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Abstract

This study addresses the relation between morphological productivity and semantic transparency. Us-
ing distributional semantics, we compare German word formation with particles with derivational word
formation. We observed that derivational suffixes, but not particles, tend to make strong independent
semantic contributions to their carrier words. In two-dimensional t-SNE maps, complex words show clus-
tering by affix, but not by particle. Furthermore, the semantic vectors of suffixed words are predictable
from their base words with higher accuracy than is possible for particle verbs. This holds irrespective
of whether the semantic vectors of complex words are predicted using a generalization of the FRACCS
model, or whether a more recent, and more precise, additive model (CosClassAvg) is used. For particle
verbs, but not affixed verbs, a greater semantic similarity within the set of complex words correlated
negatively with the number of types. Only for particle verbs, a greater number of types predicted a
reduced probability of unseen types. Considered jointly, the particle verbs are characterized by quan-
titative properties that are very similar to those observed for Mandarin compounds. We propose that
particle verbs, just as compounds, primarily serve the onomasiological function of labeling, resulting in
highly distinct semantic vectors for particle verbs. By contrast, derivational affixation groups complex
words closely together in semantic space while maintaining strong and consistent semantic relations with
the base words. This enables these words to serve not only as labels, but also allows them to be used for
syntactic recategorization.
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1 Introduction

For the quantitative evaluation of morphological productivity, two measures have been found especially
useful. The first measure specifies the number of word types (or vocabulary size) V (N) that occurr in a
sample of N tokens.1 The second measure presents the rate at which the number of types (vocabulary size)
is increasing. This growth rate of the vocabulary size can be estimated by the ratio of words occurring once
only (V (1, N)) and the sample size N : P(N) = V (1, N)/N (see, e.g., Good, 1953; Baayen, 2001). The two
measures capture different aspects of productivity: V (N) highlights the extent to which a morphological
category is in use, whereas P(N) estimates the probability that when the sample size is increased, previously
unseen types will be observed. Research on the productivity of English affixes has shown that for this
language, V (N) and P(N) are uncorrelated (Baayen and Lieber, 1991).

Shen and Baayen (2021) applied these measures to two-syllable compounds in Mandarin Chinese. They
selected compounds sharing a given constituent in a given position (initial or final), which they refer to
as the ‘pivot’ constituent. For a range of pivots, Shen and Baayen (2021) observed a negative correlation
between V (N) (the number of compound types in their corpus that shared the same pivot) and the growth
rate P(N) of the pivot’s morphological family. They also investigated the semantic transparency of pivotal
morphological families. Using distributional semantics (Landauer and Dumais, 1997), they calculated how
similar the meaning of a pivot is to the meaning of the compound in which this pivot occurs. The mean of
this similarity, averaged over all compounds in the pivot’s morphological family, turns out to be positively
correlated with the probability P(N) that with further sampling, previously unseen compounds with that
pivot will be observed. Shen & Baayen (this volume) replicated these results for a larger set of pivots.
They also report that a relatively recent powerful unsupervised clustering technique from machine learning,
t-distributed stochastic neighbor embedding (t-SNE, Maaten and Hinton, 2008), does not detect clusters in
semantic space for pivots, whereas for Mandarin suffixes, it does detect some clustering.

The present study reports research on German derivation that unfolded in part in parallel with the
abovementioned research on compounding in Mandarin. Of central interest to us is the productivity of
German particle verbs. Just as compounds consist of two (or more) words that can be used independently,
particle verbs combine a particle and verb, both of which are independent words. A specific property of
particle verbs is that in some constructions, the particle and the verb form one word, whereas in other
constructions, other words can intervene between the two.

In what follows, we report that particle verbs have similar properties as the pivots of Mandarin com-
pounds. Specifically, we replicate (1) the negative correlation between V (N) and P(N), (2) the positive
correlation between semantic transparency and P(N), and (3) the absence of by-particle clustering of par-
ticle verbs in the two-dimensional map constructed by t-SNE. Furthermore, for German suffixed words, we
observed (1) the absence of a correlation between V (N) and P(N), (2) a clear contribution of the suffix to
the meaning of the derived word, and (3) well-formed clusters of derived word by suffix in the t-SNE map.

In order to better understand these differences between particles and suffixes, we made use of a combi-
nation of principal components analysis and linear discriminant analysis. It turns out that the information
about the meanings of particles is spread out widely and thinly in distributional space, whereas the meanings
of suffixes come with a strong signal that is well-represented already in the most highly ranked dimensions
of a PCA orthogonalization.

This difference between particles and affixes was further supported by an investigation of the semantic
relations between base and derived words. Using the CosClassAvg model (Shafaei-Bajestan et al., 2022,
Shafaei et al., this volume), we constructed models that move from base word to derived word using vector
addition to represent the semantics of particles and suffixes. As expected, the model for particles under-
performed substantially compared to the model for affixes. As it is possible that vector addition is too
restricted to model the semantic contribution of specifically particles with sufficient precision, we made use
of a generalization of the FRACCS model (Marelli and Baroni, 2015), henceforth FRACCS++. This model
also showed much better performance for affixes than for particles. Furthermore, it underperformed for both

1In what follows, we use ‘types’ to denote distinct words, and ‘tokens’ to denote the occurrences of these words. Thus, in
the sentence And the cat sat on the mat, there are 6 types and 7 tokens. The type the occurs twice — its token frequency is 2.
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particles and suffixes compared to the CosClassAvg model, consistent with the results of Shafaei-Bajestan
et al. (2022) and Shafaei et al. (this volume).

In the remainder of this study, we provide further detail on the abovementioned results. We first report
our findings concerning the relation between semantic transparency and productivity. We then present our
results obtained with t-SNE, after which we provide further details on the performance of the FRACCS++
and CosClassAvg models. Our study concludes with a discussion of the implications of our research.

2 Productivity

Many studies have proposed criteria for establishing whether a derivational rule is productive, and what
factors co-determine its productivity (Schultink, 1961; Booij, 1977; Baayen, 2005; Plag, 1999; Dressler
& Ladányi, 2000; Dressler, 2003; Fernández-Domı́nguez, 2009). What emerges from these studies is that,
qualitatively, productivity decreases as the number of restrictions and conditions on a word formation process
increases. Quantitative studies of productivity have led to several measures that provide an overall numeric
assessment of different aspects of productivity (e.g., Baayen, 2005), but these measures by themselves cannot
answer the question of to what extent the different qualitative factors contribute to the actual values of the
quantitative measures.

The present study addresses one specific qualitative factor that is has been argued to co-determine
productivity, semantic transparency (see, e.g., Aronoff, 1976; Baayen, 1993; Bonami and Paperno, 2018).
The difference between semantic transparency and semantic opacity is also referred to in the literature
as the difference between non-lexicalized and lexicalized words (Lieber, 2010). For lexicalized words, the
meaning of the complex word cannot be well predicted from the meanings of its constituents. Lieber gives
as examples English oddity and locality. The former does not mean ‘the state of being odd’, but instead
refers to a thing or person that is odd. Likewise, locality does not denote the state of being local, but a place
or area. The greater productivity of English -ness as compared to -ity (Aronoff, 1976; Baayen and Renouf,
1996) is at least in part due to -ness having much more predictable semantics (see Riddle, 1985, for detailed
discussion). A discussion of semantic transparency in the context of compounding can be found in Günther
and Marelli (2019).

Our study explores ways in which the effect of semantic transparency on productivity can be mea-
sured quantitatively. Our study builds on a study of Mandarin adjective-noun compounding (Shen and
Baayen, 2021) that reported that the category-conditioned degree of productivity P (the hapax to token
ratio V (1, N)/N , see Baayen (2001)) varies with several quantitative measures of semantic transparency:
the tighter the meaning relation between an adjective and its compounds is, the greater the degree of its
productivity is.

2.1 Extent of use and potential productivity

In this study, we consider two quantitative measures of morphological productivity. The first measure
represents the number of different types V (N) observed in a sample of N tokens. We interpret this measure
as estimating the ‘extent of use’ or the ‘profitability’ of a morphological category (cf. Baayen, 2005; Corbin,
1987). The second measure, which is a straightforward application of the Good-Turing estimate of the
probability of unseen types (Good, 1953), assesses the likelihood that if the sample is extended, novel types
will be found. These two measures can be related to each other through the urn model (or bag of words
model) for word frequency distributions. If V (N) denotes the number of types observed for N tokens, then
the tangent to V (N) (conceptualized as a function of N) is given by the (expectation of) the ratio of hapax
legomena V (1, N) and the number of tokens N :

P(N) = V (1, N)/N.

When increasingly large samples are taken from the same population, then V (N) is a monotonically in-
creasing, but decelerating, function of N . Accordingly, the growth rate P(N) decreases as N (and V (N))
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increase. For completely unproductive morphological categories, V (N) will be constant from a certain sam-
ple size onwards, and correspondingly, P(N) will be zero. (For mathematical details, the reader is referred
to Baayen, 2001).

If morphological categories (e.g., words with the particle weg, ‘away’, or the prefix un-, ‘un-’) are sampled
from the same underlying distribution, then one would expect that V (N) and P(N) enter into a negative
correlation. In case that they are sampled from different populations, no correlation can be predicted.

Let us now consider German particle verbs and compare these with German affixed words. German
particle verbs (e.g., backen ‘bake’, durchbacken, ‘bake through’, kurz, ‘short’, abkürzen, ‘shorten’) distinguish
themselves from standard prefixed verbs by the property that the particle can occur separated from its
base verb. This happens in main clauses without auxiliary verbs, in which case the particle can follow the
base verb immediately, but also can be separated from the base verb by one or more words. The past
participle of particle verbs inflects with ge- appearing between particle and verb. In infinitive clauses, zu
appears in between the particle and its base verb. Whereas some particle verbs are fairly transparent, such
as weglaufen (away walk, ‘to walk away’), others are not so straightforward to understand on the basis of
their constituents, for instance abtragen, (away-carry, which has meanings as diverse as ‘pay off’, ‘ablate’,
and ‘remove’). Because particle verbs have constituents that both can be used as independent words, they
can be considered to be compounds rather than derived words.

The upper panel of Figure 1 plots, on a log-log scale, potential productivity P(N) = V (1, N)/N against
the number of types V (N) (realized productivity, or ‘extent of use’), for a total of 98 particles. Type and
token frequencies were taken from dlexDB (http://dlexdb.de/). Clearly, particles that have given rise to
more types (larger V (N)) tend to be less productive in terms of P(N). A similar negative correlation was
also observed by Shen and Baayen (2021) for Mandarin adjective-noun compounds. Apparently, an increase
in realized productivity is detrimental for the potential productivity of German particle verbs.

Shen and Baayen (2021) pointed out that English derivational suffixes are characterized by the absence
of a correlation of V (N) and P(N) (see also Baayen and Lieber, 1991). The lower panel of Figure 1 clarifies
that the same holds for German affixal derivation. A set of 18 German derivational affixes (of which 4 are
prefixes, highlighted in red; frequencies extracted from the CELEX database), are scattered unsystematically
in the V (N)− P(N) plane.

One possible explanation for the pattern that emerges from Figure 1 is that the particle verbs are sampled
from roughly the same general population, whereas the derived words come from separate, affix-specific,
populations. In the remainder of this study, we address this possibility by investigating the transparency of
these word formation processes using distributional semantics. We first investigate measures of transparency
that compare constituent semantic vectors with the semantic vectors of the complex words.

In the present study, we made use of pre-trained word embeddings, obtained with the fasttext al-
gorithm (Bojanowski et al., 2017), that are available at https://dl.fbaipublicfiles.com/fasttext/

vectors-crawl/cc.de.300.vec.gz.

2.2 Semantic transparency assessed with constituent vectors

Semantic transparency is one of the many factors co-determining productivity (see, e.g., Aronoff, 1976;
Baayen, 1993; Bonami and Paperno, 2018). One way of assessing the semantic transparency of a complex
word is to compare the semantic vector of one of the constituents of a complex word with the semantic
vector of the complex word itself. For particle verbs, we have two options. We can compare the semantic
vector of the particle with the semantic vector of the particle verb. Henceforth, we refer to this measure of
transparency as Tp. Alternatively, we can compare the semantic vector of the base word with the semantic
vector of the particle verb, henceforth Tb. For affixed complex words, we can only compare the semantic
vector of the base word with that of the complex words as, by definition, affixes are bound forms for which
we do not have independent word embeddings.2

2Fasttext can be used to obtain semantic embeddings for sub-word n-grams (for n ranging from 3 to 6). There are three
reasons for not using these subword embeddings. First, our general approach is set up to be compatible with other embeddings
such as provided by GLOVE, word2vec, and the grounded embeddings developed by Shahmohammadi et al. (2021). Second,
an evaluation of the substring embeddings of fasttext for morphology is far from trivial. For instance, should we take #be as
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Figure 1: Log category-conditioned productivity P(N) as a function of log number of types V (N). Up-
per panel: For particle verbs, productivity decreases as the number of types increases (ρ = −0.498, S =
234938, p < 0.0001). Lower panel: For 18 derivational affixes, V (N) and P(N) are uncorrelated (ρ =
−0.061, S = 1028, p = 0.81).
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We first consider Tp, the semantic similarity of the particles and the corresponding particle verbs. For
each pair of particle and particle verb, we calculated the Pearson correlation of their semantic vectors. (An
alternative measure that is commonly used is the cosine of the angle of the two vectors. As the cosine
measure and the correlation measure are mathematically related and tend themselves to be almost perfectly
correlated, the choice of measure does not affect results. We opted for the correlation measure, due to its
statistical properties. For instance, with the correlation measure, we can evaluate whether two vectors are
significantly correlated.) Subsequently, we grouped the resulting correlations by particle, and calculated the
by-particle mean correlations. Figure 2 plots log P against log Tp (the mean correlation of the semantic
vectors of the particle and the particle verb). We observe a positive correlation between the two measures,
similar to the positive correlation of the semantic vectors of the adjectives and the vectors of the corresponding
adjective-noun compounds in Mandarin (see Shen and Baayen (2021) and Shen & Baayen, this volume).
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Figure 2: Scatterplot for potential productivity P and Tp, the by-particle means of the correlations of the
embeddings of particles and the embeddings of the corresponding particle verbs. . Color coding distinguishes
between particles with one meaning (black), two meanings (red) and three meanings (blue). Degree of

productivity decreases with number of meanings (β̂ = −0.714, p = 0.0019), and increases with the mean
correlation of particle and particle verb (ρ = 0.23, S = 1641802055, p < 0.0001).

In the scatterplot, shorter particles (e.g., ab) dominate in the lower left, and longer particles (e.g.,
aneinander) dominate in the upper right. However, particle length (in letters) turned out not to be pre-
dictive for P. A predictor that did receive good support is the number of meanings that are listed for the
particles in the DWDS (Digitales Wörterbuch der deutschen Sprache, Berlin-Brandenburgischen Akademie
der Wissenschaften, https://www.dwds.de/d/wb-dwdswb). Particles with three meanings (blue line) tend
to have lower values of Tp, as expected, and also are of lower productivity. Conversely, particles with one

the proper embedding for the prefix be-, or should we take a (possibly) weighted average of #be and all trigrams beX ? It is
also unclear how to compare embeddings for short and long affixes, as the longer ones can be built up from many more partial
n-grams. Third, fasttext substring embeddings are likely to be extremely noisy. Schreuder and Baayen (1994) observed for
prefixes that words starting with a pseude-prefix (e.g., re in reindeer, or un in uncle) are so frequent that their cumulative token
frequency is larger than the cumulative token frequency of the words that actually are prefixed. Since fasttext is token-based,
the substring vectors for prefixes will be substantially contaminated by the many tokens of pseudo-prefixed words. A more
principled way of obtaining embeddings for affixes is presented in Baayen et al. (2019), but this study implemented affixal
vectors only for a small corpus.
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meaning only (black line) have higher values of Tp, and they also have higher values of P. The regression
lines for particles with one, two, and three meanings are based on a Gaussian Location-Scale (gaulss) linear
model. We used a gaulss model because the scatterplot suggests that the variance of the response is not
homoskedastic in the predictor. A gaulss model fitted with the gam function of the mgcv package revealed
for the mean that P decreased with the number of meanings (β̂ = −0.71, p = 0.0019) and that P increased

with Tp (β̂ = 3.62, p = 0.0169). The variance, by contrast, decreased with Tp (β̂ = −1.78, p = 0.0374).
With respect to the second transparency measure, Tb, we did not observe any evidence for a correlation

with P(N), as shown in the upper left panel of Figure 3. The lower left panel of this figure clarifies that a
correlation is actually present for Tb and the number of types V (N) (r = 0.64, t(38) = 5.17, p < 0.0001). The
right-hand panels of Figure 3 illustrate that affixed words are characterized by the same quantitative patterns:
no correlation of the transparency measure Tb with P(N), but a decent correlation of similar magnitude
(r = 0.65, t(16) = 3.39, p = 0.0037) is present for Tb and V (N). Apparently, the more semantically similar
the base words and the derived words that belong to a given morphological category are, the greater their
extent of use is, and the more profitable (Corbin, 1987) that category is. However, this measure of semantic
transparency is, surprisingly, not predictive for potential productivity P(N).3

3 Geometry of semantic transparency in semantic space

The two measures of transparency that we considered thus far, Tp and Tb, focus on the semantic relations
of individual pairs of constituents and their corresponding carrier words. In what follows, we address the
geometry of semantic transparency in semantic space.

3.1 t-SNE analysis of semantic space

We first explore whether, and if so, how, the semantic vectors of complex words cluster in semantic space.
Next, we investigate how the shift vectors (the vectors that start at the vector of the base and end at the
vector of the complex word) cluster in shift space.

To do so, we made use of t-distributed stochastic neighbor embedding (Maaten and Hinton, 2008). t-SNE
is a nonlinear dimension reduction technique that allows us to represent the semantic vectors of complex
words in a two-dimensional plane, such that, with high probability, words that have similar semantic vectors
will be close together, and words that have dissimilar semantic vectors will be far apart. If there are
clusters in a high-dimensional space, t-SNE is likely to find these. For our cluster analyses, we have used
the default settings of the Rtsne package (Krijthe, 2015) for R. The output of a t-SNE analysis is a table
with the coordinates of the observations in a reduced two (or three) dimensional space. Since we know the
morphological structure of the observed words, we use visualization with color highlighting to clarify whether
the t-SNE indeed succeeded in placing words with similar morphological structure in each other’s vicinity.

Figure 4 presents the results of a t-SNE cluster analysis of those 22 particles for which we have semantic
vectors for at least 10 particle verbs. The reason for setting a threshold on the minimum number of verbs
is that the interest of this analysis is in potential clusters. For very small numbers of types, clusters are
unlikely to be meaningfully traceable. Figure 4 clarifies that only very few clusters are detected, namely, for
zurück (light brown, upper left), zusammen (grey, to the lower left of the origin), herum (pink, far left), and
durch (dark pink, slightly above zusammen).

Figure 5 presents the results of a t-SNE cluster analysis for the derivational affixes. All derivational
suffixes show considerable clustering. Of the prefixes, only un- shows clustering. By contrast, the prefixes
be-, ver-, and ent- are found in one large cluster in the right-hand side of the scatterplot. The subcluster of
brown datapoints in the upper right of this cluster represents words with the suffix -isier.

In summary, most particle verbs, as well as the prefixes be-, ver-, ent- do not cluster in semantic space. By
contrast, derivational suffixes and the prefix un- appear with reasonably well-defined clusters. Surprisingly,
a linear discriminant analysis (LDA) can assign semantic vectors to both affixes and particles with a high

3In order to back of from zero, P(N) = V (1, N)/N) was transformed into (V (1, N)+1)/(N+1) before taking the logarithm.
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Figure 3: Log mean correlation of the semantic vectors of base word and complex word (horizontal axis)
for particles verbs (left panels) and affixed words (right panels), by log potential productivity (P(N), upper
panels) and extent of use (V (N), lower panels). Prefixes are highlighted in red.
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degree of accuracy (94%) when the model is given access to all 300 dimensions of the semantic vectors. This
indicates that there must be some structure in semantic space also for the particle verbs.
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Figure 6: Leave-one-out cross-validation accuracy of linear discriminant analyses applied to the first n =
10, 25, 50, 300 dimensions of PCA-orthogonalized semantic vectors for words with affixes (blue) and particles
(red). For particles, accurate classification requires more principal components.

In order to understand why the t-SNE analysis does not detect this structure for the particle verbs (and
three verbal prefixes), we carried out a principal component orthogonalization of the semantic space. The
dimensions of this new space are ordered such that the first dimension captures most of the variance in the
original fasttext space, and the last dimension the least of this variance. We then carried out a series of LDA
analysis that were given access to the first 10, the first 25, and the first 50 dimensions, as well as to all 300
dimensions.

As shown in Figure 6, while classification accuracy is around 94% for both affixes and prefixes when
the full 300-dimensional space is used, classification accuracy decreases quickly when only the first n most
important principal components are available to the classifier. Importantly, classification accuracy decreases
more quickly for words with particles (red) than for words with affixes (blue) as more dimensions are withheld.
For instance, when only the top 10 principal components are made available to the LDA, accuracy is at 71%
for the affixes but only at 31% for the particle verbs. (The cumulative proportions of variance explained
by the two PCA orthogonalizations are, for the affixes, 0.36, 0.50, 0.63, and 1, and for the particles, 0.30,
0.46, 0.61, and 1. Important for the above comparisons is that the cumulative proportions are of similar
magnitude. It is noteworthy, however, that the proportions for the particles lag slightly behind those for the
affixes, consistent with the affixes having more distinct distributions in semantic space.)

From the fact that the semantic vectors of affixed words are much more strongly represented on the first
50 principal components than is the case for particle verbs, it follows that the semantic vectors of affixed
words capture more variance and are more informative than the vectors of particle verbs.

As always in scientific inquiry, absence of evidence does not constitute evidence of absence. The absence of
clusters for particle verbs does not imply their semantics are completely random. There must be information
in the embeddings of particle verbs: a supervised classifier can predict with high accuracy what particle is
present, provided that the classifier has access to all 300 dimensions. However, compared to suffixed words,
this information is hidden from view for unsupervised learning. Suffixed words have distributional properties
that are visible already in the top principal components of a PCA orthogonalization, indicating that their
similarities and dissimilarities play a much more pervasive role in structuring the semantic space.
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3.2 t-SNE analysis of shift vectors

We have seen that the vectors of particle verbs are scattered in the two-dimensional characterization of
semantic space generated by the t-SNE algorithm. It is conceivable that this scatter is a property of their
base words, and that a given particle implements the same, or a similar, semantic change for all base words.
To examine this possibility in more detail, we first examined the shift vectors of particle verbs. Below, we
will consider more general, less restricted mappings between base and derived words.

Shift vectors are those vectors which when added to the vectors of the base verb, result in the vector of
the particle verb: −−−−−−−→

aufhören =
−−−−→
hören+ (

−−−−−−−→
aufhören−−−−−→

hören)︸ ︷︷ ︸
shift vector

.

If adding a particle or affix to a base word implements the same translation in semantic space, then the shift
vectors for all complex words with the same particle or affix should be the same. Given that embeddings
are likely to contain a noise component, the shift vectors for a given formative are likely to show some
variability around a centroid. However, if the shift vectors are dominated by semantic idiosyncracies of the
complex words, then the shift vectors are expected to show a wide scatter in shift space, without forming
clear clusters.

Figure 7 presents a t-SNE map for the shift vectors of the particle verbs. The color coding is by particle.
Clearly, the shift vectors for a given particle show a wide scatter. There are some small clusters, mainly
in the periphery of the t-SNE space, which turn out to represent complex words that share the same base
words. Occasionally, a cluster contains particle verbs derived from near-synonymous base words (e.g., kriegen,
bekommen). This clarifies that the geometric relation between base and derived word cannot be captured in
an insightful way with shift vectors.

Do the shift vectors of affixes cluster in t-SNE space? Figure 8 shows that the shift vectors for German
suffixes indeed form relatively good clusters. There is some overlap as well as some scatter for individual
complex words. However, by and large, the t-SNE analysis suggests that suffixes have two properties. First,
suffixes contribute their own specific shift vectors, which we can represent as the vectors pointing to the
centroids of their respective clusters. Second, variances in the angle around the centroid appear to be pretty
much the same, and appear not to co-vary with the number of types V (p > 0.2). This is consistent with a
model in which the semantic vectors of complex words have random error terms with the same variance (cf.
Nikolaev et al., this issue).

Figure 9 presents the shift vectors for prefixed words in the same t-SNE plane as that of Figure 8.
The only prefix that shows good clustering is un-, which is perhaps unsurprising given its straightforward
semantic contribution of negation (e.g., klar/unklar, ‘clear/unclear’). The prefixes be-, ver-, and ent- are
characterized by a wide scatter and enormous overlap. Although at a high level of abstraction, these prefixes
can be differentiated semantically (see, e.g., Lieber and Baayen, 1993, for the very similar Dutch prefixes
be-, ver- and ont-), Figure 9 clarifies that individual complex words have strongly idiosyncratic semantics
and that current methods from distributional semantics are not sensitive, possibly cannot be sensitive, to
the high-level abstract meanings of these prefixes.

In summary, the relation between base and derived words can be captured by shift vectors for suffixes
and the most transparent prefix (un-), whereas particles and the prefixes be-, ver- and ent- do not show
consistent clustering. In the next section, we address the question of whether a more complex mapping from
base to derived word yields improved results, not only for these three prefixes, but also for particles.
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Figure 9: Locations of the shift vectors for prefixed verbs in t-SNE shift space. The only prefix revealing a
dense cluster (but in combination with a wide scatter outside this cluster) is un-.

4 Modeling conceptualization: FRACSS++ and CosClassAvg

We have seen that most particles, as well as the prefixes be-, ver- and ent-, do not show any clustering
in semantic space. We have also shown that a linear discriminant analysis can predict particles or affixes
with a high accuracy, also under cross-validation, but that having access to all 300 semantic dimensions is
crucial. The final question we address in this study is how well the individual vectors of complex words can
be predicted from the vectors of their base words. The LDA analysis was given the task to assign a vector
to a category label. In what follows, we consider a more difficult task, namely, to predict, as accurately as
possible, the 300-dimensional vector of the complex word, given the vector of its base word. In other words,
we are asking whether we can quantify the conceptualization of the meanings of particle verbs and affixed
verbs.

Our point of departure is the FRACCS model of Marelli and Baroni (2015). The FRACCS model was
originally developed for individual affixes. To implement this model, we take as starting point a matrix B
with the semantic vectors of all the words with a given affix, and we estimate a linear transformation F that
maps these base vectors onto the semantic vectors of the corresponding complex words, brought together as
the row vectors of a matrix D:

D = BF .

Using the Moore-Penrose pseudo-inverse of B, denoted by B+, F is obtained straightforwardly:

F = B+D.

Given F , we obtain the predicted semantic vectors

D̂ = BF ;
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if the mapping is precise, a predicted vector d̂i should have as its closest neighbor the target gold-standard
vector di.

A fundamental problem with this model is that although it will learn the words on which it is trained
very well, it cannot generalize. For instance, there are 173 words with be- in our dataset. When we set 156
words apart for training, and a random 17 words for testing, the FRACCS model is 100% accurate for the
training data, but only gets one out of 17 held-out words correct (6% accuracy). Clearly, FRACCS works
well as a memory, but it is a memory that is not productive. The reason for this overfitting is straight-
forward: there are only 173 observations, each represented by 300 real numbers. The FRACCS mapping
matrix is of dimension 300×300, which amounts to 90,000 parameters. Thus, from a statistical and machine
learning perspective, the number of parameters and the number of observations are completely out of balance.

In order to attenuate this problem somewhat by increasing the number of observations, we applied the
FRACCS method to all the 2203 affixed words in our study jointly, and likewise to the set of 2019 particle
verbs. This resembles the approach to compounding reported by Marelli et al. (2017), where one model
mapping is applied to a heterogeneous set of compounds that exemplify a wide range of semantic relations
between the modifier and head constituents. Of course, the FRACCS method is now confronted with a more
complex task, and accuracy is now unlikely to remain at 100%. As from a research perspective, having a series
of overfitting models that all perform with close to 100% accuracy without generalizing is not informative
at all, our extension of FRACCS, to which we will refer as FRACCS++, is a more useful tool with which
we can probe the relations between the meanings of the base words and the corresponding derived words.4

We first applied FRACCS++ to the 2203 affixed words, and observed that for 62.4% of these derived
words, the closest neighbor of the predicted vector was indeed the targeted semantic vector. The left half
of Table 1 provides examples of the kind of prediction errors made by this mapping. When the words with
the prefixes be-, ver- and ent- are removed from the dataset before estimating F , accuracy increases from
62.4% to 75.9%. This result dovetails well with the observation that these three prefixes do not show any
clear clustering in the t-SNE plane.

affixed verbs particle verbs
target predicted target predicted
abenteuerlich abenteurer angehören zusammengehören
achter achtlos anfertigen abfertigen
adelig adlig anknüpfen aufknüpfen
akrobatin akrobatisch anmerken vormerken
altern veralten anstrengen überanstrengen
araber arabisch andauern überdauern
artig unart anklagen einklagen
aerztin verarzten ankämpfen durchkämpfen
atmung beatmen anfechten ausfechten
ausbeuter ausbeutung anstarren hinstarren
ausgeglichenheit unausgeglichen anhäufen überhäufen
automatisch automatisieren anfeuern abfeuern
banner verbannen anraten abraten
beachten verachten anfühlen einfühlen
beantworten verantworten anreizen ausreizen

Table 1: Examples of words incorrectly predicted by FRACSS++ for affixed words (left) and particle verbs
(right)

For particle verbs, we expect accuracy to be substantially reduced, as most particle verbs also do not

4We believe that FRACCS++ is a straightforward extension of the idea of FRACCS, but as one of our reviewers insisted
that FRACCS is a model that is defined for individual affixes only, we refer to our generalization with a different name that,
however, reveals our indebtedness to the FRACCS model.
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show any clear clusters. Accuracy for a mapping trained on the 2220 base verbs of particle verbs was at
36.4. The right half of Table 1 illustrates the kind of errors produced by this mapping. Considered jointly,
these results indicate that a wide scatter and the absence of clustering in the t-SNE plane on the one hand,
and a low accuracy when predicting complex words from base words using FRACSS++ on the other hand,
go hand in hand.

Next, we adopt the approach of Shafaei-Bajestan (Shafaei-Bajestan et al., 2022), and use the CosClassAvg
method to model the conceptualization of complex words. Above, we presented t-SNE maps for the shift
vectors of particles (Figure 7) and of affixes (Figure 8. The latter figure shows clustering of shift vectors
by affix, with as exceptions the prefixes be-, ver-, and ent-. These clusters suggest that the affixes tend to
change the meaning of a base word into the meaning of the corresponding derived word using a consistent
shift, i.e., by adding an affix-specific vector. The CosClassAvg formalizes this intuition by predicting the
meaning d̂i of word i from the meaning of its base word bi to which an affix-specific (or particle-specific)
shift vector mj is added. The shift vector of a given affix (or particle) is obtained by averaging over all the
individual shift vectors of the words sharing affix or particle mj :

d̂i = bi +mj .

For the affixed words, accuracy was 72.2% when the prefixes be-, ver- and ent- are included. Accuracy
increased to 78.8% when these three prefixes are excluded. For the particle verbs, accuracy was at 50.3%.

In summary, the CosClassAvg method outperforms FRACSS++ with respect to accuracy for both affixed
words (72.2% vs. 62.4%) and for particle verbs (50.3% vs. 36.4%). Furthermore, CosClassAvg has somewhat
improved performance for unseen data. For training on 90% of the data, and predicting for 10% of the data,
accuracy for CosClassAvg for the affixed words was 65% for training and 49% for testing (a reduction of
accuracy for the held out data to 75%). For the FRACCS++ model, the corresponding accuracies were 55%
and 28% (a reduction to 51%).

These results raise the question of why CosClassAvg performs better for the present data than the
FRACSS++ baseline model, not only for the affixed words, but also for the particle verbs. To answer
this question, consider that CosClassAvg builds on the centroids of individual clusters. Conversely, the
predictions of FRACSS++ are based on all words jointly. Thus, CosClassAvg is set up so that it is eminently
sensitive to the semantics of a given morphological category, without interference from other morphological
categories. This sensitivity to local structure in semantic space may also help explain why CosClassAvg
has greater accuracy for particle verbs. Although particle verbs do not form clusters that are visible to the
t-SNE algorithm, we know from the LDA analysis that in the full high-dimensional space, there is some
structure. By conditioning on individual particles, apparently, irrelevant sectors of semantic space are not
taken into consideration, resulting in somewhat better prediction accuracy. However, compared to the affixed
words, prediction accuracy remains substantially reduced, indicating that particle verbs are generally less
transparent than affixed words.

As a point measure of the clustering properties of affixed words and particle verbs, we calculated, for
each affix and each particle separately, the mean of the pairwise correlations of the semantic vectors of all
words sharing that affix or particle. We then compared this final transparency measure (which follows Shen
and Baayen, 2021) with the two measures of productivity, P(N) and V (N). Correlations with P(N) turned
out not to be well supported, not for affixes nor for particles (ρ = −0.295, p = 0.064 for particle verbs,
ρ = −0.270, p = 0.2791 for affixed words). This is perhaps unsurprising, as in these analyses, affixes and
particles with less than three types are not taken into consideration. However, as illustrated in Figure 10,
for particles (right panel), a strong negative correlation emerged (ρ = −0.739, p < 0.0001). By contrast, for
affixes, there was no evidence for a correlation at all (ρ = −0.125, p = 0.6208). As can be seen in the right
panel of Figure 10, longer particles are found more to the right. We therefore carried out a linear regression
with number of letters of the particle as covariate. Only the transparency measure was supported, with
no support for an effect of length (p > 0.5). This allows us to conclude that, apparently, a greater mean
pairwise correlation, henceforth Tm predicts a lower extent of use V . In other words, the usefulness of a
particle within a language community appears to be that it can be employed to create a wide range of rather
different meanings. The more the meanings of a particle’s carrier words are similar to each other, the less
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Figure 10: Mean of within-category pairwise correlations as predictor of the number of types. Left: affixed
words; right: particle verbs.

likely it is that it will be used to coin more words.

5 Discussion

In this study, we investigated the relation between morphological productivity and semantic transparency for
German particle verbs and derivational affixation. We considered two aspects of morphological productivity,
profitability or extent of use, assessed with the type count V (N), and potential productivity P(N), the Good-
Turing estimate of sampling new types (Baayen, 2005). Following Shen and Baayen (2021), we considered
three measures of semantic transparency based on distributional semantics. Tp is the mean of the correlations
of the semantic vectors of particle and particle verb. Tb is the mean of the correlations of the semantic vectors
of the base word and the complex word. Finally, Tm is the mean of all pairwise correlations of the semantic
vectors of the complex words sharing a given particle or affix. We also investigated semantic transparency
using exploratory visualization with t-SNE (Maaten and Hinton, 2008) as unsupervised clustering method.
Finally, we compared two models for the conceptualization of the meanings of complex words: FRACSS++,
building on the FRACCS model by Marelli and Baroni (2015), and CosClassAvg (Shafaei-Bajestan et al.,
2022). The results that we obtained are summarized in Table 2.

Particle verbs, but not affixed words, revealed a negative correlation between V (N) and P(N). This
negative correlation is expected for data that are well-approximated by the urn model (or bag-of-words
model) for word frequency distributions (Baayen, 2001): as more types are sampled, the rate at which new
types can be sampled decreases. The presence of a negative correlation of V (N) and P (N) for particle verbs
suggests that the particles do not make highly distinct and well-differentiated contributions to the meanings
of their carrier verbs. This finding dovetails well with the absence of by-particle clustering in semantic space,
as gauged with t-SNE.

This result does not imply that the relation between the semantics of the constituents of particle verbs,
and the semantics of the particle verbs themselves, is completely random. A linear discriminant analysis is
able to predict the identity of the particle from the semantic vectors of the particle verbs with 94% accuracy.
However, given the more difficult task to predict the semantic vector of a particle verb itself from the semantic
vector of its base word, the FRACSS model reaches an accuracy of only 36%, and the CosClassAvg model
an accuracy of 50%.
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Table 2: Summary of the quantitative similarities and differences between particle verbs and affixed words.

particle verbs affixed words
V and P negative correlation no correlation
Tp and P positive correlation -
Tb and P no correlation no correlation
Tb and V positive correlation positive correlation
Tm and P no correlation no correlation
Tm and V negative correlation no correlation
LDA accuracy given 300 dimensions 94% 94%
LDA accuracy given 10 PCA dimensions 31% 71%
t-SNE words no clustering clustering
t-SNE shift vectors some clusters by base clusters by affix
FRACSS accuracy 36.4% 62.4%
CosClassAvg accuracy 50.3% 72.2%

The Tp and Tb measures gauge the transparency of constituents with respect to their carrier words.
The Tp measure, which is available only for the particle verbs, is positively correlated with P: the more
transparent the particle, the more likely it is that unseen particle verbs are present in the population. The
Tb measure turns out to be positively correlated with V , suggesting that base transparency is essential for
profitability. Importantly, the Tm measure, which evaluates all pairwise whole-word similarities, is negatively
correlated with V . The more similar a particle’s verbs are, the less profitable a particle is.

Considered jointly, these results suggest that the productivity of a particle hinges on the ‘local’ trans-
parency of constituents and particle verb, rather than on ‘global’ semantic changes that are realized across
all words sharing a particle: The particle itself does not appear to make a systematic semantic contribution
that generalizes across all the particle verbs it gives rise to. This interpretation is supported by a linear
discriminant analysis that is provided with the first 10 principal components of the semantic space. The
reduction from 300 to the 10 most important dimensions comes with a 63% drop in accuracy. The semantic
structure that underlies the productivity of particle verbs appears to be spread out thinly across all di-
mensions of the semantic space. This raises the question of what kind of semantics the linear discriminant
analysis is detecting.

As a tentative answer to this question, we note that many particle verbs express metaphorical concepts
in space and time. For example, the verb treiben ‘to drive’ refers to verbs of action, whereas in combination
with the particle unten- it often takes on the sense of “reducing significance in one’s utterance or report”. For
verbs such as untentreiben, the particle contributes the metaphorical meaning, but the metaphorical meaning
can also be contributed by the base verb. According to the study of verb-particle constructions with auf-
(Lechler and Roßdeutscher, 2009), even though opaque when considered in isolation, the gist of particle
verbs can be remarkably well understood in context. Some particle verbs are entangled with structural
metaphors (Lakoff and Johnson, 1980). For instance, aufblicken, ‘to look up to somebody’ (from blicken ‘to
look, glance’) reflects the general structural metaphor that up is more in the social domain: one looks ‘up’
to someone with ‘higher’ social status. The abovementioned verb untertreiben, ‘to understate’, participates
in the same structural metaphor, but at the opposite end of the scale. It is also worth noting that particles
can realize aspectual meanings. For instance, aufstehen (‘stand up’) is telic, whereas its base stehen is atelic.
Likewise, aufblasen ‘to blow up, inflate’ is telic, but its base blasen is atelic. A particle verb with auf can
be quite opaque, and yet realize telic aspect, as in aufhören, ‘to stop’, from hören, ‘to hear’. Our conjecture
is that particles contribute in systematic ways to structural metaphors and to aspect, and that it is these
subtle semantic systematicities that the linear discriminant analysis is exploiting. As verbs prefixed with be-,
ver- and ent- realize semantics that in many ways resemble those of particle verbs (see Lieber and Baayen,
1993, for an analyses of the corresponding prefixes in Dutch), we expect that they are invisible to t-SNE for
the same reasons as the particle verbs.
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One quantitative property of particle verbs that is relevant to the present discussion is the negative
correlation between P(N) and V (N). This negative correlation is expected, given the probability theory
underlying the P(N) measure, to arise when each particle corresponds to a set of verbs (of a given size
N) sampled from the same underlying population. As the negative correlation between P(N) and V (N)
is modest (ρ = −0.5, see Figure 1), words with individual particles are not just random samples from
exactly the same population: each particle has its own productivity signature, in line with the results of
the linear discriminant analysis given the task to predict particles from the semantic vectors of the particle
verbs. Nevertheless, the populations of concepts sampled by individual particles are sufficiently similar for
a negative correlation of vocabulary size and vocabulary growth rate to emerge. Since many particles are
available for realizing metaphors and aspect, the existence of a negative correlation is unsurprising. For
instance, telic aspect can be expressed not only with auf, but also with an as in ankommen (‘arrive’, from
kommen, ‘come’).

Particles contrast with affixes (except for be-, ver- and ent-) in several remarkable ways. Derived words
with suffixes, or with the prefix un-, show clear clustering in t-SNE plots. Furthermore, the shift vectors for
these affixes also show good clustering. When only the first ten principal components are made available
to a linear discriminant analysis, accuracy suffers, not by 63% but only by 23%. Both FRACSS++ and
CosClassAvg are better able to predict the semantic vector of the complex word from the semantic vector
of its base for affixed words than for particle verbs. The distinct semantic contribution that an affix makes
to the meaning of its derived word brings these words close together in semantic space, enabling the t-SNE
analysis to detect by-affix clusters in both word space and shift space.

Before reflecting further on the different properties of particle verbs and affixed words that this study
documents, we take a step back and consider the reliability of the measurement instrument with which
we gauge semantic similarity: word embeddings. For particle verbs, the word embeddings that we used
are far from perfect. Particles often occur separated from their base word, and hence are conflated with
prepositions by the fasttext algorithm. Furthermore, base words that occur separated from their particle
may, if the particle is outside the contextual window used by fasttext, be conflated with the base word.
As a consequence, the amount of imprecision in the word embeddings is necessarily greater for the particle
verbs than for the affixed words. However, complex words with the prefixes be-, ver- and ent- also do not
cluster in t-SNE plots. Therefore, separability as such is unlikely to be the main cause underlying absence
of clustering. In fact, a few particle verbs actually do show clustering in t-SNE plots, even though they
are separable. We therefore have good reasons to believe that a major confound with a lack of precision of
semantic vectors for particle verbs and their constituents is unlikely to completely drive the present results.

More in general, it should be kept in mind that all embeddings are rife with noise. For instance, English
bank has two dominant readings, ‘river bank’ and ‘financial bank’. The embedding provided by fasttext
for bank is a frequency-weighted average of the ‘true’ embeddings of river bank and financial bank. (We
put true in scare quotes because many words have so many different senses that representing a word with
one vector is also widely off even for bank in its financial interpretation.) Studies of compounding using
distributional semantics wrestle with the same problem. Günther and Marelli (2019); Guenther and Marelli
(2022) work with English stand-alone embeddings, just like we do. This, unfortunately, restricts their
analyses to compounds that are not written with a space. As a consequence, when their model predicts
the embedding of houseboat from the embeddings of house and boat, then the embedding for house is
confounded with spaced compounds such as house sparrow. As spaced compounds are highly productive in
English, current work on compound semantics is likely to be biased towards particular semantic relations.
In spite of its potential biases, the abovementioned studies on compounding open up new avenues for the
study of compound semantics and compound processing. In the same vein, even though the embeddings
of particle verbs are noisy, they are not devoid of valuable information. If that were the case, our analyses
using LDA as a classifier should have failed to predict particles from the embeddings of the particle verbs,
contrary to fact.

To conclude this study, we present some reflections on how the different behavior of particle verbs and
affixed words might be understood. As point of departure, we build on a study on productivity (Kastovsky,
1986) which called attention to two distinct functions of morphology, which Kastovsky referred to as ‘labeling’
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and ‘syntactic recategorization’. The onomasiological function of word formation is well known: derived
words and compounds typically provide labels for things and events that we perceive in the world. But
complex words can also be used to refer back to earlier parts of the discourse. For instance, having described
a researcher as ‘very thorough’, later on in the text the word ‘thoroughness’ can be used to refer back to this
state of affairs (see also Baayen and Neijt, 1997). For this ‘anaphorical’ use of derivation, it is essential that
complex words are transparent and that the affix makes a clear contribution similar to the contribution to
meaning made by syntactic modification. For instance, German aufhören (on-hear, ‘to stop’) is too unrelated
to the meaning of hören (‘to hear’) to allow for a construction in which aufhören is sensibly used to refer
back to an earlier event involving hearing.

German particle verbs seem to us to primarily subserve the labeling function. There are exceptions,
for instance, the particles zurück, zusammen and durch show some clustering. But many particles are
characterized by large numbers of different senses (e.g., 18 senses for ab, and 40 for an (Kempcke, 1965;
Kliche, 2009), which can be strikingly different from the meanings of the corresponding prepositions. For
instance, auffallen ‘to be striking, salient’ and ausfallen ‘to fail’ have very different meanings, which in turn
are different from the meanings of fallen ‘to fall’, auf ‘on, up’, and aus ‘from’.

Conversely, we have seen that affixed words have meanings that are dominated by the affix: Absolutheit
(‘absoluteness’) and Alleinheit (‘loneliness’) are straightforward nominalizations of the adjectives ‘absolute’
and ‘alone’. Hence affixed words can subserve anaphorical use (Kastovsky’s ‘syntactic recategorization). Not
all affixes have this property, the prefixes be-, ent-, and ver- (but not un-) behave more like particle verbs. Of
course, affixes often are present in words that serve as labels. Interestingly, (Baayen and Neijt, 1997) showed,
on the basis of a corpus study of Dutch, that the labeling function is typical for the higher-frequency words,
and that the anaphoric function is prevalent among the lower-frequency words. Interestingly, the t-SNE
maps for affixed words suggest that even the higher-frequency words with a given affix are characterized by
senses that are sufficiently related to allow the t-SNE to cluster them reasonably well together.

The particle verbs emerged with quantitative properties that are remarkably similar to those of compound
pivots studied by Shen and Baayen (2021) and Shen & Baayen (this volume). Both pivots and particles
show a negative correlation for V (N) and P(N), both show a positive correlation between pivot/particle
transparency and P(N), and neither pivots nor particles show clustering in t-SNE maps. This suggests that
particles are closer to compounding than to derivation. In the light of the independent use that particles
enjoy, this conclusion is perhaps unsurprising.

As pointed out by Shen and Baayen (2021) for Mandarin adjective-noun compounding, the creation of
names for things and events in the world (as perceived by us) can be productive. However, since things and
events in the world are “sui generis”, and not necessarily in sync with the categories that evolve in language
communities to help make the human-perceived world predictable, a word formation process that creates
names runs the risk of not having its own clear semantics. We are thus faced with a transparency paradox:
a word formation process that primarily serves the function of providing names for new ideas and concepts
that are themselves not compositional, can only be productive if it is semantically relatively unconstrained
(see also Shen and Baayen, 2021, and Shen & Baayen, this volume).
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Good, I. J. (1953). The population frequencies of species and the estimation of population parameters.
Biometrika, 40:237–264.

Guenther, F. and Marelli, M. (2022). Patterns in caoss: Distributed representations predict variation in
relational interpretations for familiar and novel compound words. Cognitive Psychology, 134:101471.

Günther, F. and Marelli, M. (2019). Enter sandman: Compound processing and semantic transparency
in a compositional perspective. Journal of Experimental Psychology: Learning, Memory, and Cognition,
45(10):1872.

Kastovsky, D. (1986). Productivity in word formation. Linguistics, 24:585–600.

Kempcke, G. (1965). Die Bedeutungsgruppen der verbalen Kompositionspartikeln an-und auf-in synchro-
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