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Abstract

Recent studies have documented frequency effects for word n-grams,
independently of word unigram frequency. Further studies have revealed
constructional prototype effects, both at the word level as well as for
phrases. The present speech production study investigates the time course
of these effects for the production of prepositional phrases in English,
using event related potentials (erps). For word frequency, oscillations
in the theta range emerged. By contrast, persistent negativities were
present for both high and low frequency phrases. Furthermore, independent
effects with different temporal and topographical signatures characterized
phrasal prototypicality. These results pose a challenge to exemplar-based
models and fit more readily with a discrimination learning approach to
language processing. In a simulation study we demonstrate that naive
discrimination learning (Baayen et al., 2011) offers a competitive account of
the erp signal following picture onset as compared to standard lexical pre-
dictors that offers further insight into the nature of n-gram frequency effects.

Keywords: erp , picture naming, prepositional paradigm, phrase fre-
quency, relative entropy, discrimination learning
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Introduction

Few effects in the psycholinguistic literature are better documented than the word
frequency effect: the more often a word occurs in the language, the faster and more accurate
people respond to that word in a wide range of linguistic tasks, including lexical decision (see,
e.g.; (Scarborough et al., 1977; Balota et al., 2004) and word naming (Forster & Chambers,
1973; Balota & Chumbley, 1985; Jared, 2002). Recently, a number of studies have shown
that word frequency effects are also present in electroencephalograms (eegs) following the
onset of a (linguistic) stimulus, which are commonly referred to as event-related potentials
(erps).

Typically, the effects of word frequency on erps arise rapidly after the onset of the
stimulus. Hauk et al. (2006), for instance, found an effect of word frequency in a visual
lexical decision task as early 110 ms after stimulus onset. This early effect of word frequency
was most prominent in left-lateralized temporal and parietal areas. Similarly, Sereno et al.
(1998) found a word frequency effect in a visual lexical decision task that first reached
significance at 132 ms after stimulus onset, whereas Penolazzi et al. (2007) observed an
effect of word frequency on the erp signal in a sentence-reading task that started at 120 ms
after written word onset. The topographically widespread effect of word frequency in the
picture naming task used by Strijkers et al. (2010) arose somewhat later, with more positive
mean amplitudes for high frequency words than for low frequency word from 150 ms until
voice onset.

The effect of frequency, however, is not limited to the word level. Arnon and Snider
(2010) showed that phrasal decision latencies for high frequency phrases such as“all over the
plac” are shorter than those for low frequency phrases, such as “all over the city”. This effect
did not reduce to frequency effects of single words or smaller n-grams. The n-gram frequency
effect has been replicated in a number of recent studies, showing n-gram frequency effects
in sentence repetition (Bannard & Matthews, 2008), sentence reading (Siyanova-Chanturia
et al., 2011), sentence recall (Tremblay et al., 2011) and frequency rating (Shaoul et al.,
2013) tasks. Tremblay and Baayen (2010) added to these findings by observing an n-gram
frequency effect in a free recall erp study. The temporal onset of this effect was similar to
that of the effects of word frequency described above, with n-gram probability first being
significant around 110 ms after stimulus onset.

The n-gram frequency effect is theoretically interesting. At the very least, it “add[s]
multi-word phrases to the units that influence processing in adults” (Arnon & Snider, 2010,
p.76), which suggests that language users “seem to have [...] some experience-derived knowl-
edge of specific four-word sequences” (Bannard & Matthews, 2008, p.246). Much, however,
remains unclear about how this knowledge is implemented, and, therefore, about the impli-
cations of n-gram frequency effects for different models of language processing.

One interpretation of n-gram frequency effects is to consider these effects as evidence
for whole-phrase representations. As noted by Baayen et al. (2013), such an interpretation
fits well with theoretical approaches like data-oriented parsing (Bod, 2006) or memory-based
learning (Daelemans & Bosch, 2005), in which large numbers of multiword sequences (or
parse trees for these sequences) are stored in memory and optimal performance is ensured
through on-line generalization over these stored sequences. In these exemplar-based ap-
proaches n-gram frequency effects are directly related to the n-gram representations that
are stored in memory.
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Baayen et al. (2013), however, noted that storing each multiword sequence and its
associated frequency in memory is problematic for a number of reasons. Given the Zipfian
shape of frequency distributions, the number of unique n-grams is extremely large. The
British National Corpus, for instance, contains 40 million unique word trigrams. Baayen et
al. (2013) continue their argument by stating that even if the storage of gigantic numbers
of word n-grams were neuro-biologically possible, on-line processing over an instance space
of this size would be very time-consuming. To side-step this problem, the memory-based
learning system implemented in TiMBL (Daelemans et al., 2010) uses information gain trees
(Daelemans et al., 1997) as a compression algorithm to reduce the computational demands
of on-line searches.

An additional problem with n-gram representations described by Baayen et al. (2013)
is that it is not immediately clear what the function of such representations would be. Posit-
ing representations as a locus for a frequency “counter in the head” seems unconvincing (see,
e.g.; McClelland and Rumelhart (1981) and D. Norris and McQueen (2008) for models that
integrate word unigram frequencies as a priori-probabilities). The application of shortlists
in interactive activation models (D. G. Norris, 1994) raises further questions about the ne-
cessity of n-gram representations. These models use shortlists of stored candidates as a
computational shortcut that allows for simulations with realistic input sizes. The success of
shortlists in these types of models indicates that at least some stored multiword sequences
are not relevant for on-line processing.

These concerns have led researchers to propose alternative explanations for the effect
of n-gram frequency. Tremblay et al. (2011) suggest that n-gram frequency effects may
reflect past experience with (de)compositional processing. Such an interpretation fits well
evidence from the learning literature demonstrating that “learning is a dynamic discrim-
inative process” that is associative in nature (Ramscar et al., 2010; Baayen et al., 2013).
Ramscar et al. (2010) argued that holistic linguistic representations may be beneficial at the
earliest stages of learning (Dabrowska, 2000; Tomasello, 2003), but that additional experi-
ence will reduce the association strength between the components of these holistic initial
representations and lead to an increased importance of decomposed, lower-level represen-
tations. Learning theory therefore predicts that the adult language processing system is
less likely to have separate representations for multiword units (see Dabrowska (2000) and
Arnon and Ramscar (2012) for simulations that confirm this prediction).

Baayen et al. (2013) provided computational support for such an interpretation of the
n-gram frequency effect by successfully simulating the findings of Arnon and Snider (2010)
in a full decomposition model based on discrimination learning. The Naive Discriminative
Reader ndr model used in their simulations has no representations beyond the simple word
level. In the ndr model the n-gram frequency effect arises as a result of the associative
learning process that maps orthographic input units (letters and letter combinations) to
semantic outcomes (word meanings). A high frequency phrase such as “all over the place”
is read faster than a low frequency phrase such as “all over the city”, because the letters
and letter combinations in “all over the place” are more associated with the meanings ALL,
OVER, THE and PLACE than the letters and letter combinations in “all over the city” are
associated with the meanings ALL, OVER, THE and CITY.
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Thus far we discussed effects of the frequency of multi-word sequences. The prototyp-
icality of phrases is likewise reflected in behavioral measures of language processing. Several
studies have documented prototypicality effects at the word level, using relative entropy to
gauge the similarity of an exemplar to its constructional prototype (Milin, Filipović Durd̄e-
vić, & Moscoso del Prado Mart́ın, 2009; Milin, Kuperman, et al., 2009; Kuperman et al.,
2010). Above the word level, relative entropy effects have been observed for English prepo-
sitional phrases (Baayen et al., 2011). Given estimated probabilities p (relative frequencies)
of prepositional phrases for a given noun and estimated probabilities q (relative frequencies)
of prepositions across all nouns, prepositional relative entropy is defined as

Relative Entropy =
n∑

i=1

(pi ∗ log2 (pi/qi)) (1)

where n is the number of prepositions taken into account.
The relative entropy measure compares how similar the distribution of prepositional

phrase frequencies for a given noun is to the distribution of preposition frequencies in the
language as a whole. Values for relative entropy are low when the prepositional phrase fre-
quency distribution for a given noun (exemplar) is similar to the overall prepositional phrase
frequency distribution (prototype) and high when the prepositional phrase frequency distri-
bution for a given noun differs substantially from the overall prepositional phrase frequency
distribution. Higher relative entropies are typically associated with greater processing costs.
Nouns that use prepositions in an atypical way, for instance, take longer to process than
nouns that use prepositions in a typical way (Baayen et al., 2011).

The effect of prepositional relative entropy implies that the language processing sys-
tem is sensitive to the distributional properties of a noun’s prepositional paradigm vis-a-vis
the distribution of prepositional frequencies in the language as a whole. As such, the
prepositional relative entropy effect poses a further challenge to exemplar-based models.
Accounting for the effect of prepositional relative entropy in such models involves three
assumptions. First, in order for the distributional properties of a noun’s prepositional
paradigm to be available, prepositional phrases would need to be stored in the mental
lexicon. We outlined the problems associated with the assumption of representations for
multiword sequences above.

Second, the frequency distribution of the prototype (i.e., the frequency distribution of
prepositions across all nouns) would need to be available. Storing the frequency distribution
of the prototype would further increase the memory demands on the language processing
system. In addition, it is unclear what function prototype representations would have
beyond accounting for the effect of relative entropy. Perhaps the frequency distribution of
prepositions in the language as a whole provides a reasonably accurate estimation of the
frequency distribution of prepositions across all nouns that would obviate the need for the
explicit storage of prototype frequency distributions.

Third, even if the language processing system contains information about exemplar
and prototype frequency distributions for prepositional phrases, the distance between these
distributions would need to be computed on-line. Given that Baayen et al. (2011) observed
effects of prepositional relative entropy in isolated word reading, this on-line computation
would need to be carried out not only when processing prepositional phrases, but any time
a noun is encountered. Furthermore, if we assume that the distance between exemplars and
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their prototype is computed on-line for prepositional phrases, do we need to posit similar
computations for other types of constructions by analogy?

Unlike exemplar-based models, discrimination learning does not need to posit any
representations beyond the basic word level to account for relative entropy effects. Baayen
et al. (2011) showed that the ndr model successfully captures the fact that nouns with high
prepositional relative entropies (i.e.; nouns that use prepositions in an atypical way) take
longer to process than nouns with low relative entropy. In naive discrimination learning
models the effect of relative entropy arises as a straightforward consequence of way the
distributional properties of English shape the associations between orthographic input cues
and semantic outcomes across sequences of words.

Experiment

Experiment
In what follows we present the results of a primed picture naming experiment that

gauges the effects of word frequency, phrase frequency and phrase prototypicality using
event-related potentials (erps). The current work seeks to extend previous findings in
two ways. First, while previous studies have investigated the effects of word frequency
on erps in a variety of tasks, the experimental results for phrase frequency and relative
entropy discussed thus far were mostly obtained in chronometric studies. While these studies
demonstrated that both frequency and relative entropy influence how (prepositional) phrases
are processed, they offer little information on the temporal details of these effects. The
temporal resolution of erps will allow us to gauge the millisecond-by-millisecond temporal
development of the phrase frequency and relative entropy effects in a picture naming task.
In addition, while the spatial resolution of erps is limited, the current work may provide
us with a general idea about the topographical dynamics of these effects. The first goal
of the current study, therefore, is to obtain a more detailed picture of the effects of phrase
frequency and relative entropy that arise during prepositional phrase processing.

The second goal of the current work is to find out to what extent measures derived
from a naive discrimination learning model provide further insight into the temporal and
spatial dynamics of the erp signal in a primed picture naming task. The discriminative
learning approach adopted by the erp model has been shown to successfully simulate a
variety of behavioral measures, including lexical decision latencies Baayen et al. (2011),
word naming latencies (Hendrix, Ramscar, & Baayen, 2015) and eye movements during
full text reading (Hendrix, Nick, & Baayen, 2015). Predicting the erp signal following the
presentation of a prepositional phrase stimulus, however, involves predicting a signal as it
evolves over both time and space. This stringent test of the discrimination learning approach
will help gain more insight into the strengths and shortcomings of the discriminative learning
approach to language processing.

The setup of the current experiment closely resembles the simulations by Baayen et
al. (2011). Participants are presented with a preposition plus definite article prime, followed
by a picture of a concrete noun that they have to name as fast and accurately as possible.
The use of a primed picture naming paradigm might seem at odds with our interest in
phrase frequency and prototypicality effects. Technically, there is no need for participants
to read the preposition plus definite article primes and therefore to process the stimuli at
the phrase level.
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We decided to nonetheless use a picture naming paradigm for a number of reasons.
First, while prepositional relative e ntropy is a measure of constructional prototypicality,
it describes how prototypical a given noun’s use of prepositions is. The effect of relative
entropy is therefore best measured at the noun. In the current picture naming paradigm
the earliest possible point in time where noun processing can take place is precisely defined
as the moment the target noun picture appears on the screen. If we were to present the
prepositional phrases as a whole it would be much harder to identify the temporal onset of
target noun processing.

A related reason for using a primed picture naming paradigm is that it reduces the
temporal overlap between processes related to the preposition and definite article and pro-
cesses related to the noun. Experienced readers are able to read prepositional phrases in a
few hundred milliseconds. Nonetheless, as will become apparent soon, erp effects related
to the lexical properties of a given word can last many hundreds of milliseconds (see, e.g.;
Kryuchkova et al., 2011). This implies that there is a temporal overlap between processes
related to the different words in the prepositional phrase. In the current setup, the temporal
distance between the onset of the prime and the onset of the target is 2000 ms. This allows
a substantial part of the initial processing of the preposition and definite article to complete
prior to the presentation of the target noun.

A third reason for using the current experimental setup is that the proof of the pudding
is in the eating as far as phrase frequency effects are concerned. As noted above, the current
paradigm does not guarantee that the information in the preposition plus definite article
primes and that the target noun picture is integrated to obtain a phrase-level understanding
of the stimulus. It is therefore possible that the current setup does not allow us to replicate
the phrase frequency effect. If we do observe an effect of phrase frequency, however, this
unequivocally entails that the stimuli were processed at the phrase level.

The first part of what follows describes in more detail the experiment outlined above,
the statistical methods used to analyze the data and the results of the experiment. In the
second part, we will present a simulation study in which we explore to what extent the
discriminative learning framework can provide further insight into the temporal and spatial
dynamics of the erp signal following picture onset.

Methods

Participants

Thirty participants took part in the experiment. All participants were students of
the University of Alberta in Edmonton and native speakers of English. Their mean age
was 20.43 (sd: 4.67). Nineteen participants were female, eleven were male. All participants
were right-handed, had normal or corrected to normal vision and did not have a history of
neurological illness. Participants received partial course credits for their participation.

Materials

Sixty-eight concrete nouns were paired with photographs, depicting the referent of
these nouns on a beige background. For each of the nouns, four three-word prepositional
phrases were constructed, consisting of a preposition, the definite article “the” and the noun
itself (e.g., “with the saw”, “against the strawberry”).
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Phrases were selected on the basis of trigram frequencies as available in the Google
1T n-gram data (Brants & Franz, 2006). Trigram frequencies for all prepositional phrases
consisting of a preposition, an article (“a” or “the”) and one of the 68 concrete nouns were
extracted. For a given noun, the phrases at 25%, 50%, 75% and 100% of the summed phrase
frequency distributions (“[preposition] a [noun]” + “[preposition] the [noun]”) were included
as stimuli. For the noun “saw”, for instance, this procedure generated the experimental
items “into the saw” (summed frequeny: 2061; frequency: 2061), “from the saw” (summed
frequency: 5358; frequency: 4525), “to the saw” (summed frequency: 9781, frequency:
8436) and “with the saw” (summed frequency: 20464; frequency: 8691). The total number
of stimuli was 272.

Only prepositions from a pre-compiled list of 35 prepositions were included in the
trigram frequency list. Selecting the phrases at the quantiles of the phrase frequency dis-
tribution led to 29 of these prepositions being used in the experiment. As a result of this
selection procedure, there was a significant correlation between (logged) preposition fre-
quency and number of times a preposition was used in the experiment (r = 0.85, p <
0.001), with frequent prepositions such as “in” (44 times) or “on” (23 times) being included
more often than infrequent prepositions such as “under” (6 times) or “against” (5 times).
The experience with prepositions in the context of the current experiment therefore matches
the experience with prepositions in the language as a whole.

Design

The experiment consisted of 272 picture naming trials. Prior to the experiment, a
practice phase was included, consisting of 10 items. The order in which the stimuli were
presented was randomized between participants. The dependent variable was the erp sig-
nal measured at 32 locations on the scalp. The independent variables were Picture Com-
plexity, Preposition Length, Word Length, Preposition Frequency, Word Frequency, Phrase
Frequency and Relative Entropy.

Picture Complexity is the size of the picture file in bytes. Preposition Length and
Word Length are the length of the preposition and the target noun in letters. Preposition
Frequency, Word Frequency and Phrase Frequency are the frequency of the preposition
(e.g., “with”), target noun (e.g., “saw”) and phrase (e.g., “with the saw”) in the Google n-
gram data. Picture Complexity, Preposition Length, Word Length, Preposition Frequency,
Word Frequency and Phrase Frequency were log-transformed to remove a rightward skew
from the predictor value distribution. Relative Entropy was calculated on the basis of
the Google n-gram phrase frequencies for prepositional phrases with definite article for
all 272 nouns used in the experiment and all 35 prepositions in the precompiled list of
prepositions. Prepositional phrase frequencies were converted to relative frequencies (i.e.;
estimated probabilities) for each noun and across all nouns to obtain estimated probability
distributions p (for a given noun) and q (across all nouns). Relative Entropy was then
calculated as the Kullback-Leibler divergence between p and q (see Equation 1).

Prior to analysis, we removed predictor outliers (i.e.; predictor values further than
two standard deviations from the mean) from the data. This resulted in the exclusion of
0.001.544.62% of all predictor values for Word Frequency, 5.77% of all predictor values for
Phrase Frequency and 4.62% of all predictor values for Relative Entropy. Outliers for Phrase
Frequency included the 2.76% of all phrases that did not occur in the Google n-gram data,
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Table 1: Summary of the independent variables (log) Picture Complexity, (log) Preposition Length,
(log) Word Length, (log) Preposition Frequency, (log) Word Frequency, (log) Phrase Frequency and
Relative Entropy. Range is the original range of the predictor. Adjusted range is the range after
removing predictor outliers. Mean, median and sd are the means, medians and standard deviations
after outlier removal.

predictor range adjusted range mean median sd
Picture Complexity 8.53 - 11.13 8.69 - 10.83 9.88 9.91 0.50
Preposition Length 0.69 - 1.95 0.69 - 1.95 1.15 1.38 0.45
Word Length 1.10 - 2.30 1.10 - 2.08 1.58 1.61 0.26
Preposition Frequency 15.65 - 23.17 17.63 - 23.17 21.09 21.81 1.61
Word Frequency 12.90 - 18.96 13.60 - 18.37 15.74 15.50 1.25
Phrase Frequency 0.00 - 14.69 6.77 - 12.65 8.73 8.57 1.23
Relative Entropy 0.10 - 2.34 0.10 - 1.39 0.54 0.55 0.28

such as “up the sock” or “into the pencil”. Table 1 shows the range and adjusted range for
all independent variables. In addition, it presents the mean, median and standard deviation
of the predictor distributions after outlier removal.

The resulting data set is characterized by a considerable amount of collinearity (κ =
123.16). Word Frequency, for instance, correlates positively with Phrase Frequency (r =
0.42) and negatively with Preposition Frequency (r = −0.40), Relative Entropy (r = −0.40)
and Word Length (r = −0.51). Similarly, Preposition Frequency correlates not only with
Word Frequency, but also shows a strong negative correlation with Preposition Length (r =
−0.76).1

One approach for dealing with collinearity is predictor residualization. In this ap-
proach, rather than entering the raw predictors into a regression model, one or more of the
predictors are residualized prior to analysis by running a preliminary regression analysis
with the predictor that is to be residualized as the dependent variable and one or more
other predictor as the independent variable. For the current data, for instance, it would be
an option to residualize Phrase Frequency from Word Length, Word Frequency, Preposition
Frequency and Relative Entropy. The resulting Phrase Frequency measure would then no
longer correlate with these other predictors.

Recently, however, Wurm and Fisicaro (2014) argued that residualizing is not a useful
remedy for collinearity. Contrary to popular believe, they state, residualization “does not
change the results for the predictor that was residualized [... and ...] does not create an
improved, purified, or corrected version of the original predictor” (Wurm & Fisicaro, 2014,
p.45). What residualization does do, the authors continue, is introduce an additional statis-
tical problem: depending on the correlation between predictor X1 and predictor X2 and the
correlations between the dependent variable Y and predictors X1 and X2, residualization
of X1 results in either underestimating or overestimating the statistical importance of the
non-residualized predictor X2. Given these consideration, they therefore conclude that, in
the context of collinearity issues, “residualization of predictor variables is not the hoped-for
panacea” (Wurm & Fisicaro, 2014, p.47).

1We explicitly mention correlations with an absolute value greater than 0.30 only here.
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Not all is bad, however. While suppression is a serious problem when it occurs, it
may not be as common as previously thought. Darlington (1990, p.155) (as cited in Wurm
& Fisicaro, 2014), for instance, states that “suppression rarely occurs in real data”, and
Cohen et al. (2003) (as cited in Wurm & Fisicaro, 2014) state that “it is more likely to be
seen in fields like economics, where variables or actions often have simultaneous equilibrium-
promoting effects”. While the correlation threshold for potential suppression depends on
the correlation of the involved predictor with the dependent variable, suppression artifacts
are highly uncommon for weak or moderate correlations.

For the current data set, these statements suggests that while suppression is not
outside the realm of possibilities for the effects of Preposition Length and Preposition Fre-
quency, our analysis of the main predictors of interest (Word Frequency, Phrase Frequency
and Relative Entropy) is unlikely to suffer from this problem. We therefore decided to use
the raw, non-residualized measures of Picture Complexity, Preposition Length, Word Length,
Preposition Frequency, Word Frequency, Phrase Frequency and Relative Entropy described
above as predictors in our analysis.

Procedure

Data were recorded from 32 Ag/AgCl active electrodes (Fp1, Fp, AF3, AF4, F7, F3,
Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3,
Pz, P4, P8, PO3, PO4, O1, Oz, O2 ), which were mounted on an electrode cap (BioSemi,
international 10/20 system). Reference electrodes were placed at the left and right mastoids.
The eog was recorded using electrodes below and above the left eye and at the outer canthi
of both eyes. Electrode cap sizes varied from 54 to 60 cm between participants to allow for
an optimal fit.

Data were sampled at 8, 102 Hz using a BioSemi Active II amplification system. Prior
to analysis, the signal was downsampled to 256 Hz, band-pass filtered from 0.5 to 50 Hz,
baseline corrected (−200 to 0 ms interval) and re-referenced to the average of the left and
right mastoids using Brain Vision Analyzer (version 1.05). In addition, the signal was
corrected for eye-movements and eye blinks using the icaOcularCorrection package for r
(Tremblay, 2010).

Verbal responses were recorded using a microphone (Sennheiser) and response box
including a voice key (Serial Response Box) for the E-Prime experimental software package
(version 2.0.1). The same package was used to present the stimuli on a 17 inch CRT monitor
using a 1024 by 768 resolution.

A fixation mark was shown for 1000 ms prior to each trial. Next, participants were
presented with a preposition plus definite article prime (e.g., “in the”) for 1000 ms. This
screen was followed by another 1000 ms fixation mark screen. We then presented the
photograph depicting the target noun (512 by 384 pixels) for 3000 ms. Participants were
instructed to name the target noun, as depicted by the photograph. They were instructed to
respond as fast a possible, while retaining accuracy. In addition, participants were instructed
to limit eye blinking and body movements to a minimum.

All fixation marks and texts were presented in white Courier New 24 point font. All
fixation marks, texts and photographs were presented in the center of the screen against
a black background. Each photograph was followed by a 2000 ms pause prior to the next
stimulus, to allow the eeg signal to return to baseline. The experiment had a duration of
about 40 minutes, excluding a preparation phase of about 30 minutes. Halfway through the
experiment, participants were given a break to prevent fatigue.
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Analysis

Prior to analysis we removed 12 items corresponding to 3 problematic photographs
from the data, as error rates were high for these photographs across participants (4.41%). In
addition, we removed incorrect naming responses from the data (2.68%). Trials for which
the maximum absolute voltage after signal correction exceeded 100 ÎijV at any channel
were removed from the data for all channels (5.25%). Furthermore, 39 trials (0.48%) were
removed due to technical failure. No averaging over participants or items was done prior to
analysis.

Generalized Additive Models (gams)

This experiment examines the effect of numerical predictors over time. These effects
are potentially non-linear in both the predictor dimension (at a given point in time) and
the time dimension (for a given predictor value). To allow for non-linearities in multiple
dimensions, we used Generalized Additive Models (gams) to analyze our data (Hastie &
Tibshirani, 1986; Wood, 2006), r package mgcv (version 1.8−3)). gams have recently been
used in a number of erp studies on language processing (Kryuchkova et al., 2011; Baayen
et al., 2015).

Reaction time analysis

We fitted a gam with by-participant factor smooths for trial, a random intercept for
prepositional phrase (e.g.; “with the”) and noun (e.g.; “saw”) and a smooth function for
the previous naming latency to the naming latencies to the naming latency data. Naming
latencies and previous naming latencies further than 2 standard deviations from the mean
were removed from the data. A log transformation was applied to the naming latencies
and previous naming latencies to remove a rightward skew from the data. We modeled the
predictor effects for Picture Complexity, Preposition Frequency, Word Frequency, Phrase
Frequency and Relative Entropy using smooth functions. We modeled the effects of Prepo-
sition Length and Word Length with a parametric term, because of the limited number of
unique values for these predictors.

ERP analysis

For each electrode, we fitted a gam with by-participant factor smooths for trial and
time, as well as random intercepts for prepositional phrase and noun to the erp from 0 to 600
ms after picture onset. For each of the predictors Picture Complexity, Preposition Frequency,
Word Frequency, Phrase Frequency and Relative Entropy we furthermore included a main
effect smooth, as well as a tensor product interaction with time. We furthermore included
main effect smooths for Preposition Length and Word Length. The main effect smooths
for Word Length and Preposition Length, however, reached significance at 1 electrode only
(Word Length: electrode C4, p = 0.023; Preposition Length: electrode AF4, p = 0.020).
Given the number of comparisons, these results provide little evidence for a statistically
robust effect of Word Length and Preposition Length. We therefore decided not to include
the main effect smooths for Preposition Length and Word Length in the gams reported in
this paper. Effects in the predictor dimension were limited to 5th order non-linearities (k
= 5), whereas effects in the time dimension were to 20th order non-linearities (k = 20). To
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control for AR1 autocorrelation processes, we included an autocorrelation parameter ρ in
the gams, which was set to 0.75.

Figure 1 shows the predicted values of our gam at electrode C3 (black line). Predicted
main trend values correlate highly with average observed voltages (red dots): r = 0.999.
This indicates that our gam successfully captures the general trend of the erps over time.
gam fits correlated highly with averaged observed voltages across all electrodes, with an
average correlation of r = 0.997 between predicted values and average observed values.
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Figure 1. Main trend in the erp signal at electrode FC1 as predicted by the main trend gam
(black line) and as observed (red dots).

The average reaction time in the experiment was 854 ms (median: 800 ms). The
earliest responses started coming in much earlier than that. As can been seen in the left
panel of Figure 2 articulation has begun for a significant proportion of trials at the end of
our 600 ms analysis window (13.6%). As a consequence, electromyographic (emg) potentials
arising from the facial, jaw and tongue muscles are present in a substantial subset of our
data. These emg potentials could therefore impoverish the signal-to-noise ratio (snr) for
this subset of the data.
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Figure 2. Left panel: percentage of data points after the onset of articulation as a function of time.
Right panel: average root mean square (RMS) across all electrodes from -200 to 800 ms after picture
onset.
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There are two options for dealing with emg activity in our data. First, we could
remove all data points after the onset of articulation. As noted by Hillyard and Picton
(1987), however, muscle artifacts may well be present long before speech onset. Even if
we were to remove all data points following the onset of articulation, emg artifacts would
therefore remain in the data. Second, as noted above, articulation has started for 13.6%
of all trials before the end of the 600 ms analysis window. Furthermore, the voice key did
not register naming latencies for a non-trivial number of trials (for details, see the reaction
time results section). Given that we are unsure about whether or not articulation started
before the end of our analysis window, we would have to exclude these trials entirely avoid
articulation artifacts altogether. Removing these data points and trials from the analysis
would result in a substantial loss of statistical power.

The second option for dealing with emg activity is to include all data points, even
those for which articulation artifacts might be present. While this approach ensures an
equal amount of data for each point in time, it does not necessarily solve the problem of
reduced statistical power in the later epochs. If emg artifacts have a negative effect on the
snr in the last two epochs it becomes harder for statistical models to identify predictor
effects in these epochs. To gauge the severity of this problem, we calculated the root mean
square (rms) for all electrodes. The right panel of Figure 2 shows the average rms across
all electrodes as a function of time. In the pre-stimulus interval (−200 to 0 ms), the average
rms across all electrodes and time points is 7.31, whereas in the post-stimulus interval (0
to 600 ms) it is 9.96. As predicted, the rms does increase as a function of time. The
increase, however, is fairly limited: the average rms is 8.98 in the 0-200 ms interval, 9.83 in
the 200-400 ms interval and 10.13 in the 400-600 ms interval. Furthermore, the increase in
RMS primarily occurs in the first 400 ms after picture onset, but stabilizes in the 400-600
ms time window. Given that only 2.11% of the articulations began prior to the 400 ms
mark, the early increase in rms values is unlikely to be due to artifacts following the onset
of articulation.

To further inspect the potential problem of a decreased snr due to articulation arti-
facts we looked at the snr across electrodes in the last 200 ms of our analysis window (i.e.;
400-600 ms after picture onset). If articulation introduces noise in the signal, we would
expect this noise to be most prominent at frontal electrodes, which are closest to the facial
and tongue muscles. rms averages in the last epoch were indeed elevated at frontal loca-
tions. While the average rms across all electrodes in the last epoch was 10.13, the average
rms values in 400-600 ms time window at frontal electrodes were 15.02 (Fp1 ), 14.01 (Fp2 ),
13.13 (AF3 ), 11.67 (AF4 ), 12.51 (F7 ), 11.66 (F3 ), 8.62 (Fz ), 9.72 (F4 ), 12.10 (F8 ), 10.32
(FC5 ), 10.34 (FC1 ), 6.51 (FC2 ) and 9.50 (FC6 ). As such, the average rms values at frontal
electrodes show an increase in the last 200 ms. This increase, however, is limited to the
most frontal electrodes only.

Despite the topographically limited and quantitatively moderate increase in rms val-
ues over time, articulation artifacts could nonetheless be problematic if they vary system-
atically with our predictors of interest. To rule out this possibility, we compared the results
of an analysis on the full data set to the results of an analysis on a subset of the data that
excluded all trials with naming latencies shorter than 600 ms, as well as trials for which
no naming latencies were available. As such, this analysis excluded all potential muscle
artifacts following articulation onset. The results of this analysis were highly similar to the
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results of the analysis on the full data set. We therefore decided to carry out our analysis
on the full data set, including data points after articulation onset and trials for which no
naming latencies were available.

The use of regression models has become commonplace in experimental studies in-
vestigating predictor effects on unidimensional dependent variables, such as reaction time
studies. The application of regression type models in erp studies, however, is much less
widespread. To allow for a better understanding of the analysis technique used here and the
advantages gams offer in comparison to a traditional erp analysis we compare the current
erp analysis to a traditional erp analysis for simulated data, as well as for some of the key
predictor effects described below in the Appendix.

Results

Reaction time results

During the experiment there were some technical difficulties regarding the sensitivity
of the voice key. This resulted in response times not being registered for 2 participants.
These participants therefore could not be included in the reaction time analysis. In addition,
we removed all further trials for which the voice key did not register a response (7.82%)
from the data prior to the reaction time analysis

The naming latencies showed a significant random intercept for the target noun (F =
11.60, p < 0.001), but not for the prepositional phrase (F = 0.06, p = 0.267). Furthermore,
we found significant by-participant factor smooths for trial (F = 8.30, p < 0.001), as well
as a significant smooth for (log) previous RT (F = 13.21, p < 0.001). Finally, we observed
a significant effect of Picture Complexity (F = 3.29, p = 0.034). The effect of Picture
Complexity is depicted in Figure 3. For ease of interpretation, normal linear naming latencies
are plotted rather than the log transformed latencies used for modeling.
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Figure 3. Effect for (log) Picture Complexity in the naming latencies.

As can be seen in Figure 3, the effect of Picture Complexity is quadratic in nature,
with low Picture Complexity leading to longer naming latencies and the effect leveling off for
high predictor values. This effect of Picture Complexity is perhaps most easily interpreted
by taking into consideration that Picture Complexity is proportional to information: the
more complex a picture, the more information it contains. The longer naming latencies for
pictures with limited complexity, therefore, may be a result of the fact that less complicated
pictures do not contain enough information for a rapid identification of the depicted object.
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ERP results

In this section, we will discuss the results for the predictors Picture Complexity,
Preposition Frequency, Word Frequency, Phrase Frequency and Relative Entropy. For each
predictor, we visualize the time by predictor tensor product, as well as the main effect over
time at a representative example electrode. Given the fact that gams tend to be somewhat
unreliable near the edges, we selected representative example electrodes that did not display
potentially unreliable behavior near the edges of the analysis window whenever possible.

Picture Complexity

Figure 4 shows the contour plot of the tensor surface for time by Picture Complexity.
The x-axis represents time (in ms) at a representative example electrode. Picture Complexity
is on the y-axis. The contour plot represents voltages at the depicted electrode, with warmer
colors representing higher voltages. Contour lines are shown at intervals of 0.2 ÎijV. The
p-value for the effect at the depicted electrode is presented in brackets in the figure title.

Figure 4 furthermore contains a picture inset. This picture inset shows the topography
of the effect, with dark red indicating significance at an alpha level of 0.05 and bright red
indicating significance at a Bonferroni-corrected alpha level of (0.05/32 =) 0.0016. As can
be seen in the inset in Figure 4, the tensor product between time and Picture Complexity
is highly significant for a large number of electrodes across the scalp. A visual inspection
of the results, however, reveals that the effect is most prominent in left and central parietal
and occipital regions.
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Figure 4. Effect for the tensor product interaction between time and (log) Picture Complexity

at electrode P3. Color coding indicates voltages (in ÎijV ), with warmer colors representing higher
voltages. Picture insets show the topography of the effect, with bright red indicating significance
at the Bonferroni-corrected alpha level (p < 0.0016) and dark red indicating significance at the
non-corrected alpha level (p < 0.05).

For both high and low values of Picture Complexity, Figure 4 shows that voltages are
negative, then positive, then negative, then positive, et cetera. In other words, oscillations
tied to the complexity of the presented picture are present in the erp following picture onset.
These oscillations have the opposite phase for low and high values of Picture Complexity :
when very complex pictures show negativities, show high voltages, less complex pictures
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show low voltages and vice versa. To determine the frequency of the oscillations, we con-
verted the time domain representation of the erp signal seen in Figure 4 to the frequency
domain. Although the frequency of the oscillations varies with time and predictor values,
a peak in spectral intensity that corresponds to the early oscillations for highly complex
pictures and the oscillations for pictures with low complexity in the middle of the analysis
widow is reached at 7 Hz. As such, these oscillations tied to Picture Complexity are in the
upper part of the theta range (3 to 7.5 Hz ).

To gauge the temporal onset of time by predictor tensor products, we calculated
three sigma (99.7%) confidence intervals around the contour surfaces. The first point in
time at which 0 is not within this three sigma confidence interval for high values of Picture
Complexity is 46 ms after picture onset. The early positive voltages for low values of Picture
Complexity, however, are already significant right after picture onset.2

On the one hand, finding erp activity tied to the presentation of a visual stimulus at
or even prior to picture onset is unsurprising. Given that the time between the presentation
of the fixation mark and picture onset was fixed throughout the experiment, participants
were able to accurately predict when the next picture onset would appear on the screen.
On the other hand, however, finding erp activity tied to the properties of a specific visual
stimulus at picture onset is less expected.

There are at least two possible explanations for the extremely early effect of Picture
Complexity. First, gam estimates can be somewhat unreliable near the edges of the analysis
window. It could be the case that uncertainty about the effect for low complexity pictures
in the first 50 ms led to a temporal overestimation of a positivity that started somewhat
later in time. An alternative explanation for the early onset of the Picture Complexity effect
comes from the effect of the simple smooth term for Picture Complexity, which represents
the main effect of Picture Complexity over time.

2Note that for oscillatory effects the phase of an oscillation co-determines the significance of an effect
at a given point in time. Converting the signal to the frequency domain does not help solve this problem.
Potential oscillations in the predictor dimension further complicate the process of determining the exact
onset of an effect. As a result, the numbers reported for oscillatory effects here are conservative estimates for
the temporal onset of these effects. In addition, as a result of phase shifts across the scalp these estimates
are sensitive to the choice of the example electrode.

9.0 9.5 10.0 10.5

−
2

−
1

0
1

2

Picture Complexity (P3: p = 0.0274)

Picture Complexity

V
ol

ta
ge

 (
µV

)

Figure 5. Effect for the main effect smooth of (log) Picture Complexity over time at electrode
P3. Picture insets show the topography of the effect, with bright red indicating significance at
the Bonferroni-corrected alpha level (p < 0.0016) and dark red indicating significance at the non-
corrected alpha level (p < 0.05).
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The main effect of Picture Complexity is presented in Figure 5. In contrast to the
widespread effect of the time by Picture Complexity tensor product interaction, the main
effect of Picture Complexity showed a topographically limited effect at a non-corrected alpha
level only. Nonetheless, voltages seem to be somewhat increased for pictures with a higher
visual complexity as compared to pictures with a lower visual complexity. Although the
statistical evidence for this main effect of Picture Complexity is limited, this suggests that
the early positivity for low values of Picture Complexity may indicate the absence of any
main effect of Picture Complexity in the first 100 ms after picture onset. In other words:
the early significance of the time by Picture Complexity tensor product may be a significant
adjustment to the non-significant main effect smooth for Picture Complexity rather than a
significant effect of Picture Complexity as such.

Preposition Frequency

Figure 6 presents the tensor product interaction of time by Preposition Frequency.
The effect of Preposition Frequency is most prominent for low predictor values, with higher
voltages for low frequency prepositions as compared to higher frequency preposition in the
first 200 ms after picture onset. The fact that we see a significant effect of Preposition Fre-
quency right after picture onset is unsurprising, given the fact that prepositions temporally
preceded pictures in the experimental paradigm adopted here.
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Figure 6. Effect for the tensor product interaction between time and (log) Preposition Frequency
at electrode textitPO3.

After about 300 ms, the effect of Preposition Frequency reverses, with lower voltages
for low frequency prepositions as compared to high frequency prepositions starting from 300
ms after picture onset. The effect of Preposition Frequency is topographically widespread,
but more prominent in the left hemisphere than in the right hemisphere. The greatest effect
sizes, however, were observed at left-lateralized parietal electrodes and bilateral occipital
electrodes.

As for Picture Complexity, the results for the main effect smooth of Preposition Fre-
quency showed little evidence for a Preposition Frequency effect over time. As can be seen
in Figure 7, we found an effect at 2 electrodes at a non-corrected alpha level only, with
slightly higher voltages for high frequency prepositions than for low frequency prepositions.
As such, the effect of Preposition Frequency is much better described by a time by predictor
interaction than by a main effect smooth.
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Figure 7. Effect for the main effect smooth of (log) Preposition Frequency over time at electrode
PO3.

Word Frequency

Figure 8 shows the results for the time by Word Frequency tensor product interac-
tion. The effect is characterized by oscillations for both high and low frequency words
that are in opposite phrase and that reach maximum spectral intensity at 3 Hz. As such,
these oscillations can be characterized as oscillations near the lower edge of the theta range.
Previously, theta range activity has been observed in a number of language processing
studies and has been demonstrated to be related to, for instance, lexical-semantic retrieval
(Bastiaansen et al., 2005, 2008), syntactic processing (Bastiaansen et al., 2002) and trans-
lation (Grabner et al., 2007). In a regression study using gams, (Kryuchkova et al., 2011)
recently reported theta range oscillations in auditory comprehension tied to word frequency,
phonological neighborhood density and morphological family size. Theta range oscillations
are thought to reflect (working) memory demands in language processing that arise from the
synchronous firing of neurons in hippocampal areas (see Bastiaansen and Hagoort (2003)
for a comprehensive discussion of theta range oscillations).
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Figure 8. Effect for the tensor product interaction between time and (log) Word Frequency at
electrode O1.
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The effect of Word Frequency arises early. It is first significant at 95 ms after picture
onset for medium to high predictor values. The early onset of the frequency effect for
high frequency words is in line with previous findings (Hauk et al., 2006; Penolazzi et al.,
2007; Sereno et al., 1998), reporting effects of lexical frequency in visual word recognition
starting between 110 and 132 ms after word onset. The oscillations for low frequency words
are somewhat more subtle in nature than those for high frequency words, with smaller
amplitudes and a later onset (these oscillations first reach significance at 183 ms after
picture onset).
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Figure 9. Effect for the main effect smooth of (log) Word Frequency over time at electrode O1.

The time by Word Frequency tensor product is significant at a large number of elec-
trodes, with robust effects across frontal-to-occipital electrodes in the left hemisphere. By
contrast, we found little to no evidence for a main effect of Word Frequency over time.
Figure 9 shows that the main effect smooth for Word Frequency was significant at a non-
corrected alpha level at 2 of the most frontal electrodes only. At these electrodes, we
observed a small increase in voltages for higher values of Word Frequency, similar to the
non-significant effect depicted in Figure 9 for electrode O1. As for the effect of Preposition
Frequency, therefore, the effect of Word Frequency is much better described by a time by
predictor interaction than by a main effect smooth.

Phrase Frequency

Figure 11 shows the tensor product interaction of time by Phrase Frequency. At first
glance, it seems like there is a strong early positivity for high frequency phrases and a
less pronounced early negativity for low frequency phrases, followed by a reversal of this
patterns, with later negative voltages for high frequency phrases and positive voltages for
low frequency phrases.

The main effect smooth of Phrase Frequency, however, reveals further insight into the
tensor product interaction of time by Phrase Frequency. This main effect is presented in
Figure 11. In contrast to Preposition Frequency and Word Frequency, Phrase Frequency
shows a statistically robust main effect over time, with lower voltages for high frequency
phrases as compared to low frequency phrases. The effect is present at electrodes across the
left hemisphere and is most prominent in left-lateralized parietal and occipital areas.
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Figure 10. Effect for the tensor product interaction between time and (log) Phrase Frequency at
electrode O1.

As can be seen in Figures 10 and 11, the pattern of results for the time by Phrase
Frequency interaction at the start of the analysis window is opposite to the main effect
of Phrase Frequency over time, such that the main effect of Phrase Frequency is initially
cancelled out by the time by Phrase Frequency interaction. To illustrate this point, Figure 12
presents ]the additive contour surface for the main effect of Phrase Frequency (Figure 11)
and the tensor product interaction between time and Phrase Frequency (Figure 10).

Figure 12 shows that the effect of Phrase Frequency is best characterized as a near-
linear main effect over time, with more positive voltages for low frequency phrases and
more positive voltages for high frequency phrases. This effect arises somewhat earlier for
low frequency phrases than for high frequency phrases and continues throughout the 600 ms
analysis window. As such, the effect of Phrase Frequency seems to be qualitatively different
from the effect of Word Frequency, which was characterized by theta range oscillations,
rather than prolonged effects over time.
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Figure 11. Effect for the main effect smooth of (log) Phrase Frequency over time at electrode O1.
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Figure 12. Additive contour surface for the tensor product interaction between time and (log)
Phrase Frequency (Figure 10) and the main effect of (log) Phrase Frequency over time (Figure 11)
at electrode O1.

Relative Entropy

Figure 13 presents the tensor product interaction of time by Relative Entropy. Similar
to the effect of Word Frequency, the effect of Relative Entropy is characterized by theta range
oscillations (4 Hz ). These oscillations are most prominent high values of Relative Entropy,
although opposite-phase oscillations with a lower amplitude are present for medium-to-low
values of Relative Entropy as well.

The effect of the tensor product interaction of time by Relative Entropy is topograph-
ically widespread, with significant effects across the left - and to a lesser extent - the right
hemisphere. The effect is most prominent at parietal and occipital electrodes. For high
values of Relative Entropy, the effect is first significant at 95 ms after picture onset, whereas
for medium-to-low values of Relative Entropy the effect first reaches significance at 104 ms
after picture onset. As such, the temporal onset of the Relative Entropy effect is highly
similar to that of the Word Frequency effect.
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Figure 13. Effect for the tensor product interaction between time and Relative Entropy at electrode
CP1.
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Reaction time studies reported increased response latencies for words with high rel-
ative entropies (Milin, Filipović Durd̄ević, & Moscoso del Prado Mart́ın, 2009; Milin, Ku-
perman, et al., 2009; Kuperman et al., 2010; Baayen et al., 2011). The current pattern of
results fits well with these findings if we interpret the increased amplitude of the oscillations
for high values of Relative Entropy as evidence for increased processing costs. The current
results then indicate that additional processing is required for nouns with atypical preposi-
tional phrase frequency distributions as compared to nouns that use prepositions in a more
typical way.

For completeness, we conclude with the main effect smooth of Relative Entropy. As
can be seen in Figure 14, we found little evidence for an effect of Relative Entropy over
time. An effect at a non-corrected alpha level was found at 2 electrodes only, with somewhat
decreased voltages for higher values of Relative Entropy. As for the effects of Preposition
Frequency and Word Frequency, however, it is clear that the effect of Relative Entropy is
best described by a tensor product interaction of time by Relative Entropy.
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Figure 14. Effect for the main effect smooth of Relative Entropy over time at electrode CP1.

Discussion

In the current experiment, we observed effects of both word-level and phrase-level
predictors in a primed picture naming paradigm. The effects of Relative Entropy and Word
Frequency showed remarkable similarities. Both effects are characterized by oscillations in
the lower end of the theta range. In addition, both effects showed similar topographical
distributions and increased effect sizes in the left hemisphere as compared to the right
hemisphere. Furthermore, the temporal onset of the effects was similar, with the onset of
both effects being no more than 2 ms apart (Word Frequency : 97 ms after picture onset,
Relative Entropy : 95 ms after picture onset). Neither Word Frequency, nor Relative Entropy
showed a statistically robust main effect over time.

Similar to the effects of the word-level predictors Word Frequency and Relative En-
tropy, the effect for the phrase-level predictor Phrase Frequency was most prominent in the
left hemisphere. In contrast to the effects of these word-level predictors, however, the effect
for Phrase Frequency was not characterized by theta range oscillations. Instead, we observed
a prolonged near-linear effect, with more negative voltages for high frequency phrases as
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compared to low frequency phrases. How should we interpret this pattern of results?
In exemplar-based approaches such as data-oriented parsing (Bod, 2006) or memory-

based learning (Daelemans & Bosch, 2005), phrase frequency effects are explained through
the existence of phrase representations (see Baayen et al., 2013). The frequency count asso-
ciated with a phrase representation determines how quickly that phrase representation can
be accessed, just like the frequency count associated with a word representation determines
how quickly that word can be accessed. While exemplar-based models correctly predict
that there should be temporal and spatial overlap between the effects of word frequency
and phrase frequency, it is unclear how such models would account for the qualitatively dif-
ferent pattern of results observed for Word Frequency and Phrase Frequency in the current
experiment.

Perhaps the apparent incompatibility of exemplar-based models with the current find-
ings results from the fact that exemplar-based models are implemented at a certain level of
abstraction. Exemplar-based models represent words and phrases as discrete units or sets
of finer-grained discrete feature-value pairs. This discretization is an obvious oversimplifica-
tion of the neuro-biological processes that the erp signal taps into. In these processes word
or phrase representations are more likely to consist of firing patterns of assemblies of neu-
rons. Given our limited understanding of the neuro-biological reality of language processing
it is possible that conceptually similar representations for words and phrases correspond to
qualitatively different neural firing patterns with qualitatively different manifestations in
the erp signal.

Nonetheless, it is clear that at this point in time exemplar-based models do not
straightforwardly account for the differences between the observed word and phrase fre-
quency effects. Furthermore, accounting for relative entropy effects in exemplar-based mod-
els would involve the conceptually and computationally unappealing assumption that online
computation over stored frequency distributions for both exemplars and prototypes takes
place. The current pattern of results therefore poses a challenge to exemplar-based models.

Discrimination learning provides an alternative account for the effects of word fre-
quency, phrase frequency and relative entropy. Baayen et al. (2011) successfully replicated
chronometric effects of prepositional relative entropy and phrase frequency in the Naive
Discriminative Reader (ndr) model. In what follows, we will explore to what extent a
discrimination learning model can provide further insight into the erp signal in the cur-
rent primed picture naming study as it evolves over time. First, we will introduce naive
discrimination learning model in more detail. Next, we will describe a simulation study in
which we used four measures derived from two discrimination learning networks to predict
the erp signal after picture onset. Finally, we will present the results of this simulation
study for each of these four discrimination learning measures.

Naive Discrimination Learning

In this section we will describe Naive Discrimination Learning (ndl) as implemented
in Baayen et al. (2011). The description below is a shortened version of the more detailed
descriptions in Baayen et al. (2011) and Baayen et al. (2013). For more details we refer
the interested reader to these papers. ndl networks learn associations between input cues
and outcomes through the Rescorla-Wagner equations (Wagner & Rescorla, 1972), which
are mathematically equivalent to the delta rule (Sutton & Barto, 1981).
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Given the association strength V t+1
i between outcome O and cue Ci at time t, the

Rescorla-Wagner equations provide the association strength at time t + 1:

V t+1
i = V t

i + ∆V t
i . (2)

with the change in association strength, ∆V t
i , defined as:

∆V t
i =


0 if absent(Ci, t)

αiβ1
(
λ−

∑
present(Cj , t)

Vj
)

if present(Cj , t) & present(O, t)

αiβ2
(
0−

∑
present(Cj , t)

Vj
)

if present(Cj , t) & absent(O, t)

. (3)

The parameter settings in the ndr default to λ = 1, all α’s equal, and β1 = β2. The
association strength between a cue and an outcome increases if the outcome occurs when
the cue is present and decreases if the outcome does not occur when the cue is present.

The Rescorla-Wagner equations have a temporal dimension: they describe the devel-
opment of the association strengths over time. The ndl framework uses the Danks equations
(Danks, 2003) as a mathematical shortcut to the association strength for the equilibrium
state of the model - i.e.; the state of the model in which the association strengths do not
change from time t to time t + 1. In the Danks (2003) equilibrium equations the association
strength (Vik) between cue (Ci) and outcome (Ok) is defined as:

Pr(Ok|Ci)−
n∑

j=0

Pr(Cj |Ci)Vjk = 0, (4)

where Pr(Cj |Ci) is the conditional probability of cue Cj given cue Ci, Pr(Ok|Ci) is the
conditional probability of outcome Ok given cue Ci and n+1 is the number of different cues.
As shown in Equation 4, the association strengths are calculated independently for each
outcome. This is simplification is similar to that in Naive Bayesian Classifiers and inspired
Baayen et al. (2011) to refer to their model as an instantiation of naive discrimination
learning.

At a given point in time, only a subset of all cues is present in the input. The extent
to which these cues activate the target outcome is a measure of how hard it is to access
that target in the context of the current input features. The ndr defines the activation of
the target outcome Ok given the input cues C as:

ak =
∑
j∈C

Vjk. (5)

where j ranges over the active cues and Vjk is the equilibrium association strength between
cue Cj and outcome Ok.

The ndr network in Baayen et al. (2011) maps orthographic units onto lexemes. As
such, this network provides a model of silent reading. The task in the current experiment,
however, involves much more than silent reading. The orthographic presentation of the
preposition and definite article is line with the nature of the orthography-to-lexeme net-
work in Baayen et al. (2011). By contrast, the target noun is depicted in a photograph.
Ideally, therefore, a simulation of the current data would involve an additional discrimi-
nation network mapping visual features of the photograph onto the word meaning of the
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target noun. While we are exploring how to implement a visual discriminative learning
network in ongoing research, no such network has successfully been implemented thus far.
We therefore decided to use orthographic input cues not only for the preposition and the
definite article, but also for the target noun. While orthographic cues are an obvious over-
simplification of the rich visual input provided by the photographs, the simulation results
reported below indicate that the orthography to meaning mappings are a satisfactory proxy
for the mappings from visual features to meanings.

A second discrepancy between the experimental setup and orthography-to-lexeme
network in Baayen et al. (2011) concerns the nature of the task. While the orthography-to-
lexeme network provides a silent reading model, the task in the current experiment involves
naming the target noun. Recently, Hendrix, Ramscar, and Baayen (2015) implemented the
ndra model, an extension of the original ndr model in Baayen et al. (2011) for reading
aloud. The ndra consists of two networks: a network mapping orthographic cues onto
lexemes and a network mapping lexemes onto acoustic features (diphones). The ndra

replicates the successful simulation of a large number of predictor effects in the ndr model
- including the effects of word frequency, word length and relative entropy.3 In addition
it captures a number of findings that are specific to the reading aloud literature, such as
effects of the consistency of orthography to phonology mappings and a pseudohomophone
advantage for nonwords.

Nonetheless, we decided to use a simple orthography-to-lexeme network in the current
simulation for two reasons. First, the current task is a somewhat of a hybrid between
production and comprehension. At the word level, the task very much resembles a reading
aloud task, albeit with visual rather than orthographic input. At the phrase level, however,
no overt response is required. The effect of phrase frequency is an effect of implicit phrase-
level comprehension, not of phrase-level production. While ideal for word-level simulations,
therefore, the architecture of the ndra is less than optimal for phrase-level simulations.

Second, despite the fact that the orthography to phonology mapping in English is
inconsistent at times, there is considerable isomorphism between the orthographic and the
phonological representations of words. As a result, there is a fair amount of overlap between
the information learned by a discriminative learning network from orthography to seman-
tics and the information learned by a discriminative learning network from phonology to
semantics. For the set of 2, 524 monosyllabic words used by Hendrix, Ramscar, and Baayen
(2015) for instance, the (log and inverse transformed) activation of the target word meaning
from the orthography is highly correlated with the (log and inverse transformed) activation
of the target word meaning from the phonology (r = 0.48, p < 0.001). Before using a more
complex model architecture, it is therefore useful to see how much explanatory power a
simple orthography-to-lexeme network can provide for the current data.

While we decided not to train a network mapping acoustic features onto lexeme, we did
expand the architecture of the original ndr model with a different type of additional network
in the current simulations. To gauge contextual learning at the lexeme level, Hendrix, Nick,
and Baayen (2015) recently used a discrimination learning network in which both the input
cues and the outcomes are lexemes. As for the orthography-to-lexeme network, they trained
this lexeme-to-lexeme network on word trigrams. In the lexeme-to-lexeme network, however,

3Phrase frequency effects have not been documented in the naming aloud literature. We therefore have
not yet attempted to simulate phrase frequency effects in the ndra model.
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the cues were words n-2 and n-1, whereas the outcome was word n. They found that the
lexeme-to-lexeme network provided explanatory value over and above and orthography-to-
lexeme network for the eye movement patterns on compounds in natural discourse reading.
In the simulations reported below, we therefore use a set of predictors derived from both
orthography-to-lexeme and lexeme-to-lexeme discrimination learning networks.

NDR simulation

In order to learn the associations between input cues and outcomes discrimination
learning networks need to be trained on a representative language sample. Following Baayen
et al. (2011) we trained both the orthography-to-lexeme and lexeme-to-lexeme networks on
the British National Corpus (henceforth bnc; Burnard, 1995). The training data for the cur-
rent simulation consisted of 100 million word trigrams from the bnc. For the orthography-
to-lexeme network the input cues were the letter trigrams and the outcomes were lexemes.
For the lexeme-to-lexeme network, the input cues were lexemes n-2 and n-1 in a word
trigram and the outcome was lexeme n.

We extracted three systemic measures of language processing from the orthography-
to-lexeme network. These three measures are the activation of (1) the preposition, (2)
the definite article and (3) the target noun given the presentation of the preposition, the
definite article and the target noun. We obtained these simulated activations for all of the
272 phrases that were used in the experiment by summing the associations between all letter
trigrams in the input phrase and the preposition, the definite article and the target noun
(see Equation 5. For the example phrase “into the onion”, for instance, we calculated the
simulated activation of the target noun “onion” by summing the associations between the
letter trigrams #in, int, nto, to#, o#t, #th, the, he#, e#o, #on, oni, nio, ion and on#
(hash marks indicate word boundaries) and the lexeme ONION. Similarly, the simulated
activations of the preposition“into”and the definite article“the”were defined as the summed
association between these letter trigrams and the lexemes INTO and THE, respectively.

The simulation activations for the preposition, determiner and target noun will hence-
forth be referred to as NDL Activation Preposition, NDL Activation Determiner and NDL
Activation Word. Following Baayen et al. (2011), we applied an inverse and logarithmic
transformation to all activations prior to analysis to remove a rightward skew from the
data. As such, the activation measures are proportional to the estimated time required for
accessing a lexeme. Furthermore, we added a back off constant of 0.05 to all activations to
prevent division by zero when applying the inverse transformation.

From the lexeme-to-lexeme network, we derived a more general systemic property of
the target word lexeme. For each of the 68 target nouns that were used in the experiment,
we extracted the association between the corresponding lexeme and all other lexemes in the
training lexicon. We then calculated the median absolute deviation of the resulting vector
of associations for each target word lexeme.

The median absolute deviation (henceforth mad) is a measure of dispersion that is
more robust to outliers than the standard deviation. Recently, Milin et al. (2015) and
Hendrix, Nick, and Baayen (2015) successfully applied the mad measure in the context of
discrimination learning and described it as a measure of network connectivity: the greater
the mad of a lexeme, the greater its network connectivity and the easier it is to access that
lexeme. As such, one could think of the mad measure as a systemically motivated account
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Table 2: Summary of the independent variables (log) Picture Complexity, (log and inverse trans-
formed) NDL Activation Preposition, (log and inverse transformed) NDL Activation Determiner,
(log and inverse transformed) NDL Activation Word and (log) NDL MAD. Range is the original
range of the predictors. Adjusted range is the range after removing predictor outliers. Mean,
median and sd are the means, medians and standard deviations after outlier removal.

predictor range adjusted range mean median sd
Picture Complexity 8.53 - 11.13 8.69 - 10.83 9.88 9.91 0.50
NDL Activation Preposition −0.65 - −1.70 −0.19 - 0.58 0.04 0.00 0.13
NDL Activation Determiner −0.20 - 0.17 −0.12 - 0.04 −0.04 −0.04 0.02
NDL Activation Word 0.00 - 2.88 0.13 - 2.88 1.62 1.83 0.76
NDL MAD −15.12 - −8.88 −14.57 - −9.56 −12.07 −12.15 1.26

of frequency effects. The greater the frequency of a lexeme, the better a discrimination
learning network is able to learn which lexemes are positively or negatively associated with
that lexeme (and therefore the greater the mad). Indeed, mad typically shows a correlation
equal to or greater than 0.90 with word frequency. We will henceforth refer to the mad
measure as ndlmad. We log-transformed NDL MAD prior to analysis to remove a rightward
skew from the mad distribution.

As for the lexical predictor analysis, we removed predictor outliers further than two
standard deviations from the mean from the data prior to analysis. As such, we excluded
1.54% of predictor values for NDL Activation Word, 5.00% of all predictor values for NDL
Activation Determiner, 6.92% of all predictor values for NDL Activation Preposition and
4.62% of all predictor values for NDL MAD. Table 2 shows the range, adjusted range, mean,
median and standard deviation for all ndl predictors.

As for the lexical predictor data set, the ndl predictors are characterized by a consid-
erable amount of collinearity (κ = 59.97). Most notably, there is a medium strength corre-
lation between NDL MAD and NDL Activation Word (r = 0.52). Nonetheless, suppression
is unlikely given the strength of this correlation. As for the lexical predictor analysis, we
therefore decided not to decorrelate the ndl predictors.

Analogous to the analysis for the lexical predictors, we fitted a gam with by-
participant factor smooths for trial and time, as well as random intercepts for prepositional
phrase and noun to the erp signal at each electrode. In addition, we included a main effect
smooth as well as a tensor product interaction between time and predictor for each of the
predictors Picture Complexity, NDL Activation Preposition, NDL Activation Determiner,
NDL Activation Word and NDL MAD. As before, non-linearities in the predictor dimen-
sion were limited to 5 knots, whereas non-linearities in the time dimension were limited
to 20 knots. Again, we set the autocorrelation parameter ρ to 0.75 to control for AR1
autocorrelation.

Simulation Results

In this section, we will present the results for the predictors NDL Activation Prepo-
sition, NDL Activation Determiner, NDL Activation Word and NDL MAD. The effect of
Picture Complexity was highly similar to that reported in the lexical predictor analysis and
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is therefore not repeated below.

NDL Activation Preposition

Figure 15 shows the contour plot of the tensor surface for NDL Activation Preposition
at electrode P3. The effect of NDL Activation Preposition is characterized by a positivity
for prepositions with high (log and inverse transformed) activation values in the first 200
ms after picture onset, which is followed by a negativity for the same prepositions. This
effect is highly significant across the left hemisphere, but shows peak amplitudes at left and
central parietal and occipital electrodes.
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Figure 15. Effect for the tensor product interaction between time and (log and inverse transformed)
NDL Activation Preposition at electrode P3.

Given that log and inverse transformed NDL activations are proportional to (simu-
lated) naming latencies, whereas frequency measures are inversely proportional to naming
latencies, the effect of NDL Activation Preposition is qualitatively and topographically sim-
ilar to the effect of Preposition Frequency described for the lexical predictor analysis. Both
predictors show positivities in the first 200 ms followed by negativities at later points in
time for predictor values for which longer naming latencies are expected (i.e.; high activa-
tion, low frequency). In both cases, the effect is present across the left hemisphere, but
is most prominent in left-central parietal-occipital areas. The similarity of the effects for
Preposition Frequency and NDL Activation Preposition is unsurprising given the correlation
between both predictors (r = −0.60).

Consistent with absence of a main effect of Preposition Frequency, we found little
evidence for a significant main effect smooth for NDL Activation Preposition in the left
hemisphere. In contrast to the main effect of Preposition Frequency, however, the main
effect of NDL Activation Preposition did reach significance in frontal and frontal-central
areas in the right hemisphere. Figure 16 shows the main effect of NDL Activation Preposition
over time at electrode F4, with more positive voltages for predictor values that correspond
expected processing difficulties (i.e.; long simulated naming latencies). The main effect of
NDL Activation Preposition is theoretically interesting in the light of the n-gram frequency
effect reported for the lexical predictor analysis. We will return to this issue in the Discussion
of the ndl Simulation.
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Figure 16. Effect for the main effect smooth of (log and inverse transformed) NDL Activation
Preposition over time at electrode P3.

NDL Activation Determiner

Figure 17 presents the time by predictor tensor product interaction for NDL Activation
Determiner. This effect is characterized by a complicated pattern of oscillatory activity in
both the time and predictor dimensions. For a substantial number of time values, the effect
seems to be mirrored with respect to the middle of the NDL Activation Determiner range.
We see a concave effect in the predictor dimension that starts around 80 ms after picture
onset and returns from 220 to 300 milliseconds. After that, the effect reverses, with a convex
effect of NDL Activation Determiner from 320 ms onwards. This effect is most prominent in
left and central parietal-occipital areas, but reaches significance across the left hemisphere.
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Figure 17. Effect for the tensor product interaction between time and (log and inverse transformed)
NDL Activation Determiner at electrode PO3.

Given the fact that the determiner is identical in all stimuli, the presence of a sta-
tistically robust time by NDL Activation Determiner tensor product interaction with a
relatively large effect size may seem surprising at first sight. Note, however, that NDL
Activation Determiner was defined as the activation of the determiner lexeme given the
orthographic cues in the preposition, the determiner and the target noun. As such, the cur-
rent effect s uggests the context in which a determiner appears has considerable influence



ERP PICTURE NAMING 29

on how that determiner is processed.

In addition to the time by predictor tensor product interaction, we also found ev-
idence a main effect of NDL Activation Determiner. As can be seen in Figure 18, we
found higher voltages for higher values of NDL Activiation Determiner at left and central
parietal-occipital electrodes. Given that high values of (inverse-transformed) NDL Activa-
tion Determiner are expected to correspond to increased processing difficulty, this effect
of NDL Activation Determiner over time is qualitatively similar to the effect of Phrase
Frequency described in the lexical predictor analysis, which was characterized by a similar
positivity over time for low frequency phrases.
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Figure 18. Effect for the main effect smooth of (log and inverse transformed) NDL Activation
Determiner over time at electrode PO3.

NDL Activation Word

The time by predictor tensor product interaction for NDL Activation Word at example
electrode FC1 is presented in Figure 19. The effect is characterized by oscillations near the
lower edge of the theta range (3 Hz ) across the NDL Activation Word range. The oscillations
are most prominent for high predictor values, but are also present for lower predictor values.
The effect of NDL Activation Word is topographically widespread, with significant time
by NDL Activation Word tensor product interactions across the scalp. Peak amplitudes,
however, are reached in frontal and central areas in the left hemisphere and parietal and
occipital areas in the right hemisphere. The effect of NDL Activation Word first reaches
significance at 149 ms after picture onset for medium values of NDL Activation Word.

The time by NDL Activation Word interaction shows some similarities with the time
by Word Frequency interaction described earlier. The effect is topographically widespread
and characterized by oscillations in the lower part of the theta range. The onset of the effect,
however, is later than that of the Word Frequency effect, which was first significant at 97
ms after picture onset. Furthermore, NDL Activation Word shows clear non-linearities in
the predictor dimension. By contrast, the time by Word Frequency interaction was mostly
characterized by simple linear effects in the predictor dimension with alternating positive
and negatives slopes. The moderate similarities between the effect of NDL Activation Word
and the effect of Word Frequency are in line with the moderate correlation between both
predictors (r = -0.41).
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Figure 19. Effect for the tensor product interaction between time and (log and inverse transformed)
NDL Activation Word at electrode FC1.

For Word Frequency we found little evidence for a main effect over time. Although the
effect did not reach significance at the example electrode FC1 discussed here (see Figure 20),
we did find a subtle main effect of NDL Activation Word at a non-corrected alpha level at
6 electrodes located in bilateral frontal areas, with more positive voltages for high predictor
values (i.e.; for words with longer expected naming latencies).

The main effect of NDL Activation Word did not reach significance at a Bonferroni-
corrected alpha level. In addition, the electrodes at which we saw significant effects at a
non-corrected alpha level were limited to frontal electrodes. Given the increased rms values
at these electrodes these effects need to be interpreted with care. As such, any strong
conclusions regarding the main effect of NDL Activation Word would be unwarranted.
Nonetheless, the current results provide somewhat more evidence for a main effect over
time for NDL Activation Word as compared to Word Frequency. We will return to this
issue shortly in the Discussion section of the ndl Simulation.
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Figure 20. Effect for the main effect smooth of (log and inverse transformed) NDL Activation Word
over time at electrode FC1.
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NDL MAD

NDL MAD is a measure of the network connectivity of a word that is perhaps best
perceived of as a systemic alternative to word frequency measures. Indeed, NDL MAD
correlates much more strongly with Word Frequency (r = 0.90) than does NDL Activation
Word (r = −0.41). As such, we would expected the effect of NDL MAD to be more similar
to the effect of Word Frequency than the effect of NDL Activation Word. As can be seen
in Figure 21, this prediction is borne out.
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Figure 21. Effect for the tensor product interaction between time and (log) NDL MAD at electrode
O1.

The effect of NDL MAD is characterized by 3 to 4 Hz oscillations for both high and
low predictor values. For high values of NDL MAD the phase of these oscillations is highly
similar to the phase of the oscillations observed for Word Frequency. For low predictor
values, there is a phase mismatch with the oscillations in the first 250 ms. From 250 to 600
ms after picture onset, however, the phase of the oscillations is highly similar to that of the
oscillations for Word Frequency once more.

The topographical distribution of the time by NDL MAD interaction is similar to
that of the time by Word Frequency interaction as well, with a widespread effect that is
significant across the left hemisphere, as well as in central and right parietal-occipital areas.
Furthermore, the effect of NDL MAD at high predictor values is first significant at 100 ms
after picture onset. As such, the temporal onset of the NDL MAD effect is highly similar to
that of the Word Frequency effect, which was first significant at 97 ms after picture onset.
In conclusion, therefore, the effect of NDL MAD and Word Frequency are qualitatively
similar.

For low values of NDL MAD, we see an early negativity that is first significant at
20 ms after picture onset. Perhaps, this effect is an artifact due to the unreliability of
gams near the edges of the analysis window. As such, a negativity for low values of NDL
MAD around 100 ms after picture onset may incorrectly be present in the first 50 ms of
the analysis window as well. Alternatively, the early negativity for low values of NDL MAD
may be a modification of the main effect smooth for NDL MAD, indicating the absence of
a main effect right after picture onset.
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Figure 22. Effect for the main effect smooth of (log) NDL MAD over time at electrode O1.

Figure 22 presents the main effect of NDL MAD over time. We found no statistically
significant evidence for a main effect of NDL MAD, neither at a corrected, nor at an un-
corrected alpha level. Nonetheless, Figure 22 suggests that the spurious negativity for low
values of NDL MAD at the start of the analysis window may indeed be a modification of
the main effect estimate. Although the wide intervals for low values of NDL MAD suggest
there is considerable uncertainty with regard to the main effect of NDL MAD, the predicted
voltages for low values of NDL MAD are positive. As such, the negativity in the lower left
of Figure 22 may indicate that to the extent that a positivity may be present for low values
of NDL MAD, this positivity is not present right after picture onset.

Discussion

The ndl simulation described above demonstrated that the erp signature of Prepo-
sition Frequency as it evolves over time can accurately be captured by NDL Activation
Preposition, with a qualitatively and topographically similar effects for both predictors.
The effects of Word Frequency and NDL Activation Word showed some similarities as well,
but the ndl measure that most closely resembled the pattern of results for Word Freuqency
was NDL MAD, a systemic measure of the out-of-context probability of a word. The time
by predictor tensor product interactions for both Word Frequency and NDL MAD showed
theta range oscillations with similar phases and similar topographical distributions.4

The lexical predictor analysis provided little evidence for main effects of Preposition
Frequency or Word Frequency. By contrast, the effect of Phrase Frequency was primarily
characterized by a main effect over time, with higher voltages for lower frequency phrases.
Interestingly, the ndl activation of the preposition, the determiner and - to a lesser extent
- the target noun showed similar main effects over time. Consistent with the higher volt-
ages for low frequency phrases, NDL Activation Preposition, NDL Activation Determiner
and NDL Activation Word all showed more positive voltages for higher (log and) inverse-

4Given the topographical and temporal overlap of the Relative Entropy effect with the effects of Word
Frequency and Preposition Frequency, a direct comparison of Relative Entropy with ndl predictors was not
possible. Previous findings, however, suggests that the ndl framework is fully compatible with relative
entropy effects (see Baayen et al., 2011).
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transformed activation values (i.e.; for predictor values that are expected to result in longer
naming latencies).5

Baayen et al. (2011) successfully simulated the phrase frequency effect in lexical de-
cision in the ndl framework through a simple additive integration of the activations of the
component words given the orthographic features in a phrase. While there are some topo-
graphical differences between the widespread effect of phrase frequency and the spatially
more restricted effects of NDL Activation Preposition, NDL Activation Determiner and
NDL Activation Word in the current study, the fact that context-sensitive ndl activation
measures of the component words show main effects over time that are qualitatively similar
to the main effect of Phrase Frequency provides further support for the idea that n-gram
representations may not be necessary to account for phrase frequency effects.

A final point of interest regarding the ndl simulation reported above is the quanti-
tative performance of the ndl measures as compared to the lexical predictors Preposition
Frequency, Word Frequency, Relative Entropy and Phrase Frequency. Given the different
size of the data sets for both analyses after outlier removal, a direct comparison of the
quantitative performance of both models through goodness-of-fit measures was not possi-
ble. For the lexical predictor models, we therefore constructed baseline models for the same
data set as the original lexical predictor models that had an identical model structure, but
that excluded the lexical predictors of interest (Preposition Frequency, Word Frequency,
Relative Entropy and Phrase Frequency). Similarly, we constructed baseline models for
the ndl models that excluded the ndl predictors of interest (NDL Activation Preposition,
NDL Activation Determiner, NDL Activation Word and NDL MAD). We then looked at
the difference in deviance explained between the lexical predictor model and the baseline
lexical predictor model, as well as between the ndl model and the baseline ndl model.

Generally speaking, the contribution of both the lexical variables and the ndl mea-
sures to the deviance explained by the models was small, with improvements in the overall
percentage of deviance explained (i.e.; deviance explained by full model minus deviance
explained by baseline model) being substantially smaller than 1%. The average additional
percentage of deviance explained across all electrodes was highly similar for the lexical pre-
dictor model (0.100%) and the ndl model (0.098%), with a paired t-test on the vectors
of additional deviance explained for all electrodes in the lexical predictor and ndl model
showing no significant difference (p = 0.512). As such, the quantitative performance of the
ndl measures is highly competitive with that of standard lexical predictors. The compet-
itive performance is of the ndl measures as compared to the lexical predictor measures is
particularly impressive when taking into account the fact that the lexical predictors were
derived from the Google n-gram corpus, whereas the ndl networks were trained on the
much smaller British National Corpus (bnc).

5Note that some variation with respect to the reported main effects exists. At electrode F8, for instance,
the main effect of Phrase Frequency shows the opposite pattern of results as compared to the effect reported
for example electrode O1. For all main effects, we selected example electrodes that give a good impression
of the overall nature of the effect. While the main effect of Phrase Frequency at electrode F8 is qualitatively
different from the main effect of Phrase Frequency at the reported example electrode O1, for instance, the
other electrodes that show a significant main effect of Phrase Frequency over time (Fp1, F3, T7, C3, P7,
P3, PO3, Oz ) show an effect that is qualitatively similar to the reported effect at electrode O1.
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General Discussion

The first half of this paper presents the results of a primed picture naming study on
prepositional phrase processing. In this experiment participants were presented with prepo-
sition plus definite article primes (e.g.; “on the”) followed by target photographs depicting
concrete nouns (e.g.; “strawberry”). Participants were asked to name the target noun as fast
and accurately as possible. We measured the erp signal after picture onset and analyzed
the correlates of four linguistic predictors in this signal using generalized additive models.

At the word level we observed significant time by predictor interactions for the fre-
quency of the preposition and the target word, as well as for the prepositional relative
entropy of the target word. For word frequency, we observed oscillations in the time di-
mension with a frequency near the lower edge of the theta range (3-7.5 Hz ) across the
left hemisphere, as well as in bilateral occipital-parietal areas. As mentioned above, theta
range oscillations are thought to reflect (working) memory demands in language processing
that arise from the synchronous firing of neurons in hippocampal areas (see Bastiaansen &
Hagoort, 2003) and have previously been observed in a variety of language processing tasks
(see, e.g.; Bastiaansen et al., 2005, 2008; Grabner et al., 2007). The effect of target word
frequency was first significant at 97 ms after picture onset. This early onset of the word
frequency effect is in line with previous studies that established the onset of word frequency
effects (Hauk et al., 2006; Penolazzi et al., 2007; Sereno et al., 1998) soon after the 100 ms
mark.

Of the word level effects, the effect of relative entropy is of particular theoretical
interest. Previously, relative entropy effects had only been observed in reaction time studies
(see, e.g.; Milin, Filipović Durd̄ević, & Moscoso del Prado Mart́ın, 2009; Milin, Kuperman,
et al., 2009; Kuperman et al., 2010; Baayen et al., 2011). The current study is the first
to document a relative entropy effect in an erp study, with oscillations near the lower
edge of the theta range that were most prominent in parietal and occipital areas. These
oscillations had greater amplitudes for high predictor values as compared to low predictor
values. Similar to the reaction time studies mentioned above, therefore, the current results
suggest that additional processing is necessary when a noun’s use of prepositions is less
prototypical. The effect of relative entropy emerged early, showing a significant effect as
early as 95 ms after picture onset. The temporal onset of the relative entropy effect is
therefore similar to that of word frequency (97 ms after picture onset).

The effect of relative entropy in the current study demonstrates that language users
are sensitive to the extent to which the frequency distribution for a given noun’s prepo-
sitional paradigm differs from the frequency distribution of prepositions in the language
as a whole. As such, the effect of relative entropy observed here poses a challenge to
exemplar-based approaches to language processing. To account for relative entropy effects,
exemplar-based models would have to assume that frequency information about preposi-
tional phrases and the prepositional phrase prototype is available during processing and
that the distance between a noun’s prepositional phrase frequency distribution and the
prototypical prepositional phrase frequency distribution is computed online.

At the phrase level, we observed an effect of phrase frequency that was qualitatively
different from the effect of word frequency. While the word frequency effect was charac-
terized by oscillations in the time domain, the phrase frequency effect is best described as
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a near-linear effect over time with more positive voltages for low frequency phrases and
more negative voltages for high frequency phrases. This effect was most prominent in left-
lateralized parietal and occipital areas.

As for the effect of relative entropy, the effect of phrase frequency is well-documented
in chronometric studies (see e.g.; Arnon & Snider, 2010; Bannard & Matthews, 2008; Shaoul
et al., 2013; Tremblay et al., 2011; Siyanova-Chanturia et al., 2011). Recently, Tremblay and
Baayen (2010) documented a phrase frequency effect in an erp study for 4-word sequences
in a free recall task. The current study adds to these findings by showing a phrase frequency
effect in a primed picture naming paradigm.

The n-gram frequency effects in chronometric studies are evidence for “some
experience-derived knowledge of specific four-word sequences” (Bannard & Matthews, 2008,
p.246). These reaction time studies, however, provide little insight into the nature of this
knowledge. One possibility is that phrase representations are stored holistically, much like
word representations. Such a perspective on n-gram frequency effects fits well with the ar-
chitecture of exemplar-based models of language processing. The current results, however,
argue against an interpretation of phrase frequency effects in terms of phrasal representa-
tions: if word representations and phrase representations are stored and accessed in the
same way we would expect the effects of word frequency and phrase frequency to be highly
similar.

Discrimination learning offers an alternative interpretation of phrase frequency ef-
fects. In the Naive Discriminative Reader ndr model (Baayen et al., 2011) no representa-
tions beyond the simple word level exist. Nonetheless, the ndr successfully replicates the
chronometric effect of phrase frequency (Baayen et al., 2013). The second part of this paper
presents a simulation study in which we demonstrate that the erp signatures of context-
sensitive word-level discrimination learning measures show remarkable similarities to the
effect of phrase frequency.

In this simulation we constructed statistical models similar to those for the lexical
predictor analysis. The lexical predictors, however, were replaced by 4 measures derived
from discrimination learning networks: 1 measure regarding the network connectivity of
the target word, and three measures gauging the amount of bottom-up support for the
preposition, the determiner and the target noun given the presence of all three words in
the visual input. As expected, the time by predictor interactions for the activation of the
preposition and the target noun showed similarities to the time by predictor interactions
for preposition frequency and word frequency. Furthermore, the results for the time by
predictor interaction for the network connectivity of the target word were similar to those
for the time by word frequency interaction in the lexical model.

The lexical predictor analysis showed little evidence for main effects over time tied to
preposition frequency or word frequency. By contrast, however, we found statistically robust
main effects over time for the activation of the preposition and the determiner, as well as
somewhat less robust evidence for a main effect of the activation of the word. These main
effects were qualitatively similar to the main effect of phrase frequency, with a linear effect
showing higher voltages for predictor values that are typically associated with additional
processing costs.
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Although the effects of the ndl activation measures have more restricted topograph-
ical distributions than the phrase frequency effect, the qualitative similarity of the effects
of the ndl activation measures and the effect of phrase frequency suggests that positing
phrase level representations to explain the phrase frequency effect is unnecessary. In the
ndl framework phrase frequency effects emerge as a result of both learning and presenting
words in context. A high frequency phrase such as “all over the place” is read faster than
a low frequency phrases such as “all over the city” (examples taken from Arnon & Snider,
2010), because the letters and letter combinations in “all over the place” have become more
associated with the lexemes ALL, OVER, THE and PLACE than the letters and letter
combinations in “all over the city” have become associated with the lexemes ALL, OVER,
THE and CITY during the learning process (Baayen et al., 2013).

The fact that measures derived from a fully decompositional learning approach shows
effects that are remarkably similar to the effect of phrase frequency remind us of an impor-
tant fact about psycholinguistic research: lexical predictors are descriptive level abstractions
from the underlying language processing system. While lexical predictors describe the be-
havioral correlates of (properties of) the language processing system, they do not necessarily
provide insight into the processing system itself. One of the consequences of this is that the
presence of a behavioral effect for a lexical predictor therefore does not imply the existence
of corresponding representations. Bearing Ockham’s razor in mind, quite the opposite is
true: if a model is able to account for the effect of a lexical predictor without assuming
dedicated representations tied to that predictor, this model should be preferred above a
model that requires additional representations to explain an effect.

The quantitative performance of the ndl measures was highly similar to that of the
lexical predictors preposition frequency, word frequency, phrase frequency and relative en-
tropy. As such, discrimination learning offers a highly competitive account of the erp signal
in the current primed picture naming paradigm that is entirely based on systemic estimates
of the learnability of lexical items given the properties of the linguistic input space. It is
important to note, however, that the ndl framework itself is an abstractive level description
that tells us little about the neuro-biological implementation of the discriminative learning
mechanism it posits. The discrete representations in the ndl framework do not do justice
to the complex architectural and topographical neuro-biological reality of neural networks.
Nonetheless, the current simulations demonstrate that discrimination learning can help us
provide more insight into the behavioral effects of lexical predictors and further our un-
derstanding of the language processing system. When trying to understand the complex
dynamic system that language is, there is no harm in starting small.
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Milin, P., Filipović Durd̄ević, D., & Moscoso del Prado Mart́ın, F. (2009). The simultaneous effects
of inflectional paradigms and classes on lexical recognition: Evidence from serbian. Journal
of Memory and Language, 50–64.

Milin, P., Kuperman, V., Kostic, A., & Baayen, R. H. (2009). Paradigms bit by bit: an information-
theoretic approach to the processing of paradigmatic structure in inflection and derivation. In
J. P. Blevins & J. Blevins (Eds.), Analogy in grammar: form and acquisition (pp. 214–252).
Oxford: Oxford University Press.

Milin, P., Ramscar, M., Coch, K., Feldman, L., & Baayen, R. H. (2015). Processing partially and
exhaustively decomposable words: an amorphous approach based on discriminative learning.
(Manuscript)

Norris, D., & McQueen, J. (2008). Shortlist B: A Bayesian model of continuous speech recognition.
Psychological Review , 115 (2), 357–395.

Norris, D. G. (1994). Shortlist: A connectionist model of continuous speech recognition. Cognition,
52 , 189-234.

Penolazzi, B., Hauk, O., & Pulverm§ller, F. (2007). Early lexical access and semantic context
integration as revealed by event-related brain potentials. Biological Psychology , 74 (3), 374–
388.

Ramscar, M., Yarlett, D., Dye, M., Denny, K., & Thorpe, K. (2010). The effects of feature-label-order
and their implications for symbolic learning. Cognitive Science, 34 (7), in press.

Scarborough, D. L., Cortese, C., & Scarborough, H. S. (1977). Frequency and repetition effects in
lexical memory. Journal of Experimental Psychology: Human Perception and Performance,
3 , 1-17.

Sereno, S. C., Rayner, K., & Posner, M. (1998). Establishing a time-line of word recognition:
evidence from eye movements and event-related potentials. Neuroreport , 9(10), 2195-2200.



ERP PICTURE NAMING 39

Shaoul, C., Westbury, C. F., & Baayen, R. H. (2013). The subjective frequency of word n-grams.
Psihologija, 46 , 497–537.

Siyanova-Chanturia, A., Conklin, K., & Van Heuven, W. (2011). Seeing a phrase ’time and again’
matters: The role of phrasal frequency in the processing of multi-word sequences. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 37 (3), 776–784.

Strijkers, K., A., C., & G., T. (2010). Tracking lexical access in speech production: electrophysio-
logical correlates of word frequency and cognate effects. Cerebral Cortex , 20 (4), 912–928.

Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive networks: Expectation
and prediction. Psychological Review , 88 , 135–170.

Tomasello, M. (2003). Constructing a language: A usage-based theory of language acquisition.
Cambridge, Mass.: Harvard University Press.

Tremblay, A. (2010). Independent components analysis (ica) based eye-movement correction [Com-
puter software manual]. (R package version 1.2)

Tremblay, A., & Baayen, R. H. (2010). Holistic processing of regular four-word sequences: A behav-
ioral and erp study of the effects of structure, frequency, and probability on immediate free
recall. In D. Wood (Ed.), Perspectives on formulaic language: Acquisition and communication
(pp. 151–173). London: The Continuum International Publishing Group.

Tremblay, A., Baayen, R. H., Derwing, B., Libben, G., Tucker, B., & Westbury, C. (2011). Empirical
evidence for an inflationist lexicon. Proceedings of the Annual Meeting of the Linguistics
Society of America.

Wagner, A., & Rescorla, R. (1972). A theory of Pavlovian conditioning: Variations in the effective-
ness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical
conditioning ii (pp. 64–99). New York: Appleton-Century-Crofts.

Wood, S. N. (2006). Generalized additive models. New York: Chapman & Hall/CRC.
Wurm, L. H., & Fisicaro, S. A. (2014). What residualizing predictors in regression analysis does

(and what it does not do). Journal of Memory and Language, 72 , 37–48.



ERP PICTURE NAMING 40

Appendix

We used generalized additive models (gams) to analyze the erp data for the current
experiment (Hastie & Tibshirani, 1986; Wood, 2006). Unlike traditional erp analysis tech-
niques, gams allowed us to investigate the non-linear effects of numerical predictors as they
evolve over time in the erp signal. By contrast, traditional erp analysis typically oper-
ate on the basis of dichotomized versions of numerical predictors such as word frequency,
phrase frequency or relative entropy. The average curves for the dichotomized predictors
values are then compared in by-item or by-subject analyses (i.e.; low frequency versus high
frequency). In this appendix we will compare the performance of gams to the performance
of a traditional analysis method for simulated data, as well as for some of the key predictor
effects documented in this paper. We will demonstrate that the patterns of results for both
types of analyses converge in some cases, but that a traditional analysis results in a loss of
information or dichotomization artifacts in other cases.

First, consider the simulated predictor effect in the top left panel of Figure 23 The
effect is characterized by a two-dimensional sinusoid, with oscillations in both the time and
the predictor dimension. White noise with a mean of 0 and a standard deviation of 0.5 was
added to each simulated data point. The middle panel of the top row of Figure 23 shows the
results of a gam analysis on this simulated predictor effect. The two-dimensional sinusoid
in the simulated data is replicated in the gam analysis. The frequencies of the oscillations
in both directions and the effect sizes match those in the simulated data.
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Figure 23. Simulated predictor effect with an oscillation in both the time and predictor dimension
(left panels) and model fits for this effect in a gam analysis (middle panels) and a traditional analysis
using predictor dichotomization (right panels).
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The top right panel of Figure 23 shows the results of a dichotomization of the pre-
dictor into low and high predictor values based on a split halfway the predictor range. No
sinusoidal activity is seen for either high or low frequency words and no difference is ob-
served between high and low frequency words at any point in time. Dichotomization of the
predictor therefore entirely masks the two-dimensional oscillatory activity that is present in
the simulated data.

The simulated data in the top left panel of Figure 23 are symmetrical with respect to
the mid-point of the predictor range. For the bottom left panel of Figure 23 we shifted the
effect upwards on the y-axis, such that the simulated predictor effect is no longer symmet-
rical with respect to the mid-point of the predictor range. The middle panel of the bottom
row of Figure 23 demonstrates that this does not constitute a problem for gams. As before
the two-dimensional sinusoid is replicated with the correct frequency in both dimensions
and the correct effect size. The bottom right panel of Figure 23 shows what happens if the
predictor is dichotomized into high and low predictor values with a split at the mid-point
of the predictor range. Due to the vertical shift of the oscillations a traditional analysis
now reflects some of the oscillatory activity in the simulated data. The observed differences
between high and low predictor values, however, reflect the differences between medium
and low predictor values in the simulated data. All information about the fact that high
predictor values and low predictor values show a highly similar pattern of results is lost.

More subtle examples of the problems associated with the dichotomization of numer-
ical predictors outlined above arise in the erp data reported in this paper as well. In what
follows, we will examine the performance of a traditional erp analysis for the most typical
effects of word frequency, phrase frequency and relative entropy effects in the current data.
For each of these three predictors, we will compare the gam analyses in this paper to a
traditional analysis of the data for the same epoch at the same electrode.

The top panel of Figure 24 shows the effect of Word Frequency at electrode O1 in the
gam analysis reported in this paper. The effect is characterized by 3 Hz oscillations for both
high and low frequency words with opposite phases. The dashed line indicates the mean
value of Word Frequency. The bottom panel of Figure 24 shows the results of a traditional
analysis in which we dichotomized Word Frequency into high and low frequency words (split
with respect to the mean value of Word Frequency). In this analysis we investigated the
significance of the dichotomized Word Frequency predictor for each sample point in the
time domain by running subject and item anovas on a subset of the data that included
all measurements for that sample point, as well as for the previous sample point and the
next sample point. The significance of the Word Frequency effect in these subject and item
analyses is indicated by the dark red (α = 0.05) and bright red (Bonferroni-corrected alpha
level; α = 0.0016) squares at the bottom of the bottom panel of Figure 24.

The grand mean curves for Word Frequency show a similar pattern of results as
compared to the gam analysis. The difference between high and low frequency phrases first
reaches significance at a non-corrected alpha level at 117 ms after picture onset, with higher
voltages for high frequency phrases. As such, the temporal onset of the Word Frequency
effect is somewhat later than the temporal onset of the Word Frequency effect in the gam
analysis (97 ms after picture onset), presumably due to a loss of statistical power as a result
of the predictor dichotomization. Overall, the pattern of results in the gam analysis and
the dichotomization analysis show a highly similar pattern of results, with higher frequency
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Figure 24. The effect of Word Frequency at electrode O1 in a gam analysis (top panel) and a
traditional analysis in which Word Frequency is dichotomized (bottom panel). Color coding at the
bottom of the second panel indicates significance of the Word Frequency effect in item and subject
anovas for each point in time.

words showing higher voltages from 180 to 260 ms after picture onset, lower voltages from
260 to 400 ms and higher voltages once more from 400 to about 530 ms (as compared to
lower frequency words). Both in the gam analysis and in the traditional analysis, the effect
of Word Frequency is most pronounced from 180 to 400 ms after picture onset.

The comparison of the gam analysis and the traditional analysis for the Word Fre-
quency effect demonstrates that the oscillatory effect of Word Frequency is reflected in the
grand means curves for high and low frequency words. Rather than being interpreted as
theta range oscillations, however, this effect would likely be described in terms of erp com-
ponents in a traditional analysis - with an increased P200 and a decreased P350 for high
frequency words as compared to low frequency words.

The effect of Word Frequency in the gam analysis is relatively simple in nature, with
oscillations for high and low frequency words that are nicely separated with respect to the
middle of the Word Frequency range and that have opposite phases. This is close to an ideal
scenario for a traditional erp analysis. The effect of Relative Entropy represents a somewhat
more complicated scenario. The top panel of Figure 25 shows the effect of Relative Entropy
at electrode CP1 in the gam analysis.
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Figure 25. The effect of Relative Entropy at electrode CP1 in a gam analysis (top panel) and a
traditional analysis in which Relative Entropy is dichotomized (bottom panel).

As can be seen in the top panel of Figure 25, the effect of Relative Entropy is char-
acterized by oscillations in the time that arise around 100 ms after picture onset. The
oscillations are most prominent for high predictor values, but lower amplitude oscillations
are also present for medium-to-low and low predictor values. To complicate things further,
the phase difference between the oscillations for high predictor values and the oscillations
for low predictor values is not constant, due to small differences in the frequencies of these
oscillations.

The bottom panel of Figure 25 shows the effect of Relative Entropy at electrode CP1
in a traditional erp analysis in which we dichotomized Relative Entropy into high and low
relative entropy on the basis of a split at the mean (see black line in the top panel of
Figure 25). The grand mean curves for high and low Relative Entropy correctly capture the
fact that high values of Relative Entropy correspond to lower voltages from 150 to 220 ms,
from 250 to 340 ms and from 420 to around 500 ms after picture onset (as compared to low
values of Relative Entropy), although these effects reach significance at non-corrected alpha
level only.

The traditional analysis fails to pick up on the more positive voltages for high values
of Relative Entropy around 100 and 400 ms after picture onset. Potentially, this is due to
the fact only Relative Entropy was entered into the traditional analysis, whereas the gam
analysis uses a multiple regression approach. As such, the effects of other predictors are
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not taken into account in the traditional analysis. The main effect of phrase frequency, for
instance, was marginally significant at electrode CP1, p = 0.077). Given the nature of the
phrase frequency effect (i.e.; lower voltages for higher frequency phrases) and the negative
correlation between Relative Entropy and Phrase Frequency (r = −0.19), the grand average
curve for high values of relative entropy in Figure 25 may be somewhat lower than it would
be if the effect of Phrase Frequency was properly accounted for.

Whereas the qualitative nature of the effect of Word Frequency was accurately cap-
tured by a traditional erp analysis, a lot of detail is lost about the effect of Relative Entropy
through dichotomization. While it might be possible to tell that the Relative Entropy effect
is characterized by theta range oscillations from the bottom panel of Figure 25, for instance,
it would be impossible to tell that these oscillations are most prominent for high predictor
values. Furthermore, the nature of the effect across the predictor dimension is lost through
dichotomization. The information that the effect of Relative Entropy is U-shaped in nature
around 320 ms, for instance, cannot be retrieved from the bottom panel of Figure 25.

Theta range oscillations in the time dimension characterized he effects of Word Fre-
quency and Relative Entropy. For Phrase Frequency, we found a near-linear effect that
persisted over time. The top panel of Figure 26 shows the effect of Phrase Frequency at
electrode O1, with a long-lasting positivity for low frequency words and a long-lasting neg-
ativity for high frequency words.
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Figure 26. The effect of Phrase Frequency at electrode O1 in a gam analysis (top panel) and a
traditional analysis in which Phrase Freuqency is dichotomized (bottom panel).
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The bottom panel of Figure 26 shows the results of a traditional erp analysis in
which Phrase Frequency was dichotomized with respect to the mean predictor value (see
black line in the top panel of Figure 26). The general nature of the Phrase Frequency effect
is similar to that in the gam analysis, with more positive voltages for low frequency words
as compared to high frequency words over time. Consistent with the top panel of Figure 26,
the difference between high and low predictor values is greatest around 300 ms after picture
onset, with significant effects in both the item and the subject analysis.

At other points in time, the grand mean curve for high frequency phrases is below
that for low frequency phrases as well, but this difference reaches significance for a limited
number of sample points at a non-corrected alpha level only. The inability of the subject
and item analyses to pick up on the phrase frequency effect throughout the analysis window
may be the result of a loss of statistical power in the traditional analysis as compared to the
gam analysis. This loss in statistical power is a consequence of both the dichotomization
of phrase frequency and the fact that other parts of the erp are not properly controlled for
in the traditional analysis (e.g.; trial-effects, random effects of subject, preposition, target
noun and phrase).

In this appendix we compared the gam analyses reported in this paper to traditional
erp analyses using predictor dichotomization for simulated data, as well as for some of
the key effects reported in this paper. Generally speaking, two conclusions can be drawn
from this comparison. First, the gam analyses reported here seem to provide estimates
of predictor effects that are compatible with the grand mean curves. The results of a
gam analysis and a traditional analysis typically converge as long as dichotomization of a
predictor is relatively unproblematic given the nature of a predictor effect. When this is not
the case, such as in our simulation example, the differences that arise between the results
from a gam analysis and a traditional analysis are easily explained given the nature of the
predictor effect.

Second, a gam analysis provides much more information than does a traditional
analysis in which predictors are dichotomized. In a dichotomization analysis predictor
values with very different patterns of results are grouped together, which can result in a
loss of statistical power, especially when other sources of variance in the erp signal are
not (properly) taken into account. In addition, the nature of tri- or multipartite predictor
effects is - by definition - lost when a predictor is dichotomized. This can lead to a loss of
information or misguided conclusions about the nature of an effect. By contrast, as seen
in the analysis of the simulated data, gam analyses accurately capture non-linear predictor
effects as they evolve over time.

Some of the problems associated with a traditional dichotomization analysis can be
overcome by choosing an experimental design that investigates the effect of a single cate-
gorical predictor with carefully selected predictor values that fall into two or more discrete
categories. Many of the questions in psycholinguistic research, however, are easier to answer
in multiple regression designs that allow for the simultaneous investigation of the effect of
multiple numerical predictors with continuous distributions. The experimental design and
analysis techniques presented here provide an example of how the multiple regression tech-
niques that have become commonplace in reaction time studies can be applied in erp studies
through the use of gams. As demonstrated in this appendix, the results from such a gam
analysis provide precise information about the linear and non-linear nature of the effects of
multiple numerical predictors as they evolve over time.


