM) is a regression model that relaxes the assumption that
the effects of numeric predictors are linear. GAMs make use of smoothing splines that are set
up such that an optimal balance is reached between staying faithful to the data and keeping
model complexity down (by penalizing for nonlinearity). If a predictor is truly linear, a GAM
will detect this and not report artifactual non-linearity. Applications to linguistic data and
tutorials can be found in Baayen et al. (2010); Wieling et al. (2011); Wieling (2018); Wieling
et al. (2014); Lee et al. (2016); Baayen et al. (2017); Séskuthy (2017); Baayen and Linke
(2020); Chuang et al. (2020b). GAMs are also much more flexible than the standard linear
regression model for modeling interactions between numeric predictors.

Gaussian Location Scale GAMs relax yet another assumption of the linear regression
model, namely, that the variance is not supposed to change with the mean. Instead of
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requiring residuals to be homoskedastic, Gaussian Location Scale GAMs allow the variance,
which is assumed to be Gaussian, to change with the mean, if necessary in a non-linear way.
This allows us to address the question of whether lower frequency words have more variable
durations.

The full sets of variables in the type-based analyses show high collinearity for both the
localist and the DL models: k = 41.7 for the former, and 40.8 for the latter, using the
collinearity index of Belsley et al. (1980). Without corrective measures, magnitude and sign
of coefficients in linear regression may become theoretically uninterpretable due to suppres-
sion or enhancement (Friedman and Wall, 2005). In non-linear regression, main trends can
likewise reverse. Various corrective methods for addressing collinearity are available (see,
e.g., Tomaschek et al., 2018a, for an overview), but these are not straightforward to apply
when the goal is to study both mean and variance of spoken word duration. We therefore
proceeded as follows. In a first step, we used all relevant predictors. After removing pre-
dictors that failed to receive evidence for their relevance, as well as the Semantics to Form
Mapping Precision measure, which is highly correlated with Semantic Support for Form
(r = 0.90) and which showed evidence of suppression, the model was refit. This reduced
collinearity to 15.2 and 16.3 respectively. Baseline Duration still induced suppression. As
it is a control variable in our model, we regressed it on the other remaining variables, for
both sets of predictors, and used the residuals, henceforth Residual Baseline Duration,
as predictor. This further reduced collinearity down to 9.8 and 9.9 respectively. According
to Belsley et al. (1980), this low level of collinearity is unlikely to lead to distorted estimates
of regression coefficients.

For our analyses, we restricted the number of basis functions for the smoothing splines,
in order to bring out main trends in the data. We note, however, that increased numbers of
basis functions, resulting in far more wiggly partial effects, are well-supported statistically.
In order to facilitate interpretation, we have avoided these more complex smooths.

Given that the dataset under investigation has been studied several times, and in light
of our exploratory approach to statistical modeling, we set a = 0.0001.

4 Results

In what follows, we first report analyses with predictors grounded in the localist model,
before moving to models with predictors grounded in the DLM.

4.1 Localist model

The type-based model using localist variables is summarized in Table 2. The upper part of
this table lists the effects for factorial predictors, as well as for the intercept. Because mean
and variance are modeled jointly, there are two intercepts, one for the mean and one for the
variance. The only measure that was predictive for the variance was word frequency. We
discuss its effect below.

17



A Noun-bias was associated with longer mean duration, consistent with the idea that
nouns occur phrase-finally more often than verbs do, and are hence more likely to undergo
phrase-final lengthening (Gahl, 2008; Séskuthy and Hay, 2017). However, this effect was
associated with a relatively high p-value (p = 0.0004), rendering it doubtful to us (recall
that we set @ = 0.0001) that this effect will replicate consistently .

A. parametric coefficients Estimate Std. Error t-value p-value
Intercept [mean)] -1.0387 0.0139 -74.7519 < 0.0001
Noun Bias =yes 0.0598 0.0169 3.5387 0.0004
Intercept [variance] -1.8293 0.0378 -48.4416 < 0.0001
B. smooth terms edf Ref.df  F-value p-value
s(Proportion with Following Pauses) 1.8335 2.2863  32.2159 < 0.0001
s(Phonological Neighborhood Density) 4.7174 5.7485  71.3616 < 0.0001
s(Orthographic regularity) 1.0000 1.0001 5.2430 0.0220
te(Lemma Freq., Rel. Freq.) 7.2717 9.4159 108.3451 < 0.0001
s(Residual Baseline Duration) 1.1915 1.3567 122.3611 < 0.0001
s(Lemma Frequency) [variance] 2.6120 3.2966  75.3180 < 0.0001

Table 2: Gaussian Location-Scale GAM fitted to the average durations of the homophone
word types, using control and localist predictors. AIC: -230.8

The second part of the table summarizes the smooth terms in the model. When the
effective degrees of freedom (edf) are close to 1, the effect of a predictor is close to linear.
Figure 4 visualizes the smooth terms; by fixing the scales across panels for the mean, the
effect sizes of the predictors emerge straightforwardly.

The effect of Orthographic Regularity is fully linear (edf=1.0000). Predicted duration
increased in a nearly linear fashion with proportion of prepausal tokens, and linearly with
residualized baseline duration. Increasing phonological neighborhood density and increasing
orthographic regularity were each associated with shorter duration. The linear effect of
orthographic regularity is small, and its p-value is far above our preset a-level, so it remains
doubtful that this predictor is relevant for spoken word duration of homophones.

The interaction of word frequency and frequency ratio is visualized by means of a contour
plot in the center panel of the second row of Figure 4. Warmer colors indicate longer spoken
word durations. Frequency shows the expected effect of durational shortening: the general
gradient in the regression surface is negative. There is also an effect of frequency ratio,
but only for targets with log frequencies below about 4. In that range, targets with very
low frequency ratios (values below -4) are predicted to have shorter durations, compared to
targets with similar frequency, but higher frequency ratios: very low frequency targets with
very high frequency homophone twins have shorter durations than would be predicted based
on their lemma frequency. That pattern is consistent with proposals under which duration is
expected to vary with form frequency. Such proposals include “frequency inheritance” (Dell,
1990; Jescheniak and Levelt, 1994), as well as proposals attributing frequency-dependent
duration to articulatory practice. That being the case, we explored this pattern further,
asking whether this possible inheritance effect could provide a superior explanation for the
effect of lemma frequency. If so, then form frequency, i.e. the summed frequency of each
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pair of homophones, should improve model fit. We found that replacing lemma frequency
with the summed frequency of the homophones resulted in a model with a higher AIC (by
42 units), indicating substantially poorer model fit. Finally, the lower right panel clarifies
that increased lemma frequency is associated with decreased variance in duration (as well
as decreased duration); however, uncertainty was high near the extremes of the frequency
distribution, where data are sparse.

The analysis we just presented was type-based. We now turn to the token-based anal-
ysis. As mentioned in the Introduction, token-based models are used in most corpus-based
analyses of pronunciation duration (e.g. Bell et al. 2003; Seyfarth 2014; Gahl et al. 2012, and
Caselli et al. 2016). Examining the token-based models is therefore an important step en-
abling comparisons to previous work. We present these models only briefly, however, because
we perceive serious methodological problems raised by token-based models generally.

Figure 5 presents the partial effects of the smooths in the localist GAM based on tokens;
the model summary is available in the supplementary materials. Even though we severely
restricted all splines for the mean (by setting a low upper bound to the number of basis
functions), several predictors show sine-like curves that are theoretically not straightforward
to interpret, and that in all likelihood are artefactual. For instance, it is entirely unclear why
the effect of baseline duration would be non-linear, with an initial reduction in spoken word
duration as baseline duration is increased. The extreme wiggliness in smooths that results
when the default number of basis functions is used is illustrated by the lower right panel,
which presents the partial effect of frequency for the variance. When more basis functions
are used also for predicting the mean, model fit improves substantially, at the cost of further
reductions in interpretability.

In the type-based analysis, the interaction of Lemma Frequency and Frequency Ratio
suggested an effect of Frequency Ratio for the lowest values of Lemma Frequency. A similar
interaction emerges from the token-based analysis, as shown in contour plot in Figure 5. The
regression surface is substantially more wiggly, but as before, spoken word duration tends
to decrease for items with very low frequency ratio, in increments varying substantially with
frequency.

4.2 DLM analysis

We now turn to the analyses using discrimination-based variables. The type-based Gaussian
Location-Scale GAM for this set of predictors is summarized in Table 3 and visualized in
Figure 6.

Most of the predictors have a linear or near-linear effect, and upon inspection, a Gaus-
sian Location Scale GAM with only linear predictors turned out to have an equivalent AIC.
The effects of the control variables (Proportion with Following Pauses and Residual
Baseline Duration)show similar effects as in the analysis with localist-grounded predictors.
As anticipated, spoken word duration increased with Homophone Semantic Similarity as
well as with Semantic Support Form. Furthermore, in the mean, words with a higher in-
formation load (LogId) were realized with longer durations. The variance also increased
with information load, but here, the Id measure turned out to be the superior predictor.
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Figure 5: Partial effects according to a Gaussian Location-Scale GAM fitted to spoken word
duration, for all word tokens, using predictors grounded in localist theory. AIC: 72144; -
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A. parametric coefficients Estimate Std. Error t-value p-value

Intercept [mean] -1.0511 0.0131  -80.3967 < 0.0001
Noun Bias = yes 0.0774 0.0166 4.6483 < 0.0001
Intercept [variance] -1.8224 0.0373  -48.8418 < 0.0001
B. smooth terms edf Ref.df  F-value p-value
s(Proportion with Following Pauses) 1.4334 1.7438  36.8387 < 0.0001
s(Homophone Semantic Similarity) 1.0000 1.0000  17.3556 < 0.0001
s(Semantic Support Form) 1.9174 24631  43.0121 < 0.0001
s(Residual Baseline Duration) 1.0000 1.0001 134.6418 < 0.0001
s(LogId) [mean] 1.0002 1.0004  48.1098 < 0.0001
s(Id) [variance] 1.0001 1.0002  77.3014 < 0.0001

Table 3: Model summary for a Gaussian Location-Scale GAM fitted to the mean spoken word
durations, using control variables and variables grounded in the bLM. AIC: -256.32

Replacing either LogId by Id or vice versa resulted in inferior fits with more nonlinear effects.

The model based on localist predictors has an AIC score equal to -231.7, whereas the
model based on DLM predictors had an AIC score equal to -256.3. The evidence ratio,
219,696, thus is massively in favor of the DLM-based model, indicating that this model is
more likely to minimize the information loss than the localist model. It is noteworthy that in
the latter model, the effect sizes of Log Information (LogId) and Semantic Support Form
are similar in size. Clearly, the semantic measure makes a solid independent contribution to
the model fit.

A token-based model for spoken word durations using DL predictors is available in the
supplementary materials. Although the collinearity for the predictors in this model was
less severe (k = 21), it was still high. Unsurprisingly, partial effects became nonlinear, and
showed effects of suppression and enhancement. The partial effect of baseline duration in
this model is completely enigmatic, as it levels off two-thirds into the range of predictor
values.

4.3 Variable importance analysis

Instead of asking about the shape of the relationship between the predictors and word du-
ration in token-based analysis, which is far from straightforward in the presence of high
collinearity, we next asked a different question, namely, which predictors made a solid con-
tribution to the model fit.

As our point of departure, we took the token-based model with localist predictors. We
constrained all effects to be linear, in order to bring out main trends and avoid issues with
uninterpretable smooths. We first left one predictor at a time out of the regression equation,
and observed the increase in AIC. The greater the increase in AIC, the more important
a predictor is. The upper panel of Figure 7 presents the resulting variable importances.
Residual baseline duration is the most important predictor, as expected, as it predicts word
duration from (average) phone duration. The next most important predictor is the tensor
product of frequency by frequency ratio, which is closely followed by frequency by itself.
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Figure 6: Partial effects according to a Gaussian Location-Scale GAM fitted to the average
duration of the homophone word types, using control and DLM-based predictors. AIC: -256.3;
-REML = -106.63.

Frequency ratio also makes a clear contribution, whereas the contributions of remaining
variables are modest, though not negligible (AIC increments range from 30 to 11,338).

Next, we considered the question of whether predictors based on the DLM help improve
model fit beyond what is possible to achieve with localist variables. To address this question,
we added DL predictors to the model, one at a time. If the AIC decreases substantially, we
can conclude that the predictor is enhancing prediction accuracy. The lower panel of Figure 7
presents the reduction in AIC when DL based predictors are added to the token-based model.
The decrease in AIC ranges from 26 to 695. Clearly, taking semantics into account helps
improve the token-based localist model fit further. From these results, we conclude that the
semantics of homophones have to be taken into account in discussions about the spoken word
durations of homophones. This conclusion is independent of whether analyses are based on
types or on tokens.

5 General Discussion

We modeled word duration averaged over word types, as well as word token duration of
homophones in a corpus of spontaneous speech, using predictors grounded in two conceptions
of the mental lexicon: localist models, i.e. models containing words as units of representation,
and recent models based on discriminative learning (DL). Our results contribute to ongoing
research comparing discrimination-based measures of lexical processing with classical lexical-
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Figure 7: Variable importance in a token-based analysis of spoken word duration. Upper

panel: increase in AIC when a predictor is withheld from the localist model; lower panel:
decrease in AIC when an DL predictor is added to the model.
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distributional predictors (Milin et al., 2017;Chuang and Baayen, in press).

We discuss our results in the context of three broad sets of issues: The first concerns
the choice between the type-based vs. the token-based analyses. We argue that token-based
models result in major methodological problems for corpus-based research about lexical
effects on fine phonetic detail. We argue that these problems may be responsible for at least
some of the divergent findings on effects of Phonological Neighborhood Density (PND) on
pronunciation, the variable we called the most polarizing figure among lexical variables. The
second broad issue concerns the two conceptions of the mental lexicon, and in particular,
the role played in each by frequency of occurrence, the variable seemingly enjoying the
greatest general consensus. The third issue, related to the second, concerns the role of
words’ meanings in shaping word production. We discuss these three broad issues in turn.

5.1 Is more always better? The consequences of analyzing types
vs. tokens

We begin by considering some of the differences between our ’localist’” type-level and token-
level models. Increasing Phonological Neighborhood Density (PND) was nearly linearly as-
sociated with shorter duration in the type-level model. In the token-based model, the same
relationship followed a U-shaped pattern. Increasing homophone semantic similarity was as-
sociated with longer duration at the type level, but followed an inverse U-curve at the token
level. Analogous differences in type-level vs. token-level models arise with other variables,
both localist and DL-based. What explains the differences, and which sets of models should
one trust?

At first glance, token-based models might seem superior: These models are able to take
into account utterance-specific or indeed token-specific information, such as local speaking
rate, or the words preceding and following the target. Also, token-based investigations boast
impressively large data sets that can support nuanced statistical models. For example, Bell
et al. (2009) analyze 6,938 tokens of function and content words; Dilts (2013) analyzes
137,319 content word tokens; and Aylett and Turk (2004) analyze 169,464 syllable tokens.
In the current study, that prima facie strength is evident in the narrow confidence intervals
of the token-based estimates, compared to the high uncertainty of some of the type-based
ones. These advantages would seem to make token-based analyses the instrument of choice.

However, the data sets for token-based analyses of unbalanced corpora are dominated
by high-frequency items. As a consequence, lexical frequency enters token-based models
of such corpora twice: as a predictor variable and as the count of tokens. It might be
objected that frequency estimates based on sources external to the corpus need not correlate
with corpus frequencies: Word frequency estimates differ across corpora (Kilgarriff, 2001).
However, sometimes they do correlate. For our target words, for instance, the (Pearson)
correlation between Switchboard and CELEX frequency was 0.83. Because deviations of
model predictions are punished for every single observation, token-based models achieve
excellent fit if and only if they work well for high-frequency words.

The overwhelming influence of high-frequency words is particularly pernicious in the
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context of research on lexical processing because frequency is correlated with several other
lexical variables, such as orthographic regularity, length in letters and syllables, and PND.
Moreover, as demonstrated in Yap and Balota (2009), the effects of some variables on lexical
processing decrease with increasing frequency. As a consequence, models driven by high-
frequency words are liable to miss effects of such variables.

Yet another issue becomes apparent when one considers the pairwise correlations among
variables, shown in Table 4. We realize that the bivariate relationships are nonlinear and
hence not well captured by the correlation coefficients; however, the problems we wish to
point out persist regardless of how the relationships are quantified.

The first problem to note is that correlations at the token level are inevitably significant.
This is because tokens of any given word have identical values for any given lexical property.
For an extreme case of this, consider the variables Baseline duration and Relative frequency,
i.e. the (log-transformed) frequency of each target divided by that of its homophone twin:
Homophones have identical baseline duration, by virtue of containing identical phones; they
also have identical absolute values of relative frequency, but with opposite sign. As a conse-
quence, the type-level correlation between Baseline duration and Relative frequency is zero.
At the token level, however, the higher-frequency homophone contributes a greater number
of tokens than its twin, each with a positive value of relative frequency. This results in a pos-
itive correlation of baseline duration with relative frequency. Our models used a residualized
measure of baseline duration, rather than raw baseline duration; we mention this example by
way of illustrating that token-level correlations are significant even for orthogonal variables.

Baseline Target Fq. Rel.Fq. Orthogr. PND Biphone

Baseline dur. -0.22 0 -0.18 -0.6 0.27
Target Frequency (log) -0.37 0.65 0.11 0.18 0.03
Relative Freq. (log) 0.24 0.43 0.01  0.01 -0.01
Orthographic regularity. -0.27 0.35 0.02 0.16 0.13
PND -0.38 0.29 -0.15 0.36 -0.16
Avg. biphone prob. (log) 0.33 -0.13 -0.21 -0.16 -0.14

Table 4: Token-level (lower triangular) and type-level (upper triangular) Pearson correlations
among localist variables; correlations with p-values below .05 are shown in boldface.

These inevitable correlations have two immediate consequences: They produce high
collinearity, and they explain the apparent predictive power of some of the variables in
the token-based models, which arise because tokens of high-frequency words move en bloc.
To make matters worse, token-level correlations, although inevitable, are sometimes weaker
than type-level ones. This seemingly paradoxical pattern is due to the distribution of lexical
characteristics in the lexicon. For example, Baseline duration and PND are more strongly
correlated at the type level vs. the token level (-.60 vs. -.39). Evidently, words with long
baseline duration tend to have few phonological neighbors — and these words tend to be
infrequent. This pattern highlights the fact that unbalanced token-based data sets can mask
patterns that are present in the lexicon.

The influence of high-frequency words on token-based models has pervasive consequences.
One such consequence concerns the variable we called baseline duration, estimated here as
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the sum of the mean duration of the target phones in the Buckeye corpus Pitt et al. (2005).
We residualized baseline duration on other predictors (PND, form frequency, and biphone
probability), using tokens as the unit of analysis. That procedure was justified, and arguably
necessary, given that the goal of residualization was to reduce concurvity, which it did. From
a different perspective, another rationale for taking baseline duration into account is the need
to control for the distribution of segments in the lexicon: For example, if high-frequency
words contain phones that are inherently shorter than those appearing in low-frequency
words, then a failure to control for inherent phone duration at the type level may result in
a spurious effect of frequency: high frequency words will be shorter than low-frequency ones
due to their inherent phone duration, rather than due to usage frequency per se. To see
whether frequency affects duration when controlling for inherent phone duration, one might
therefore residualize baseline duration based on word types, rather than tokens, and enter
the ‘type-based’ residualized baseline duration in a token-level model. In order to check the
effects of this choice, we fitted such a model (available in the supplementary material). The
resulting model leads to a completely different characterization of the relationship between
PND and duration: The partial effect of PND is no longer U-shaped. Instead, predicted
duration decreases with increasing PND.

In fact, even seemingly negligible differences in word lists can produce large differences
between models. In our data, for example, the eight highest-frequency word types account
for over 50% of the tokens, and the 30 highest-frequency types account for over 80%. One
might object that replacing high-frequency words with other high frequency items might
produce similar results, given the correlation of frequency with other variables. That is not
necessarily the case, as the comparison of the effects of PND in the current study vs. the
study of Gahl et al. (2012) demonstrates.

Type-based analyses avoid many of these issues - and they need not forego information
about contextual variables altogether. In fact, when used in combination with token-level
information, they can shed light on the consequences of the accumulation of utterance-
specific properties for lexical processing. For example, Seyfarth (2014) found that “Words
that usually appear in predictable contexts are reduced in all contexts, even those in which
they are unpredictable.” Similar cumulative effects, e.g. of the positions a word most often
occurs in, on its production even in other contexts have been also been reported in Soskuthy
and Hay (2017); Brown et al. (2021).

The choice between analyses based on tokens and analyses based on types requires careful
reflection on the goal of the analysis. For example, if the goal is to predict word duration,
then token-based models taking into account pre-pausal lengthening and local speech rate
may be perfectly satisfactory for many purposes. But these predictions will be blind to
processes that may nevertheless be operative in human language production. Token-based
models can also help address some research questionss about learning and development: For
such questions, one may actually want to embrace that high-frequency words are represented
in the data proportionally to their frequency: During learning, word types are encountered
proportional to their frequencies; as a consequence, the cognitive system receives its fine-
tuning predominantly from the higher-frequency words. On the other hand, if the goal is

27



to evaluate models of lexical retrieval, then type-based models are often called for. Type-
based models can be based on aggregated data, as in our analyses, or they might be based
on sampling a fixed number of tokens for each type, so as to keep the data from being
overwhelmed by high-frequency words (see, for an example, Pluymaekers et al., 2005). It is
beyond the scope of the present study to evaluate these specific strategies. Rather, our goal
is to point out that the ability to model large sets of observations has led to a proliferation
of models that may actually run counter to the goals of psycholinguistic research.

5.2 Comparing discrimination-based measures with classical lexical-
distributional predictors

We now turn to our third set of issues, the comparison of the statistical models based
on localist predictors and DL predictors, and the consequences of this model comparison for
linguistic theory. Given the issues with token-based models we just discussed, the discussion
is based on the type-based models.

We first note that the model with DL predictors provides a fit with a substantially better
AIC (-231.7 and -256.3, evidence ratio 219,696). Moreover, the effects of the predictors in
the DL model are linear, whereas predictors show more complex non-linear effects and a non-
linear interaction in the model with localist predictors. Thus, the DL framework provides
not only a better fit, but also a simpler explanation of spoken word duration. This indicates
that there are demonstrable advantages to bringing learning and distributional semantics
together in models of the (mental) lexicon. It is also clear that form is pervasively influenced
by meaning, a finding that fits well with other recent work on acoustic duration (Tomaschek
et al., 2019; Chuang et al., 2021). In what follows, we first reflect on the similarities and
differences between localist and DL explanations of spoken word duration. We then offer
some thoughts on how to adjucate between the two theories, given the present findings.

A challenge for localist models is how to understand the effect of the Semantic Sup-
port for words’ forms. Although semantic effects can be incorporated in localist theories,
Oppenheim et al. (as demonstrated in 2010), it seems to us that the precision offered by
recent advances in distributional semantics may be beyond the reach of models building on
symbolic representations of word meanings or semantic features. The challenge faced by the
DLM, on the other hand, is how to understand predictors such as frequency of occurrence,
phonological neighborhood density and biphone probability.

Starting with frequency of occurrence, four points are worth noting. First, a frequency
measure that takes into account cue competition with other words, and that in this sense is
learnable, makes basically the same kind of predictions as localist frequency of occurrence:
mean spoken word duration increases with information load, and the same holds for the
variance of spoken word duration. Second, our data suggest that, possibly, the relation
between duration and frequency (or information) becomes simpler once cue competition
during word learning is taken into account: the often-observed non-linear effect of (log)
frequency of occurrence is exchanged for a linear effect of (log) information in the pLm. If
this finding replicates, then it may offer a window on understanding why the effect of localist
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Table 5: Triphones of two phonological neighbors.

hands #ha han and nds ds#
lands #la lan and nds ds#

frequency of occurrence is non-linear, and levels off for higher frequencies: high-frequency
words co-occur with more other words, hence suffer more cue-competition. This results in a
reduced information load, and hence shorter spoken word duration.

Third, in principle, frequency also plays a role during the learning of the mappings be-
tween form and meaning, and meaning and form. Words that are encountered more often
are learned better. For technical reasons (computational complexity and lack of adequate
training data), we have made use of mappings estimated with the regression equations of
LDL, which are not sensitive to frequency of use (see Chuang and Baayen, 2021; Heitmeier
et al., 2021, for discussion). Importantly, replacing learning in the limit of experience with
incremental learning is expected to generate stronger semantic support for form for higher fre-
quency words, and hence to longer spoken word durations (see also Kuperman et al., 2006),
as well as more distinct articulation (see Tomaschek et al., 2018b), for higher-frequency
words. Thus, we have two opposing effects of frequency on spoken word duration: a higher
‘syntactic’ frequency (tempered by cue competition with other words in the sentence) cor-
responds with a lower Logld, which in turn predicts shorter durations, whereas a higher
‘lexical’ frequency (tempered by cue competition with other triphones within the word, all
competing for meaning) predicts longer spoken word durations (see also Tomaschek et al.,
2021b).

The final issue related to frequency of occurrence concerns the frequency inheritance
effect in localist models (Jescheniak and Levelt, 1994; Dell, 1990). Our regression model
with localist predictors led us to conclude that homophones have their own frequency sig-
natures, consistent with earlier findings (Gahl, 2008; Lohmann, 2018b). This conclusion is
further strengthened by the fact that when lemma frequency is replaced with the summed
lemma frequencies of the homophone twins, the AIC of the GAM increases (from -231.7 to
-188.8, for the type-based model). However, the same model also suggests that words of
low frequency with very high frequency homophones were shorter than their own frequency
would lead one to expect. Under the assumption that greater frequency gives rise to shorter
duration, this would imply that low-frequency homophones inherit, albeit incompletely, and
not consistently across the full range of lemma frequencies, part of the frequency of their
homophone twins. If this is correct, then our results are consistent with localist proposals
suggesting multiple loci of “lexical” frequency: lemmas, i.e. holistic representations of word
meaning, as well as phonological forms (Kittredge et al., 2008; Antén-Méndez et al., 2012).
In the DLM, the issue of frequency inheritance does not arise. However, there is an effect
that could be described as “semantic inheritance”, a kind of mirror image of frequency in-
heritance: The greater the semantic similarity of homophones, the stronger the support for
their forms, leading to longer spoken word durations. Below, we discuss this effect in further
detail.
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Next consider phonological neighborhood density (PND). Within the DLM, neighborhood
effects play out primarily during vocabulary learning. Consider the phonological neighbors
hands and lands and their triphones, as listed in Table 5. The three triphones shared by the
two words cannot discriminate between their meanings in comprehension. The burden of
doing so is carried by the first two triphones. As these triphones also occur in other words,
their discriminatory potential is shaped also by these other words. The comprehension map-
ping finds weights from triphones to semantic dimensions that take all partial similarities
between words into account in a principled way. However, the more similar words are, the
more frail their mappings become. The same holds for production. This is illustrated for the
present data by the effect of the semantic similarity of the two homophones: more similar ho-
mophones have longer durations, a straightforward consequence of a reduction in the ‘stress’
of the mapping from meaning to form. Further discussion of this frailty in the mappings
can be found in the simulation studies of Chuang et al. (2020a) on multilingual learning.
Importantly, since phonological neighbors are similar in form (they are, in a sense, near-
homophones), they receive reduced support from the semantics. That prediction is borne
out for our data: Words with many phonological neighbors are characterized by reduced
semantic support for their forms (r = —0.38,(407) = —8.3,p < 0.0001), and accordingly,
their spoken word durations are predicted by the DLM to be shorter. Thus, both localist
models and the DLM predict that increased PND should be associated with shorter spoken
word duration, though for different reasons.

Adjucating between the localist and learning theories is not straightforward. Localist
theories offer theoretical transparency, but building on localist units has its price, especially
when it comes to semantics. The discriminative lexicon model (DLM) is an attempt to work
out in mathematical detail how fine-grained high-dimensional semantic representations based
on large corpora and numeric representations of words’ forms relate to each other. The DLM
seeks to keep the mathematics of the mappings between meaning and form as simple as
possible, by using the core ideas behind multivariate multiple regression, in an attempt to
maintain clarity of understanding model performance. What we have shown is that once
learning is taken into account, well-known effects can be considered in a new light, and novel
effects (such as Semantic Support for Form) emerge. We therefore believe that the DLM
model provides a useful tool for understanding the lexicon and lexical processing specifically
from a learning perspective.

There are many open questions that require further research in connection with the DL
model. In this study, we made use of semantic vectors that are based entirely on written
corpora. These vectors are problematic in several ways. First, they do not incorporate
information that is not available in text, such as information about shape, size, and color.
Improved vectors can be obtained by merging in information from vision (see, e.g., Shah-
mohammadi et al., 2021). Second, the semantic vectors of orthographic homophones are
identical. Context-sensitive word embeddings (Devlin et al., 2018) may help alleviate this
problem. Finally, current embeddings are trained on corpora of billions of words, that exceed
by far the amount of experience with language that a given speaker can ever encounter. In
short, there is considerable room for improvement for the semantic representations. There
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is also room for improvement of the form representations. In this study, we built form vec-
tors around triphones, but form vectors can also be constructed for diphones or syllables (see
Heitmeier et al., 2021, for detailed discussion). Sequenced triphones can be brought together
into syllables, just as in the model of Dell (1986a) phones are assigned to syllabic templates.
However, the real challenge is to find a mapping from semantic vectors to the time series of
articulatory parameters that drive articulation.

5.3 Conclusion

This study contrasted localist theories with theories grounded in discriminative learning. The
discriminative lexicon model (Baayen et al., 2019b; Chuang and Baayen, 2021) provides a
natural framework for integrating distributional semantics into theories of the mental lexicon.
A regression analysis using predictors building on discriminative predictors provided a tighter
fit to the duration data, while providing a simpler model. The amount of support that a
homophone’s form receives from its semantics emerged as a strong predictor for its spoken
word duration.

We have also sounded a cautionary note. Large naturalistic corpora have held enormous
appeal in light of their ecological validity. The availability of statistical modeling tools
capable of handling large, unbalanced data sets has fueled analyses using ever larger sets of
observations. Larger is not always better, however. We have argued that data sets dominated
by tokens of high-frequency words are in fact liable to masking effects of lexical diversity in
some cases and creating spurious effects in others.

The prima facie correlation of lexical frequency with word duration caused us to reflect
on how frequency of occurrence might play out within the discriminative learning framework
underlying LD models. Based on those reflections, we proposed a novel measure that takes
into account cue-competition between words in utterances. This ‘utterance-based frequency’
measure was predictive of duration in the same way as frequency of occurrence in localist
models. Importantly, the semantic measure predicted lengthening with increasing ‘lexical’
semantic support: the integration of distributional semantics within a theory of the lexicon
offers new opportunities for studying the relation between form and meaning.
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