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Abstract
A two-layer symbolic network model based on the equilibrium equations of
the Rescorla-Wagner model (Danks, 2003) is proposed. The study starts by
presenting two experiments in Serbian, which reveal for sentential reading
the inflectional paradigmatic effects previously observed by Milin, Filipović
Durdević, and Moscoso del Prado Mart́ın (2009) for unprimed lexical de-
cision. The empirical results are successfully modeled without having to
assume separate representations for inflections or data structures such as in-
flectional paradigms. In the next step, the same naive discriminative learn-
ing approach is pitted against a wide range of effects documented in the
morphological processing literature. Frequency effects for complex words as
well as for phrases (Arnon & Snider, 2010) emerge in the model without
the presence of whole-word or whole-phrase representations. Family size
effects (Schreuder & Baayen, 1997; Moscoso del Prado Mart́ın, Bertram,
Häikiö, Schreuder, & Baayen, 2004) emerge in the simulations across simple
words, derived words, and compounds, without derived words or compounds
being represented as such. It is shown that for pseudo-derived words no
special morpho-orthographic segmentation mechanism as posited by Rastle,
Davis, and New (2004) is required. The model also replicates the finding of
Plag and Baayen (2009), that, on average, words with more productive af-
fixes elicit longer response latencies, while at the same time predicting that
productive affixes afford faster response latencies for new words. English
phrasal paradigmatic effects modulating isolated word reading are reported
and modelled, showing that the paradigmatic effects characterizing Serbian
case inflection have cross-linguistic scope.
Keywords: naive discriminative learning, morphological processing, read-
ing, compound cue theory, Rescorla-Wagner equations, weighted relative
entropy, a-morphous morphology.
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In traditional views of morphology, just as simple words consist of phonemes, complex words
are composed of discrete morphemes. In this view, morphemes are signs linking form to
meaning. A word such as goodness is analysed as consisting of two signs, the free morpheme
good, and the bound morpheme -ness. When reading goodness, the constituents good and
-ness are parsed out, and subsequently the meaning of the whole word, “the quality of
being good” (in any of the various senses of good) is computed from the meanings of the
constituent morphemes.

The morphemic view has been very influential in psycholinguistic studies of morpho-
logical processing. Many studies have addressed the question of whether the parsing of
a complex word into its constituents is an obligatory and automatic process (e.g., Taft &
Forster, 1975; Taft, 2004; Rastle et al., 2004) and have investigated the consequences of
such obligatory decomposition for words that are not morphologically complex (e.g., cor-
ner versus walk-er, reindeer (not re-in-de-er) versus re-in-state). Priming manipulations
have been used extensively to show that morphological effects are stronger than would be
expected from form or meaning overlap alone (e.g., Feldman, 2000). Other studies have
addressed the consequences of the breakdown of compositionality, both for derived words
business (’company’, not ‘the quality of being busy’) and compounds (hogwash, ‘nonsense’)
(see, e.g., Marslen-Wilson, Tyler, Waksler, & Older, 1994; Libben, Gibson, Yoon, & Sandra,
2003; Schreuder, Burani, & Baayen, 2003). Furthermore, frequency effects have often been
used as diagnostics for the existence of representations, with whole-word frequency effects
providing evidence for representations for complex words, and morphemic frequency effects
pointing to morpheme-specific representations (e.g., Taft & Forster, 1976a; Taft, 1979, 1994;
Baayen, Dijkstra, & Schreuder, 1997).

In current theoretical morphology, however, the morpheme does not play an important
role. One reason is that, contrary to what one would expect for a linguistic sign, bound
morphemes often express a range of very different meanings. In English, the formative -er is
used for deverbal nouns (walk-er) but also for comparatives (greater). The suffix -s indicates
plural on nouns (legs), singular on verbs (walks), and also the possessive (John’s legs). In
highly inflecting languages such as Serbian, the case ending -i indicates dative or locative
singular for regular feminine nouns (a class), but nominative plural for masculine nouns.

A second reason is that formatives often pack together several meanings, often only
semi-systematically. For instance, in Latin, the formatives for the present passive contain
an r as part of their form, but this r can appear initially (-r, -ris, first and second person
singular) or final (-tur, -mur, -ntur, third person singular, first and third person plural).
The exception is the formative for the second person plural, which does not contain an r
at all (-mini). Thus, the presence of an r in a verb ending is a good, although not perfect,
indicator of passive meaning. To complicate matters even further, the very same passive
formatives are used on selected verbs to express active instead of passive meaning, indicating
that the interpretation of these formatives is highly context-dependent. This is not what
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one would expect if these formatives were bona fide linguistic signs.
A third reason is that some languages shamelessly reuse inflected forms as input

for further case inflections, as exemplified by Estonian non-nominative plural case endings
attaching to the partitive singular (Erelt, 2003). For instance, jalg (‘foot’, nominative) has
as singular case endings forms such as jalga (partitive), jala (genitive) and jalast (elative).
The corresponding plural case endings are jalad (nominative), jalgasid (partitive), jalgade
(genitive) and jalgadest (elative). Even though the form of the partitive singular is present
in the plural non-nominative case endings, it does not make any semantic contribution to
these plural forms (and therefore often analysed as a stem allomorph).

A fourth reason is that form-meaning relationships can be present without the need
of morphemic decomposition. Phonaesthemes, such as gl- in glow, glare, gloom, gleam,
glimmer and glint, provide one example, the initial wh of the question words of English
(who, why, which, whether, where, . . . ) provides another (Bloomfield, 1933). Furthermore,
blends (e.g., brunch, from breakfast and lunch) share aspects of compositionality without
allowing a normal parse (see, e.g., Gries, 2004, 2006).

A fifth reason is that inflectional formatives often express several grammatical mean-
ings simultaneously. For instance, the inflectional exponent a for Serbian regular feminine
nouns expresses either nominative and singular, or genitive and plural. Similarly, normal
signs such as tree may have various shades of meaning (such as ‘any perennial woody plant
of considerable size’, ‘a piece of timber’, ‘a cross’, ‘gallows’), but these different shades of
meaning are usually not intended simultaneously in the way that nominative and singular
(or genitive and plural) are expressed simultaneously by the a exponent.

A final reason is that in richly inflecting languages, the interpretation of an inflec-
tional formative depends on the inflectional paradigm of the base word it attaches to. For
instance, the abovementioned Serbian case ending -a can denote not only nominative sin-
gular or genitive plural for regular feminine nouns, but also genitive singular and plural for
regular masculine nouns. Moreover, for a subclass of masculine animate nouns, accusative
singular forms make use of the same exponent -a. The ambiguity of this case ending is
resolved, however, if one knows dative/instrumental/locative plural endings for feminine
and masculine nouns (-ama vs. -ima, respectively). In other words, resolving the ambiguity
of a case ending depends not only on contextual information in the preceding or following
discourse (syntagmatic information), but also on knowledge of the other inflected forms in
which a word can appear (paradigmatic information).

Considerations such as these suggest that the metaphor of morphology as a formal
calculus with morphemes as basic symbols, and morphological rules defining well-formed
strings as well as providing a semantic interpretation, much as a pocket calculator interprets
2 + 3 as 5, is inappropriate. Many studies of word formation have concluded that more
insightful analyses can be obtained by taking the word as the basic unit of morphological
analysis (for details, and more complex arguments against a beads-on-a-string model of
morphology (also known as ‘item-and-arrangement morphology’), see, e.g., Matthews, 1974;
Hockett, 1987; S. Anderson, 1992; Aronoff, 1994; Beard, 1995; Blevins, 2003, 2006; Booij,
2010).

The following quote from Hocket (1987:84) is informative, especially as in early work
Hockett himself had helped develop an ‘item-and-arrangement’ model of morphology that
he later regarded as inadequate:
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In 1953 Floyd Lounsbury tried to tell us what we were doing with our clever
morphophonemic techniques. We were providing alternations by devising an
‘agglutinative analog’ of the language and formulating rules that would convert
expressions in that analog into the shapes in which they are actually uttered.
Of course, even such an agglutinative analog , with its accompanying conversion
rules, could be interpreted merely as a descriptive device. But it was not in
general taken that way; instead, it was taken as a direct reflection of reality.
We seemed to be convinced that, whatever might superficially appear to be the
case, every language is ‘really’ agglutinative.

It is worth noting that in a regular agglutinating language such as Turkish, morphological
formatives can be regarded as morphemes contributing their own meanings in a composi-
tional calculus. However, in order to understand morphological processing across human lan-
guages, a general algorithmic theory is required that covers both the many non-agglutinative
systems as well as more agglutinative-like systems.

If the trend in current linguistic morphology is moving in the right direction, the
questions of whether and how a complex word is decomposed during reading into its con-
stituent morphemes are not the optimal questions to pursue. A first relevant question
in ‘a-morphous’ approaches to morphological processing is how a complex word activates
the proper meanings, without necessarily assuming intermediate representations supposedly
negotiating between the orthographic input and semantics. A second important question
concerns the role of paradigmatic relations during lexical processing.

Of the many models proposed for morphological processing in the psycholinguistic
literature, the insights of a-morphous morphology fit best with aspects of the the trian-
gle model of Harm and Seidenberg (1999); Seidenberg and Gonnerman (2000); Plaut and
Gonnerman (2000); Harm and Seidenberg (2004). This connectionist model maps ortho-
graphic input units onto semantic units without intervening morphological units. The tri-
angle model also incorporates phonological knowledge, seeking to simulate reading aloud
within one unified system highly sensitive to the distributional properties of the input,
where other models posit two separate streams (orthography to meaning, and orthography
to phonology, see, e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Borowsky et al.,
2006).

In what follows, we propose a computational model, the “naive discriminative reader”,
which models morphological processing with an architecture directly mapping form onto
meaning, without using specific representations for either bound morphemes or for complex
words. The model follows the triangle model, but differs in various ways. First, it works
with just two levels, orthography and meaning. In this study, we do not address reading
aloud, focusing instead on developing a model that properly predicts morphological effects
in comprehension. Second, there are no hidden layers mediating the mapping of form onto
meaning. Third, the representations that we use for coding the orthographic input and
semantic output are symbolic rather than subsymbolic. Fourth, our model makes use of
a simple algorithm based on discriminative learning to efficiently estimate the weights on
the connections from form to meaning, instead of backpropagation. The research strategy
pursued in the present study is to formulate the simplest probabilistic architecture that is
sufficiently powerful to predict the kind of morphological effects documented in the process-
ing literature.
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Of special interest to our modeling effort are two general classes of phenomena that
suggest a form of ‘entanglement’ of words with morphologically related words during lex-
ical processing. Schreuder and Baayen (1997) documented for simple words that the type
count of morphologically related words co-determines processing latencies in visual lexi-
cal decision. This ‘family size’ effect has been replicated for complex words and emerges
also in languages such as Hebrew and Finnish (De Jong, Schreuder, & Baayen, 2000;
Moscoso del Prado Mart́ın, Kostić, & Baayen, 2004; Moscoso del Prado Mart́ın et al., 2005;
Moscoso del Prado Mart́ın et al., 2004; Baayen, 2010). One interpretation of the family
size effect, formulated within the framework of the multiple read-out model of Grainger and
Jacobs (1996), assumes that a word with a large family co-activates many family members,
thereby creating more lexical activity and hence providing more evidence for a yes-response
in lexical decision. Another explanation assumes that resonance within the network of fam-
ily members boosts the activation of the input word (De Jong, Schreuder, & Baayen, 2003).
In the present study, we pursue a third explanation, following Moscoso del Prado Mart́ın
(2003, chapter 10), according to which family size effects can emerge straightforwardly in
networks mapping forms onto meanings.

The second class of phenomena of interest to us revolves around the processing of
inflected words that enter into extensive, highly structured paradigmatic relations with
other inflected words. Milin, Filipović Durdević, and Moscoso del Prado Mart́ın (2009)
showed, for Serbian nouns inflected for case and number, that response latencies in the
visual lexical decision task are co-determined by both the probabilities of a word’s other
case endings, and the probabilities of these case endings in that word’s inflectional class.
More precisely, the more a given word’s probability distribution of case inflections differs
from the corresponding distribution of its inflectional class, the longer response latencies
are.

There are two main options for understanding these results. Under one interpreta-
tion, case-inflected variants are stored in memory, with computations over paradigmatically
structured sets of exemplars giving rise to the observed effects. This explanation is extremely
costly in the number of lexical representations that have to be assumed to be available in
memory. We therefore pursue a different explanation, one that is extremely parsimonious
in the number of representations required. We will show that these paradigmatic effects can
arise in a simple discriminative network associating forms with meanings. Crucially, the
network does not contain any representations for complex words — the network embodies
a fully compositional probabilistic memory activating meanings given forms.

Although in generative grammar, morphology and syntax have been strictly separated
(for an exception, see, e.g., Lieber, 1992), approaches within the general framework of
construction grammar (Goldberg, 2006; Booij, 2005, 2009; Dabrowska, 2009; Booij, 2010)
view the distinction between morphology and syntax as gradient. In this framework, the
grammar is an inventory of constructions relating form to meaning. From a structural
perspective, morphological constructions differ from phrasal or syntactic constructions only
in lesser internal complexity. From a processing perspective, morphological constructions,
being smaller, should be more likely to leave traces in memory than syntactic constructions.
However, at the boundary, similar familiarity effects due to past experience are predicted
to arise for both larger complex words and smaller word n-grams. Interestingly, frequency
effects have been established not only for (regular) morphologically complex words (see,
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e.g., Baayen et al., 1997; Baayen, Wurm, & Aycock, 2007; Kuperman, Schreuder, Bertram,
& Baayen, 2009), but recently for short sequences of words as well (Arnon & Snider, 2010;
Bannard & Matthews, 2008; Shaoul, Westbury, & Baayen, 2009; Tremblay & Baayen, 2010).

If phrasal frequency effects are of the same kind as frequency effects for complex words,
it becomes highly questionable that frequency effects should be interpreted as reflecting
whole-word or whole-phrase representations, given the astronomical numbers of words and
phrases that would have to be stored in memory. We will show that whole-word frequency
effects as well as phrasal frequency effects can arise in the context of discriminative learning,
without having to posit separate representations for words or phrases.

Finally, we will also document, as well as model, phrasal paradigmatic effects for
English monomorphemic words that parallel the paradigmatic effects for Serbian number
and case inflection.

In what follows, we first introduce two experiments that provide further evidence
for inflectional paradigmatic effects for Serbian nouns first reported by Milin, Filipović
Durdević, and Moscoso del Prado Mart́ın (2009). These experiments will shed further light
on whether these effects persist in sentential reading, on whether they survive the presence
of a prime, and whether they are modulated by sentential context. The remainder of the
paper addresses the computational modeling of lexical processing. After presenting the
naive discriminative reader model, we first show that this model provides a close fit to
the Serbian experimental data. We then proceed with pitting the predictions of the naive
discriminative reader against the observed visual lexical decision latencies available in the
English Lexicon Project (Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004). We
discuss a range of data subsets for English: simple words, inflected words, derived words,
pseudo-derived words, words with phonaesthemes, compounds, and finally phrasal effects
on the reading of simple words. In the general discussion, we compare the present approach
to other computational models, including a more detailed comparison with the Bayesian
Reader of Norris (2006).

Experiment 1

Inflectional paradigms in English are extremely simple compared to the paradigms for
case inflection on nouns or the paradigms for verbal inflections found in languages such as
Finnish, Italian, or Serbian. Whereas English nouns distinguish between singular and plural
forms, nouns in Serbian are inflected for both number and case, distinguishing between six
cases: nominative, genitive, dative, accusative, locative, and instrumental. (In classical
Serbian, there is a seventh case, the vocative. This case is hardly functional in modern
Serbian (Kostić, 1965), and will therefore not be considered in the present study.) In
addition, Serbian nouns belong to one of the three genders, masculine, feminine, and neuter,
and fall into four inflectional classes, each of which realize combinations of number and case
in their own distinct way. As in Latin, inflectional endings (exponents) can be ambiguous.
For instance, for regular feminine nouns, the nominative singular and the genitive plural are
identical, and the same holds for the genitive singular and the nominative and accusative
plural. Further such examples can be found in the example paradigms shown in Table 1.

Milin, Filipović Durdević, and Moscoso del Prado Mart́ın (2009) addressed the pro-
cessing of Serbian case paradigms by focusing on the unique forms of a noun, while differen-
tiating between inflectional classes. For each inflectional class, these authors calculated the
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Table 1: Examples of inflectional paradigms for Serbian nouns: “žena” (women, feminine) and
“prozor” (window, masculine). Frequencies taken from Kostić (1999).

feminine masculine
Case Number Form Frequency Lemma Form Frequency Lemma
nominative singular žena 576 žena prozor 91 prozor
genitive singular žene 229 žena prozora 157 prozor
dative singular ženi 55 žena prozoru 10 prozor
accusative singular ženu 167 žena prozor 211 prozor
instrumental singular ženom 39 žena prozorom 54 prozor
locative singular ženi 16 žena prozoru 111 prozor
nominative plural žene 415 žena prozori 81 prozor
genitive plural žena 336 žena prozora 83 prozor
dative plural ženama 33 žena prozorima 3 prozor
accusative plural žene 136 žena prozore 211 prozor
instrumental plural ženama 24 žena prozorima 33 prozor
locative plural ženama 4 žena prozorima 48 prozor

relative entropy (henceforth re) of a noun on the basis of the probabilities p (relative fre-
quencies) of a word’s unique inflected variants (stem + case endings) and the corresponding
probabilities q (relative frequencies) of the exponents in the word’s inflectional class (see
Table 2):

RE =
6∑

i=1

pi log2(pi/qi). (1)

The probability distributions of the exponents in an inflectional class can be viewed as the
prototypical distribution of case endings for that class. The probability distribution of a
given word’s inflected variants can be viewed as the distribution of a specific exemplar. The
relative entropy quantifies how different the exemplar is from the prototype. When the two
distributions are identical, the log in (1) evaluates to zero, and hence the relative entropy
is zero. Another way of looking at the relative entropy measure is that it quantifies how
many extra bits are required to code the information carried by a given exemplar when the
theoretical distribution of its class is used instead of its own distribution. Milin, Filipović
Durdević, and Moscoso del Prado Mart́ın (2009) showed empirically that a greater relative
entropy, i.e., a greater distance from the prototype, goes hand in hand with longer visual
lexical decision latencies. We will return to a more detailed discussion of the interpretation
of relative entropy as a measure of lexical processing costs once our computational model
has been introduced.

Experiment 1 was designed to ascertain whether these paradigmatic effects extend to
sentential reading, and are not artificially induced by the task requirements of the visual
lexical decision paradigm. We therefore exchanged the visual lexical decision task used by
Milin, Filipović Durdević, and Moscoso del Prado Mart́ın (2009) for self-paced reading. As
we were also interested in ascertaining how a subliminal prime might modulate the effect of
relative entropy, we combined self-paced reading with a priming manipulation.

The introduction of a priming manipulation raises the question of how the prime
might affect the processing consequences of the divergence between the target’s inflectional
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Table 2: The two probability distributions determining the relative entropy of “planina” (mountain).

Unique noun forms Frequency Probability p Exponent Frequency Probability q
planin-a 169 0.31 a 18715 0.26
planin-u 48 0.09 u 9918 0.14
planin-e 191 0.35 e 27803 0.39
planin-i 88 0.16 i 7072 0.10
planin-om 30 0.05 om 4265 0.06
planin-ama 26 0.05 ama 4409 0.06

paradigm and the prototypical paradigm of its inflectional class. With the introduction of
a prime, three inflectional probability distributions are potentially involved instead of just
two, and four plausible relative entropy measures could be introduced: one for the prime
and the inflectional class, and one for the target and the inflectional class. Furthermore,
prime and target could mask the probability distribution of the inflectional class and serve
as each other’s reference distribution.

Instead of developing a series of different relative entropy measures, we have adopted
a measure from information theory that allows us to evaluate three probability distribu-
tions with a single measure, a weighted relative entropy. The use of this weighted entropy
measure, is grounded in two assumptions. First, the hypothesis is carried over from previ-
ous work that it is the divergence of the target’s probability distribution from that of its
inflectional class that is at issue. Second, we assume that the presence of the prime affects
the target’s probability estimates, interfering with the target’s paradigmatic relation to its
inflectional class.

The weighted relative entropy measure that we have adopted is the one developed in
(Belis & Guiasu, 1968; Taneja, 1989; Taneja, Pardo, Gil, & Gil, 1990). The distorting effect
of the prime on the probabilities of the target’s inflectional variants is captured through
weights on these probabilities:

D(P ||Q;W ) =
∑

i

piwi∑
i piwi

log2
pi

qi
. (2)

In (2), the index i ranges over inflectional variants. The pi denote the probabilities of the
target’s own inflected variants (probability distribution P ). The qi denote the corresponding
probabilities of the exponents of the target’s inflectional class (probability distribution Q).
The weights wi represent the odds ratio of the form frequency of the target’s i-th inflectional
variant and the form frequency of the prime’s i-th inflectional variant:

wi =
f(targeti)
f(primei)

, (3)

with the condition that both frequencies are greater than zero. W represents the vector of
these weights. The denominator

∑
i piwi is the expectation for the distribution pi modulated

by weights wi (E(P ;W )).
Table 3 provides an example of how the weighted relative entropy is calculated for

the feminine target noun “planina” (mountain) with the noun “struja” (electric current) as
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its prime. Both nouns belong to the same inflectional class. In the second and fifth column
of the Table 3 we find the form frequency counts (f(ai) and f(bi)) for each inflected form,
of the target and the prime, respectively. By dividing these frequencies by the column
totals (f(a) = 552 and f(b) = 162), we obtain estimates of the probabilities of these forms
in their paradigms. These estimated probabilities (relative frequencies) are shown in the
third and sixth columns (p(ai) = f(ai)/f(a) and p(bi) = f(bi)/f(b)). The seventh column
contains the vector of weights — the odds ratio of the form frequency of the target and the
form frequency of the prime (wi = f(ai)/f(bi)). In the eighth column we find the weighted
probabilities (piwi) of the inflected variants of the target. The expectation E(P ;W ) is
obtained by summing the values in this eighth column (

∑
p(ai)wi = 4.53). The ninth

column represents the frequencies of the inflectional exponents in the target’s inflectional
class (f(ei)). The f(ei) are obtained by summation over the frequencies of all words in
the inflectional class with the i-th inflectional ending. Finally, the tenth column lists the
estimated probabilities of the exponents given their class, obtained by dividing each entry
in the ninth column by their total (f(e) = 72182): q(ei) = f(ei)/f(e)).

In summary, the questions addressed by Experiment 1 are: first, whether paradigmatic
entropy effects are present in sentential reading; and second, whether the effect of a prime
on paradigmatic processing, if present, is adequately captured using a weighted relative
entropy measure.

Participants

A total of 171 undergraduate students of psychology from the University of Novi Sad
(150 females and 21 males) participated in the experiment for partial course credit. All
participants were fluent speakers of Serbian, with normal or corrected-to-normal vision.

Materials and predictors

We retrieved the full set of nouns that appeared at least once in each combination of
case and number in the Frequency Dictionary of Contemporary Serbian Language (Kostić,
1999). For each gender separately, nouns were randomly divided into two groups: a group
of target nouns (henceforth targets), and a group of prime nouns (henceforth primes). Each
noun from the list of targets was randomly assigned to a noun from the corresponding
list of primes (belonging to the same gender). The final list consisted of 50 masculine,
54 feminine and 16 neuter pairs of targets and primes. For each prime and target word,
we compiled information on word length (in letters), word (surface) frequency and stem
(lemma) frequency.

We used a normalized Levenshtein distance (Levenshtein, 1966; Jurafsky & Martin,
2000) to assess the orthographic similarity of prime and target. The Levenshtein or edit
distance of two strings is the number of deletions, additions, or substitutions required to
transform one string into the other. The normalized Levenshtein distance is the Levenshtein
distance rescaled to the interval [0, 1]. This rescaling is obtained by dividing the Levenshtein
distance by the length of the longest sting:

Normalized Levenshtein distance =
Levenshtein distance
max(string length)

. (4)
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Following Lund and Burgess (1996a); Landauer and Dumais (1997); McDonald and Ramscar
(2001); Moscoso del Prado Mart́ın, Kostić, and Filipović Durdević (2009) and Filipović
Durdević, Durdević, and Kostić (2008), we used a cosine similarity measure to represent
the semantic proximity of the target and the prime in the hyper-space of their realized
textual contexts. This measure reflects the angle between two contextual vectors in hyper-
dimensional semantic space:

cos(v1, v2) =
v1v2
|v1||v2|

, (5)

where v1 represents the context vector of the first, and v2 the context vector of the second
word. A context vector vi is defined by the co-occurrence frequencies of word i with a
predefined set of high-frequency context words. The more often two vectors occur with the
same context words, the smaller the angle between their corresponding context vectors, and
the larger the similarity between the two words, with cos → 1.0. To calculate the cosine
similarity, we used the 1000 most frequent words of the Serbian language, as retrieved from
the Frequency Dictionary of Contemporary Serbian Language (Kostić, 1999), as context
words list. Co-occurrence of the prime and target with the context words was represented
by 1000-dimensional vector, which was built using electronic database of journal articles of
Media Documentation Ebart (http://www.arhiv.rs), containing approximately 70 million
words.

For each of the 120 target nouns, three grammatical Serbian sentences were con-
structed such that each target noun appeared exactly once in nominative singular, once in
accusative singular and once in dative/locative singular. Sentences consisted of five words.
The position of the target word was counterbalanced: in 50% of the sentences it was the
second word in the sentence, and in 50% of the sentences it was the third. In the full set
of 360 sentences, each target therefore appeared three times, once in each of three cases.
Primes were not considered during the construction of the sentences. The sentences con-
tained various other nouns in addition to the targets. These additional nouns appeared only
once across all experimental sentences, with 6 exceptions which appeared twice. They did
not belong to the previously selected set of targets and primes.

Design and procedure

Our experimental design included two fixed-effect factors. The first factor was target
case with three levels: nominative singular, accusative singular and dative/locative singu-
lar. The second factor was prime condition with five levels: no prime (only hash marks
presented), a different stem in a different case, a different stem in the same case, the same
stem in a different case, and the same stem in the same case. Primes and targets always
belonged to the same inflectional class. The same case and same stem condition implements
the identity priming condition. This experimental design with 3 × 5 levels is summarized
in Table 4.

A Latin-square design with 15 lists ensured that all target words appeared in all of
the selected cases, and that each participant was presented with all of the target words only
once. Each list consisted of eight sentences per each of the fifteen experimental conditions
(three target cases by five priming conditions), totalling to 120 sentences. The presentation
sequence was randomised within each list, and for each participant separately.
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The presentation of non-target words in each sentence was preceded by a 53.2 ms
(exactly four ticks, 13.3 ms each, adjusted with the monitor refresh rate) presentation
of hash marks. The stimulus preceding the target word was also presented for 53.2 ms.
However, depending on the priming condition, the target word was preceded either by hash
marks, its random noun pair in the same case, its random noun pair in a different case, the
same noun in a different case, or the same noun in the same case (identity priming).

Participants were instructed to read the words silently in order to understand the
meaning of a sentence. The beginning of each sentence was announced on the screen,
and initiated by a participant’s button-press. Each word remained on the screen until the
participant’s response. The next word of the sentence was shown on the screen immediately
after this response (preceded by hash marks or its prime). We measured reading latencies for
the target words as the time elapsed from the onset of the target word to the participant’s
response.

The stationary-window variant of the self-paced sentence reading task was used as a
compromise between a task such as lexical-decision and natural sentence reading. On the one
hand, priming is much more engaged in lexical-decision experiments where isolated words
are presented on the center of the screen, preceded (or sometimes succeeded) by the prime.
On the other hand, the moving-window paradigm is a more natural variant of the self-paced
sentence reading task, as it requires the eye to move through the sentence. Nevertheless,
the stationary-window paradigm has been found to be a reasonable alternative (c.f., Just,
Carpenter, & Woolley, 1982; and Juola, Ward, & McNamara, 1982 for their discussion of
gains and losses in reading when eye movements are made unnecessary).

In order to prevent participants from pressing the button automatically, and to make
sure that they read the sentences for meaning, 15% of the sentences were followed by a
yes/no question querying for comprehension. Prior to the experiment, participants were
presented with twelve practice trials.

The experiment was carried out using the SuperLab Pro 2.0 experimental software
(http://www.cedrus.com), running on a PC, with a 266 MHz Pentium II processor, and
a standard video-card. The monitor was set to 75 Hz refresh rate and a resolution of 1024
x 768 pixels. The stimuli were presented in light-grey, 40 pt Yu Helvetica capital letters,
on a black background.

Results and discussion

Five participants were excluded due to large numbers of erroneous answers to the
questions (error rates exceeding 30%). Analysis of reaction times (RTs) revealed a small
number of extreme outliers (0.5% of the data) that were excluded from further analysis.
Response latencies and word (surface) and stem frequencies for both targets and primes were
log-transformed to approximate normality. In order to remove autocorrelational structure
from the residual errors (Baayen & Milin, 2010), we included two control predictors, the trial
number of an item (Trial) in a subject’s experimental list (rescaled to Z-scores to bring its
magnitude in line with that of other predictors), and the response latency at the preceding
trial (Previous RT). We used linear mixed-effect modeling (Bates, 2005, 2006; Baayen,
Davidson, & Bates, 2008) with participant and word as crossed random-effect factors.

We probed for non-linear effects of the covariates, and for a significant contribution
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of by-word or by-participant random slopes. The latency at the previous target required
by-participant random slopes. The order of a trial turned out to be characterized by a
significant non-linearity and also required by-participant weights for the linear slope. After
removal of potentially influential outliers with absolute standardized residuals exceeding
2.5, we refitted the model. Results are summarized in Table 5 and presented in Figure 1.

Table 5: Initial modelling of target word reading latencies: Partial effects for fixed-effect factors and
covariates. The reference level for Prime condition was no prime (hash marks), and nominative for
Target case. Lower, Upper: 95% highest posterior density credible intervals based on 10,000 samples
from the posterior distribution of the parameters; P: Markov chain Monte Carlo p-value.

Estimate Lower Upper P
Intercept 5.5081 5.4019 5.6096 0.0001
Previous RT 0.1250 0.1086 0.1394 0.0001
Target position (3rd) -0.4261 -0.5592 -0.3538 0.0001
Trial Order (linear) -0.1146 -0.1250 -0.1045 0.0001
Trial Order (quadratic) 0.0213 0.0179 0.0252 0.0001
Word Length 0.0109 0.0070 0.0145 0.0001
Prime Condition (diff. stem diff. suff.) 0.1301 0.1200 0.1406 0.0001
Prime Condition (diff. stem same suff.) 0.0782 0.0678 0.0881 0.0001
Prime Condition (same stem diff. suff.) 0.0660 0.0555 0.0758 0.0001
Prime Condition (same stem same suff.) -0.0305 -0.0408 -0.0206 0.0001
Target Case (accusative) 0.0246 0.0150 0.0340 0.0001
Target Case (dative/locative) 0.0262 0.0141 0.0387 0.0002
Target Lemma Frequency -0.0119 -0.0177 -0.0058 0.0001
Previous RT x Target Position (3rd) 0.0703 0.0593 0.0912 0.0001

The first two panels of Figure 1 present the effects of control variables. The positive
slope for the previous target latency as a predictor of the current targets’ reading latency
is indicative of consistency and/or inertia in the participants’ behaviour across trials. The
slope for the target in the third position in the sentence was greater than that for the
slope of the target in the second position. The somewhat richer preceding syntactic context
for targets in the third position may have afforded enhanced sentential integration, with
a spillover effect from the difficulty of integration at the previous trial. The negatively
decelerating effect of trial indicates that participants gained experience with the task as they
progressed through the experiment. The positive slope for word length and the negative
slope for target lemma frequency are as expected.

As to the fixed-effect factor Prime Condition: The identity condition (same stem,
same suffix, SS) elicited the shortest latencies, the different stem, different suffix condition
(DD) showed the longest latencies, with the different-stem same suffix (DS) and same-stem
different-suffix (SD) conditions occupying intermediate positions. The condition in which
only hash marks were shown elicited longer latencies than the identity condition, but shorter
latencies than the other three priming conditions.

The advantage of the identity condition is as expected, given that the target word
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Figure 1. Initial modelling of target word reading latencies: Partial effects for fixed-effect factors
and covariates. The reference level for Prime condition was no prime (hash marks), the other factor
levels are labeled dd (different stem, different suffix), ds (different stem, same suffix), sd (same
stem, different suffix), and ss (same stem, same suffix). The reference level for Target Case was
nominative. Lower, Upper: 95% highest posterior density intervals based on 10,000 samples from
the posterior distribution of the parameters; P: Markov chain Monte Carlo p-value.
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is available 53.2 ms prior to the point in time at which it becomes (fully) available in the
other prime conditions, and never disrupted by a mask or mismatching information. The
fast average response to the no-prime condition (hash marks only) compared to the DD, DS
and SD prime conditions is of special interest, as it indicates that the conflicting information
provided by a different stem, a different suffix, or both, disrupt processing more than the
presentation of linguistically neutral hash marks.

Turning to the effect of Target Case, we find that nouns with nominative case elicited
shorter latencies, compared to the other two oblique cases (accusative and dative/locative),
irrespective of gender. This is in line with previous findings on Serbian (cf. Lukatela et al.,
1978; Lukatela, Gligorijević, Kostić, & Turvey, 1980; Kostić & Katz, 1987). One possible
interpretation is that it mirrors the difference in number of syntactic functions and meanings
of Serbian noun cases, where nominative has only three functions/meanings, as compared to
a magnitude larger number for the other (oblique) cases used in this study (more about the
role of syntactic functions and meanings in Serbian in Kostić, Marković, & Baucal, 2003;
also, syntactic functions and meanings are further discussed in the framework of information
theory by Milin, Kuperman, Kostić, & Baayen, 2009).

In what follows, we excluded the no-priming condition from the data set, as this makes
it possible to include predictors bound to the prime. Although target words occurred in three
cases (nominative, or accusative, or dative/locative), an initial survey of the data revealed
that the relevant contrast was between nominative and non-nominative case. Hence, we
used Target Case as a binary factor contrasting whether nominative case is true or false.
As the prime’s stem frequency and the target’s word frequency were irrelevant as predictors,
in contrast to the prime’s word frequency and the target’s stem frequency, only the latter
two frequency measures will be considered further. Finally, as the two priming conditions in
which exactly one constituent differed between prime and target revealed very similar mean
latencies, we collapsed these two factor levels, resulting in a new factor for prime condition
with three levels: dd (different stem and different inflection), dssd (different stem and same
inflection, or different inflection and same stem), and ss (identical stem and inflection).

The condition number κ characterizing the collinearity of the predictors was too high
(35.6) to proceed straightforwardly with the regression analysis. We reduced κ to 21.7 as
follows. First, we regressed the Cosine similarity measure on prime condition, weighted
relative entropy, and Levenshtein distance. The residuals of this model constituted our
orthogonalized Cosine measure. Second, we replaced prime frequency by the residuals of a
model regressing prime frequency on target frequency. Both orthogonalized measures were
significantly and positively correlated with the original measures (r = 0.66 and r = 0.94,
respectively).

The same random slopes were required as in the preceding analysis. After removal of
outliers and refitting, the model summarized in Table 6 was obtained. As can be seen in
Figure 2, the frequency of the prime had a facilitatory effect (mid upper panel) that was
smaller in magnitude than the effect of the lemma frequency of the target (left upper panel).
The normalized Levenshtein distance (orthogonalized with respect to the prime condition)
failed to reach significance (right upper panel). The cosine similarity measure revealed the
expected facilitation (left lower panel). The more similar the prime and the target were in
terms of their textual occurrences, the faster processing completed.

Finally, the weighted relative entropy measure revealed the predicted inhibitory main
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Figure 2. Partial effects of selected predictors in a mixed-effects model for the reading latencies
in Experiment 1, excluding the no-prime condition. For simple main effects, dashed lines represent
95% highest posterior density credible intervals.
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Table 6: Partial effects of the predictors in a mixed-effects model for the latencies in Experiment 1,
excluding the no-prime condition. Lower, Upper: 95% highest posterior density interval; P: Markov
chain Monte Carlo p-value.

Estimate Lower Upper P
Intercept 5.6787 5.5598 5.7954 0.0001
Previous RT 0.1173 0.0979 0.1328 0.0001
Target Position (3rd) -0.4017 -0.5593 -0.3231 0.0001
Trial Order (linear) -0.1170 -0.1280 -0.1064 0.0001
Trial Order (quadratic) 0.0212 0.0172 0.0255 0.0001
Length 0.0099 0.0057 0.0139 0.0001
Prime Condition DSSD -0.0455 -0.0575 -0.0322 0.0001
Prime Condition SS -0.1321 -0.1550 -0.1056 0.0001
Weighted Relative Entropy 0.0594 0.0388 0.0795 0.0001
Nominative Case -0.0038 -0.0175 0.0101 0.5832
Masculine Gender 0.0114 -0.0061 0.0280 0.2092
Normalized Levenshtein Distance 0.0155 -0.0061 0.0401 0.1668
Cosine similarity -0.0925 -0.1379 -0.0459 0.0002
Target Lemma Frequency -0.0121 -0.0190 -0.0057 0.0002
Prime Word Frequency -0.0041 -0.0076 -0.0011 0.0122
Previous RT x Target Position (3rd) 0.0664 0.0536 0.0905 0.0001
Nominative Case x Weighted Relative Entropy -0.0513 -0.0740 -0.0288 0.0001
Masculine Gender x Weighted Relative Entropy -0.0372 -0.0607 -0.0107 0.0026

effect (not shown). The more atypical the probability distribution of an exemplar’s case
inflections compared to the prototype (its inflectional class), the longer it takes to read that
exemplar. Interestingly, the effect of weighted relative entropy was modulated by Case and
Gender: Inhibition was present only for words in the oblique cases, of neuter or feminine
gender. For masculine nouns, and for nouns in nominative case, the effect vanished (dashed
lines in the mid and right lower panels).

The emergence of a significant effect of weighted relative entropy in sentential reading
shows that the effects of inflectional paradigmatic structure are not restricted to isolated
word reading, and indicate that paradigmatic entropy effects may have broader ecological
validity. Furthermore, for oblique cases, the effect of the prime is properly captured by the
weighted relative entropy measure. The greater the frequency odds between the target’s
inflected variants as compared to those of the prime, the greater the delay in processing
time.

Are the interactions of Case and Gender with Weighted Relative Entropy contingent
on nouns being presented in sentential context? To address this question, we carried out a
second experiment in which the prime and target pairs of Experiment 1 were presented in
isolation, using lexical-decision with masked priming.
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Experiment 2

Participants

142 undergraduate students of psychology from the University of Novi Sad (125 fe-
males and 17 males), participated in experiment for partial course credit. None of them
participated in Experiment 1.

Materials

We used the same set of 50 masculine, 54 feminine and 16 neuter pairs of target and
prime nouns as in Experiment 1.

Design and procedure

We implemented the same 15× 15 Latin-square design as in Experiment 1. To each
list we added an equal number of matched Serbian pseudo-words (with legal Serbian ortho-
phono-tactics), with the same inflected endings. In this way we obtained fifteen experimental
lists, with 240 items each. Participants were randomly assigned to one of these experimental
lists. Presentation sequence was randomised within each list, and for each participant. The
experiment was preceded by 10 practice trials.

The target stimuli (words or pseudo-words) were presented for 1500 ms, preceded by
a 53.2 ms prime. In the no-prime condition, the target was preceded by hash marks. In
the other priming conditions, the target word immediately followed the prime word. We
measured lexical decision latencies for the target words as the time elapsed from the onset
of the target word to the participant’s response. An experimental session lasted 10 minutes,
approximately. Stimuli were presented with SuperLab Pro 2.0, using Serbian Latin letters
(light-grey capital 40 pt Yu Helvetica on a black background).

Results and discussion

Inspection of the data revealed 7.3% of word items that frequently produced erro-
neous answers. Typically less frequent words such as “brid” (blade, edge), “srez” (district),
“mena” (phase), and “nota” (note), in combination with less frequent inflectional ending
(like dative/locative), provoked error responses. Such error-prone words were removed from
the data set. As for Experiment 1, we log-transformed response latencies, word (surface)
frequencies, and stem frequencies. We used exactly the same predictors as in Experiment 1,
decorrelated and transformed in the same way. Subject and item were included as random-
effect factors.

Table 7 and Figure 3 summarize the mixed-effects model fitted to the lexical decision
data. We tested for possible non-linearities and by-word or by-participant random slope
effects in the model, removed outliers, and refitted the model to the data. The control
predictors Previous RT and Trial were significant predictors, with inhibitory and facilitatory
effects respectively. Trial was the only predictor for which by-participant random slopes (for
the quadratic term of Trial only) were supported by a likelihood ratio test. Word Length
was inhibitory, as expected. Response latencies were delayed by the presence of a prime,
with the greatest disadvantage for primes composed of a different stem and a different
inflectional ending, as expected.
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Response latencies increased with Weighted Relative Entropy. Unlike in the sentence
reading experiment, interactions with Case and Gender received no statistical support what-
soever, and were therefore removed from the model specification. The Normalized Leven-
shtein Distance reached full significance in Experiment 2 as an inhibitory predictor. For the
lexical decision latencies, the target’s form frequency was a slightly better predictor than
the target’s lemma frequency. As in sentence reading, there was a facilitatory effect of the
frequency of the prime, and as before this effect was reduced compared to the frequency
effect of the target. The (orthogonalized) Cosine Similarity measure was not significant.

The presence or absence of sentential context explains some important differences
in the results of the lexical decision and self-paced reading experiments, which both used
priming. In the primed lexical decision experiment, words appeared in isolation, without
any context that would otherwise allow the participant to anticipate the upcoming word
and its case. Without such contextual support, the cognitive system apparently falls back
on the de-contextualized probability of the word’s form, as indicated by the significance of
the target’s inflectional form (surface) frequency outperforming its lemma frequency, and
the full significance of the Levenshtein measure of orthographic similarity. Furthermore,
the presence of a prime in the absence of sentential context rendered the Cosine Similarity
measure insignificant.

It is less clear why in sentential reading, but not in isolated word reading, the effect of
Weighted Relative Entropy is restricted to oblique case forms of non-masculine gender. A
processing advantage for nominative forms is in line with the results reported by Lukatela
et al. (1978) and Lukatela et al. (1980); Kostić and Katz (1987). As argued above when
discussing the base model (Table 5, and Figure 1), this processing advantage for forms in
nominative case might be due to its syntactic simplicity, encompassing only three functions
and meanings.

Since only a relatively small number of neuter nouns was included in the materials,
the interaction of Gender with Weighted Relative Entropy basically contrasts masculine
with feminine nouns. It turns out that the interaction of Weighted Relative Entropy by
Gender is matched by an imbalance in average Relative Entropy in the Serbian lexicon.
Leaving the primes in the present experiment aside, it turns out that the average Relative
Entropy was was 0.17 for feminine nouns and 0.25 for masculine nouns, a difference of 0.08
that received ample statistical support (p < 0.0001). The greater Relative Entropy for
masculine case forms indicates a more challenging learning problem for masculine nouns
compared to feminine nouns, resulting in a weaker inflectional class prototype and reduced
effects of dissimilarity to the prototype in the priming context. This empirical finding is
in line with the fact that the masculine noun class is less regular then the feminine noun
class: The masculine noun class exhibits exponent (affixal) differences between animate and
inanimate nouns and various other inconsistencies which are not present in the feminine
noun class (see, e.g., Stevanović, 1989; Stanojčić & Popović, 2005, etc.).

Since there is no difference between the case forms with respect to Relative Entropy,
it is unlikely that the interaction of Weighted Relative Entropy by Case is driven by the
distributional properties of the input.

Considering Experiments 1 and 2 jointly, we conclude that the present entropy-based
measures are well-supported as probes for paradigmatic effects in lexical processing. This
raises the question of how to interpret these paradigmatic entropy effects. One possibility
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Figure 3. Partial effects in the mixed-model fitted to the lexical decision latencies (Experiment
2), excluding the no-prime condition. Dotted lines represent 95% highest posterior density credible
intervals.
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Table 7: Coefficients of the mixed-effects model fitted to the lexical decision latencies of Experiment
2: Lower, Upper: 95% highest posterior density interval; P: Markov chain Monte Carlo p-value.

Estimate Lower Upper P
Intercept 5.8485 5.7344 5.9298 0.0001
Previous RT 0.1028 0.0919 0.1191 0.0001
Trial order (linear) -0.0085 -0.0125 -0.0044 0.0001
Trial order (quadratic) 0.0083 0.0052 0.0113 0.0001
Length 0.0075 0.0032 0.0119 0.0006
Prime Condition DSSD -0.0088 -0.0168 -0.0005 0.0336
Prime Condition SS -0.1041 -0.1191 -0.0893 0.0001
Weighted relative entropy 0.0174 0.0031 0.0277 0.0160
Normalized Levenshtein Distance 0.0567 0.0408 0.0733 0.0001
Target Word Frequency -0.0285 -0.0337 -0.0232 0.0001
Prime Word Frequency -0.0055 -0.0081 -0.0029 0.0001

would be to assume that inflected variants are stored and organized into paradigmatic tables
in long-term memory. In this line of reasoning, however, it remains unclear how entropy
effects might actually arise during lexical access. We therefore explored a different possi-
bility, namely, that paradigmatic entropy effects emerge straightforwardly as a consequence
of discriminative learning. Specifically, we predict that an interaction of wre by Gender,
but not the interaction of wre by Case, will be replicable in an input-driven associative
learning approach.

A model based on naive discriminative learning

Our interest in discriminative learning was sparked by the studies of Ramscar and
Yarlett (2007); Ramscar, Yarlett, Dye, Denny, and Thorpe (2010). Ramscar and colleagues
made use of the Rescorla-Wagner equations to simulate the time-course of lexical learning.
However, there are other relevant psycholinguistic studies which made use of Rescorla-
Wagner model, for example, Hsu, Chater, and Vitányi (2010) and Clair, Monaghan, and
Ramscar (2009) on language acquisition, and Ellis (2006), who studied second language
learning.

The Rescorla-Wagner model is deeply rooted in the cognitive psychology tradition
(cf. Miller, Barnet, & Grahame, 1995; Siegel & Allan, 1996). Amazingly fruitful, it has
been closely linked with several well-known and well-defined probabilistic algorithms, such
as the connectionist delta-rule (cf. Gluck & Bower, 1988; J. R. Anderson, 2000), and the
Kalman filter (cf. Dayan & Kakade, 2001). Recently, it has been discussed as an instance of
a general probabilistic learning mechanism (see, e.g., Chater, Tenenbaum, & Yuille, 2006;
Hsu et al., 2010, etc.).

Complementing the approach of Ramscar and colleagues (Ramscar & Yarlett, 2007;
Ramscar et al., 2010), our modeling effort focuses on the end result of the lexical learning
process, when the system is in a state of equilibrium. In this incarnation of the model of
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Wagner and Rescorla (1972), cues are associated with an outcome. Both cues and outcomes
can be either present or absent. For our purposes, cues are segment (letter) unigrams and
bigrams (for a more complete orthographic coding scheme, see Whitney, 2001), and out-
comes are meanings, ranging from the meanings of words (house, table), and inflectional
meanings (e.g., case: nominative, genitive, dative, accusative, instrumental, locative; num-
ber: singular, plural) to affixal meanings (e.g., -ness or un-).

Let present(X, t) denote the presence of cue or outcome X at time t, and
absent(X, t) denote its absence at time t. The Rescorla-Wagner equations specify the
association strength V t+1

i of cue Ci with outcome O at time t+ 1 as

V t+1
i = V t

i + ∆V t
i , (6)

with the change in association strength ∆V t
i defined as

∆V t
i =


0 if absent(Ci, t)
αiβ1

(
λ−

∑
present(Cj , t)

Vj

)
if present(Cj , t) & present(O, t)

αiβ2

(
0−

∑
present(Cj , t)

Vj

)
if present(Cj , t) & absent(O, t)

(7)

with the standard settings for the parameters: λ = 1, all α’s equal, and β1 = β2. The
association strength of a cue to an outcome is strengthened when cue and outcome co-occur.
The association strength is decreased whenever the cue occurs without the outcome being
present. The extent to which an association strength is adjusted depends on the number of
other cues present. When there are more cues present simultaneously, positive adjustments
are smaller while negative adjustments are larger, and vice versa. It is worth noting, as
pointed out by Rescorla (1988), that this approach to learning differs fundamentally from
the theories of Pavlovian learning which were dominating the field until the early sixties of
the previous century. Current emphasis is on the context of learning and the learning of
relations among events, allowing an organism to build a representation of its environment.
In particular, the information that one event provides about another is crucial. Thus,
Gallistel (2003) argues that only informative events can elicit conditioning (p. 93). More
specifically, he claims that learning can occur if and only if there is a divergence between the
observed entropy of a potentially informative event and the maximum entropy — that is, if
the event has non-random property (see also Gallistel & Gibbon, 2002. For neurobiological
results, see Schultz, 2002 and Daw & Shohamy, 2008).

As an illustration of how association strengths develop over time, consider Table 8
and Figure 4. Table 8 presents a small artificial lexicon with word forms, their frequencies of
occurrence, and their meanings. For ease of exposition, we use examples from English. The
letters (unigrams) of the word constitute the cues for the model, the meanings represent
the outcomes. When the 419 tokens of the 10 words are presented 25 times in randomized
order, association strengths develop over time, as illustrated in Figure 4. The upper left
panel presents the association strength for h and hand. The h occurs only in the words
hand and hands. As it is a perfect cue for the meaning hand, its association strength is
increased whenever hand or hands is encountered. It is never decreased, as there are no
words containing an h that do not map onto the meaning hand.

The upper right panel shows the development of the association strength of the s with
the plural meaning. As the s occurs not only in plurals, but also in sad, as and lass, it is
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Table 8: Example lexicon for naive discriminative learning.

Word Frequency Lexical Meaning Number
hand 10 hand
hands 20 hand plural
land 8 land
lands 3 land plural
and 35 and
sad 18 sad
as 35 as
lad 102 lad
lads 54 lad plural
lass 134 lass

not an unequivocal cue for plurality. Depending on the order in which plural and non-plural
exemplars are encountered, its association strengths with the plural meaning increases or
decreases. The general trend over time, for this small lexicon, is for this association strength
to increase. The remaining two panels illustrate that for the short word as the a becomes
strongly linked with its meaning, wherease the s becomes a negative cue.

In this simple example, the s becomes a marker of plurality, irrespective of its posi-
tions, which linguistically doesn’t make sense. In our actual simulations, we included as cues
not only letter unigrams, but also letter bigrams, with a word-initial s represented as #s and
word-final -s represented as s#. In our model for English, discussed below, the association
strength for the unigram s to plurality in the stable state is negative (-0.008), for #s it is
positive but small (0.003), and for s# it is also positive but large (0.018). With a better
coding scheme, and realistic language input, linguistically sensible results are obtained.

What is worth noting for the purpose of present study is that the Rescorla-Wagner
algorithm performs Maximum-Likelihood estimation of the parameters for models of causal
learning and/or causal inference (Yuille, 2005; Yuille, 2006), clarifying the often intricate
probabilistic interrelationship between a system and its environment. The Rescorla-Wagner
algorithm provides the Maximum-Likelihood estimates of the weights on the connections
between letter unigrams and bigrams and word meanings.

Danks (2003) proposed an efficient way for obtaining these maximum likelihood es-
timates by examining the system when it is in a stable state. Danks calls attention to the
fact that an asymptote for the Rescorla-Wagner model is in general not well-defined. How-
ever, one can think of the model settling down eventually into a state where the expected
changes in the weights are zero (V t+1

i = V t
i , i.e., V t+1

i − V t
i = 0). Danks shows that in this

equilibrium state the association strengths Vi of the cues C to a specific outcome O can be
obtained by solving the the system of equations (8), where n + 1 denotes the number of
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Figure 4. Development of association strengths of unigram cues to meanings when the Rescorla-
Wagner model is exposed to the words in Table 8. Word tokens are presented in random order.
To show the long-term development of the association strength, each token is presented 25 times
(i.e., each word frequency is multiplied by 25). Dashed lines represent the stable-state association
strength obtained with the equilibrium equations of Danks (2003).

different cues (input features) and where the indices i and j range over the different cues:
Pr(C0|C0) Pr(C1|C0) . . . Pr(Cn|C0)
Pr(C0|C1) Pr(C1|C1) . . . Pr(Cn|C1)

. . . . . . . . . . . .
Pr(C0|Cn) Pr(C1|Cn) . . . Pr(Cn|Cn)




V0

V1

. . .
Vn

 =


Pr(O|C0)
Pr(O|C1)

. . .
Pr(O|Cn)

 (8)

or, in short,

Pr(O|Ci)−
n∑

j=0

Pr(Cj |Ci)Vj = 0. (9)

Here, Pr(Cj |Ci) represents the conditional probability of cue Cj given cue Ci, and Pr(O|Ci)
the conditional probability of outcome O given cue Ci. Informally, we can think of the
association strengths Vj as optimizing the conditional outcomes given the conditional prob-
abilities characterizing the input space. The estimation of the association strengths (or
weights on the connections from cues to outcomes) with (8) is parameter-free, and totally
determined by the training data. The appendix provides detailed information on the steps
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required to calculate the equilibrium association strengths for the example lexicon in Table
8. The stable-state association strengths (connection weights) for the examples in Figure 4
are represented by dashed lines.

We model the association strengths from the letter unigrams and bigrams (cues)
to a given meaning (outcome) separately and independently of all other outcomes. In
other words, for each meaning a different O is substituted in (8), and a different set of
equations has to be solved. The assumption of independence for the association strengths
to the different meanings involves an obvious simplification. This simplifying assumption,
which is similar to the independence assumption in naive Bayes classifiers, affords efficient
computation while yielding adequate results. Our model therefore implements a form of
associative learning that we will refer to as naive discriminative learning.

Let i range over the outcomes (meanings), and j over the cues (unigrams and bigrams),
and define the association strength Vji to denote the equilibrium association strength Vj as
estimated for cue Cj and outcome Oi. Given the set of input cues {Ck}, the activation ai

of outcome Oi is given by
ai =

∑
j∈{Ck}

Vji. (10)

The activation of the i-th meaning ai represents the total posterior evidence for this meaning
given the unigrams and bigrams in the input. (In our experience, adding trigrams and
higher-order n-grams leads to only a minute increase in goodness of fit.) Response latencies
and self-paced reading times are assumed to be negatively correlated with this total posterior
evidence. When the weights are estimated from small data sets, it is sufficient to model
RTs simply as

simulated RTi ∝ −ai. (11)

For large training data, it is preferable to model response latencies as inversely proportional
to the amount of activation ai. Similar to the empirical distributions of lexical decision
latencies, the distribution of activations a tends to have a rightward skew. This skew is
often largely eliminated by a log-transform,

simulated RTi = log(1/ai). (12)

In what follows, we use the transform that best approximates normality, just as for the
observed latencies, in order to obtain maximally adequate statistical models (see Baayen &
Milin, 2010, for further discussion of transformations of the response variable in statistical
modeling). This completes the definition of our model, to which we will refer as the naive
discriminative reader.

Modeling the processing of case inflections in Serbian

In what follows, we restrict ourselves to a discussion of simulating the self-paced
reading latencies of Experiment 1. The results obtained for the lexical decision latencies
of Experiment 2 were similar quantitatively and qualitatively, and will not be discussed
further. The results of Experiment 1 revealed a slightly more complex pattern of results,
and therefore provides the more interesting data set to model and report. A first challenge
to the naive discriminative reader is that its predictions should reflect the observed effect of
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weighted relative entropy. Since exponents can be multiply ambiguous, a second challenge
for the discriminative learning approach is how effective these exponents can be as cues for
case and number.

The model was trained on the set of 270 nouns and their case inflected forms (3240
wordforms in all), which appeared at least once in each combination of case and number in
the Frequency Dictionary of Contemporary Serbian Language (Kostić, 1999). For this data
set, training simply proceeded on the basis of individual words, without context.

For unprimed reading, the total activation predicting a word’s processing time is
defined as the sum of the activations of its lexical meaning and the grammatical meanings
for number (singular and plural) and case (nominative, genitive, dative, accusative, locative,
and instrumental). In other words, we assume that a word’s inflectional paradigm comes
into play at the level of (grammatical) meaning. It is important to distinguish this ‘semantic
paradigm’ from a traditional form paradigm, comprising a word’s different forms as in Table
1. The model has no representations for word forms, and there is no competition between
word forms in the model, nor the merging of evidence for them. Our hypothesis is that
a self-paced reading time, and a lexical decision latency, is proportional to the cumulative
activation of the word’ meaning and its semantic paradigm (as activated by its orthographic
cues).

In order to simulate priming, we first calculated for prime and target separately, the
activation of the meanings of the two nouns, as well as the activation of the meanings for
singular and plural number, and those of nominative, genitive, dative, accusative, locative,
and instrumental case. The two resulting sets of 10 activations were then used to estimate
a primed decision time.

For the modeling of priming, we explored two alternatives, both of which turned out
to yield good results. The first alternative builds on the way priming is modelled in the
original Rescorla-Wagner framework, and the second alternative follows the retrieval theory
of priming proposed by Ratcliff and McKoon (1988). To illustrate the two alternatives, let
aP be the 10-element vector of the meaning activations for the prime, and let aT denote the
corresponding vector of activations for the target, with each meaning activation as defined
in (10).

In the original Rescorla-Wagner model, when input cues (stimuli) are presented in
isolation, the total activation amounts to a simple sum of association strengths (

∑10
i=1 ai).

The maximum strength λ = 1 in (7) cancels out in the derivation of the equilibrium equa-
tions (8). However, in the case of ‘compound cues’ consisting of a prime and a target, simple
learning becomes competitive learning, and the maximum strength (λ) must be shared be-
tween the competing cues (see J. R. Anderson, 2000; Brandon, Vogel, & Wagner, 2003;
Vogel, Brandon, & Wagner, 2003) For λ 6= 1, this leads to a revised system of equations,
also defined by Danks (2003):

λPr(O|Ci)−
n∑

j=0

Pr(Cj |Ci)Vj = 0. (13)

In the case of priming, we have two sets of competing cues. The maximum activation is
shared between them: λP + λT = λ. Setting λ to 1, the compound activation (aPT ) follows
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straightforwardly:

aPT =
10∑
i=1

(λPaPi + λTaT i)

=
10∑
i=1

(λPaPi + (1− λP )aT i) (0 ≤ λP ≤ 1). (14)

Competitive learning in the Rescorla-Wagner model predicts that the addition of a prime
leads to decreased activation of the target’s meaning, and hence to longer response latencies.
For a prime totally unrelated to the meaning of the target, for instance, the weights on the
links of the prime to the target’s meaning will be small or even negative, leading to small
or even negative aPi in (14).

The retrieval theory of priming developed by Ratcliff and McKoon (1988) defines the
familiarity of a compound cue S as follows:

S =
10∑
i=1

(aw
Pi · a1−w

Ti ) (0 ≤ w ≤ 0.5), (15)

with w a weight for capturing the relative importance of the prime compared to the target.
Good fits were obtained with both (14) and with (15), for a wide range of values of λP

and w. The results for the compound cue theory were slightly better, hence, we restrict
ourselves to reporting the results using (15), with w = 0.2.1

Using Compound Cue Strength as dependent variable, with w = 0.4, a distribution
of simulated response latencies was obtained for which log or inverse transforms did not
lead to improved approximation of normality. Therefore, simulated response latencies were
defined as negative compound cue strength. The simulated latencies correlated well with
the observed latencies: r = 0.24 (t(1185) = 8.58, p < 0.0001). We fitted the same regression
model to the simulated latencies as fitted to the observed latencies, with as exception the
experimental control predictors Trial, Previous RT, and the sentential predictor Target
Position (2nd or 3rd position in the sentence). The Cosine Similarity measure, and the
interaction of Weighted Relative Entropy by Case did not reach significance. We then
refitted the models with these latter two predictors excluded.

There is one predictor for which the model makes the opposite prediction. Whereas
Word Length is inhibitory for the observed latencies, it is facilitatory for the simulated
latencies. In the model, a longer word provides more activation to its associated lexical
meaning (as well as to its grammatical meanings). A longer word has more active ortho-
graphic cues, and hence more connection strengths are summed to obtain the activation of
its lexical meaning (and its grammatical meanings). Due to greater activation of its lexical
meaning (and its grammatical meanings), the response latency to a longer word is predicted
to be shorter. The model is blind to the increasing likelihood of multiple fixations for longer
words, and the associated increase in processing costs.

1Data and code are available in the ndl package for the R free software environment for statistical
computing and graphics, available in the cran archives at http://cran.r-project.org/.
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To bring the cost of additional fixations for longer words into the model, the simulated
response latencies were redefined as follows, with Si the compound cue strength for the ith
word, and li the length (in letters) of that word:

simulated RTi = Si + φI[li>5]. (16)

For words with more than 5 letters, the expression I[li>5] evaluates to 1, and a fixation
penalty φ is added to the simulated latency. Table 9 and Figure 5 summarize the resulting
model.

Table 9: Coefficients estimated for the simulated self-paced reading latencies.

Estimate Standard Error t-value p-value
Intercept -12.084 0.104 -115.854 0.0000
Word Length 0.058 0.007 8.131 0.0000
Weighted Relative Entropy 0.185 0.038 4.823 0.0000
Masculine Gender = TRUE 0.169 0.033 5.173 0.0000
Normalized Levenshtein Distance 1.201 0.062 19.303 0.0000
Target Lemma Frequency -0.135 0.011 -11.909 0.0000
Prime Form Frequency -0.019 0.008 -2.282 0.0227
Prime Condition = DSSD -0.028 0.035 -0.797 0.4257
Prime Condition = SS 0.158 0.068 2.346 0.0192
W.Rel.Entropy : Masculine Gender = TRUE -0.252 0.053 -4.783 0.0000

Here, and in the simulations following below, we accept as a valid insight the pre-
diction of the model that longer words provide more evidence for a word’s meaning than
shorter words. This probabilistic advantage of a longer word for making contact with its
meaning may help explain the U-shaped functional form of the effect of word length re-
ported by Baayen (2005) and New, Ferrand, Pallier, and Brysbaert (2006) for English. For
the shorter word lengths, a greater length combines with shorter response latencies. For
the longer word lengths, facilitation reverses into inhibition. The facilitation for the shorter
word lengths fits well with the prediction of the model that more bottom-up information
provides more support for a word’s lexical meaning (as well as its grammatical meanings).
The increased processing costs for longer words are, in the present approach, the straight-
forward consequence of multiple fixations and saccades, a physiological factor unrelated to
discriminative learning. Crucially, it is not the length in letters that is inhibitory in our
approach, but whether more than one fixation is required. With φ = 0.3, the by-item cor-
relation of the observed and simulated latencies improved slightly from 0.24 to r = 0.26
(t(1185) = 9.17, p < 0.0001). Qualitatively, the effect of the other predictors in the model
were not affected.

The second panel of Figure 5 shows the combined effect of Prime Condition and Nor-
malized Levenshtein Distance. The Normalized Levenshtein Distance is zero for the identity
primes, and nonzero for the other two prime conditions. We therefore plot their joint effect.
Although the statistical models for the observed and simulated latencies assign different
weights to the treatment contrasts of Prime Condition and to the slope of the Levenshtein
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Figure 5. Partial effects of the significant predictors for the simulated self-paced reading latencies.
The effect of Prime Condition in the second panel represents the combined effect of this factor
and of the Normalized Levenshtein Distance. Solid lines represent simulated latencies, dashed lines
the observed latencies. The grey lines in the last panel represent masculine nouns, the black lines
represent neuter and feminine nouns.

Distance, the predictions of the two models are very similar: The simulated latencies faith-
fully reflect the priming effects. The main difference between the two regression models is
that for the simulated latencies, the Levenshtein Distance is assigned greater weight, unsur-
prisingly, as the model has not been provided with any information on the discrete category
mismatches of stems and case endings.

The third panel clarifies that the model adequately captures the facilitation of Target
Lemma Frequency, although it underestimates the magnitude of the slope. The fourth panel
shows it properly accounts for the form frequency of the prime. It is worth noting that
the model’s association strengths are estimated on the basis of absolute word frequencies,
but that in the regression model the log-transformed frequency is used, exactly as for the
observed reaction times. The effect of frequency of occurrence expresses itself linearly on a
logarithmic scale in both observed and simulated latencies.

The final panel presents the interaction of Weighted Relative Entropy by Gender,
which reaches significance for the simulated latencies just as for the observed latencies.
The model even predicts a slight processing advantage for masculine nouns as entropy
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Figure 6. Activation of case and number meanings for the six inflected forms of žena. Triangles
represent meanings that, in the absence of context, are possible and appropriate for a given form.

increases, which was not detectable for the observed latencies. The emergence of a significant
interaction of wre by Gender is exactly as predicted by the greater relative entropy that
characterizes masculine nouns in Serbian.

As discussed above, the Cosine Similarity Measure reached significance only in the
sentence reading task, and not in isolated word recognition. The absence of Cosine Similarity
as a predictor for the simulated latencies is therefore as expected. The insignificant effect
of Case (in interaction with Relative Entropy) in the model for the simulated latencies is
expected, given that we have no evidence suggesting that the distributional properties of
the nominative case forms are very different from those of the oblique case forms. Since
the nominative case carries the lowest number of functions and meanings compared to the
other case endings (Kostić et al., 2003), and since in our model the different functions
and meanings of the cases are not specified, with all cases being treated equal, no special
advantage for the nominative can emerge.

In summary, the present discriminative learning approach has succeeded in approxi-
mating well the effects of a series of lexical variables, including Weighted Relative Entropy.
The model captures the effect of Weighted Relative Entropy without having to posit exem-
plars for individual inflected forms, and without having to specify explicitly prototypes for
each inflectional class, and with only two free parameters, the compound cue weight w for
the prime in (15), and the fixation penalty parameter φ.

The second challenge for the naive discriminative reader mentioned above is whether
the model is sufficiently sensitive for handling the multiple ambiguity of the exponents
expressing case and number. Some indication of the model’s performance is provided by
Figure 6, which presents, for each form of the feminine noun žena, the activations of the
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number and case meanings. For four forms, žena, žene, ženu, and ženom, the possible
meanings (marked by triangles) have the highest activations. Ženu, for instance, is the
accusative singular form, and these two meanings are appropriately activated most strongly
in the model. For ženama, we see interference from the -a exponent, which is embedded in
the ama exponent. For ženi, we have interference from the -i exponent expressing nominative
plural in masculine nouns. In other words, all the model does is to make available the most
likely readings of the exponents given the input. Further top-down processes will need to
be brought into the model in order to account for the selection of the appropriate subsets
of meanings given additional lexical and contextual information.

A final question awaiting clarification at this point is what exactly the relative entropy
is capturing, both in the human data, as well as in the simulation. We address this question
with the help of a simple constructed example. Table 10 presents a lexicon with four case-
inflected forms for each of six lemmas. There are three different cases, nominative (nom),
genitive (gen) and accusative (acc). The accusative is indexed by two different exponents, a
and u. The a also occurs as a marker of the nominative, and hence is ambiguous as to which
case it represents. In this example, exponents (in lower case) never occur as stem segments
(in upper case). For each lemma, we calculated the relative entropy of the cases. For
the first wordform, p = {10/100, 20/100, 70/100}, and since q = {0.246, 0.246, 0.501}, the
relative entropy is

∑
(p log 2(p/q)) = 0.134. The {p} distribution represents the exemplar,

and {q} the prototypical probability distribution.
To this data set, we fitted a logistic mixed-effects model, predicting Nominative versus

other cases from Exponent (a, i, u) as fixed-effect factor and Lemma as random-effect factor.
The random intercepts estimated for the lemmas are listed in Table 10 as Ranef Nom. The
left panel of Figure 7 graphs the functional relation between relative entropy and the random
intercepts. A greater (positive) random intercept implies that the lemma has a stronger
preference for being used in the nominative. Conversely, large negative values indicate
that the nominative is disfavored by a lemma. A random intercept equal to zero indicates
no divergence from the average preference (log odds) for the nominative. The quadratic
relation between entropy and the random intercepts is due to relative entropy being an
unsigned measure. It captures the extent to which a lemma’s preference for the nominative
deviates from the population average, without indicating whether this preference is due to
attraction or repulsion. What this example illustrates is that relative entropy provides a
non-parametric, unsigned, alternative to the random intercepts of a logistic mixed-effects
classifier.

We also fitted the naive discriminative reader model to this data set, using only
unigrams as orthographic cues. Table 10 lists several statistics derived from the model’s
weight matrix. The support provided by the stem letters to the nominative, normed to the
probability scale, is provided in the column listed as Stem Support Nom. As can be seen
in the second panel of Figure 7, Relative Entropy and Stem Support Nom are again related
through a quadratic polynomial, which is virtually identical to the one for Relative Entropy
and the Random Intercepts. This does not come as a surprise, as the Random Intercepts
and StemSupportNom are nearly perfectly linearly related, as shown in the third panel of
Figure 7. In other words, the function of the random intercepts in the logistic mixed-effects
model, the calibration of the lemmas’ individual preferences for the nominative, is carried
in the naive discriminative reader by the support from the cues comprising the stem.
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Figure 7. Scatterplots and Pearson and Spearman correlation coefficients for the probabilities of the
ergative predicted by the naive discriminative reader, the by-lemma random intercepts in a logistic
mixed-effects model, and the relative entropies of the lemmata, calculated for a constructed lexicon
with a binary case distinction.

Table 10 also lists the support of the stem for genitive case (Stem Support Gen) and
for accusative case (Stem Support Acc), and the support of the wordform’s exponent for
its corresponding case. As genitive case corresponds one-to-one with the presence of the
i exponent, genitive case is well supported whenever the i is present (0.74), while there is
no differentiation in the support provided by the cues provided by the stem (0.26 for all
lemmas). This example illustrates that the naive discriminative learning algorithm, when
presented with a truly agglutinative exponent, detects the one-to-one mapping of form to
meaning. The special case of agglutination is captured naturally in our approach, without
requiring any further mechanisms. By contrast, theories that assume processing is grounded
in an item-and-arrangement (representation-plus-rules) architecture cannot be extended to
account for the complexities of non-agglutinative morphological systems without many ad-
hoc assumptions.

In this example, the a exponent is ambiguous between nominative and accusative.
The random intercepts in a model predicting the accusative and the stem support for the
accusative show the same correlational structure as shown in Figure 7 for the nominative.
However, the stem support for the accusative is negatively correlated with the stem sup-
port for the nominative (r = −1), due to the way in which the form frequencies were
assigned to the inflected variants of the lemmas, gradually changing from {10, 20, 30, 40} to
{40, 30, 20, 10}.

When case endings are ambiguous, as is the case for the a exponent in the present ex-
ample, the weights from such an exponent to its case meanings cannot differentiate between
the individual preferences of the lemmas. In other words, these weights do not enter into
correlations with relative entropy. They represent the model’s best guess, its probabilistic
generalization, about the most likely meanings, optimizing across all lemmas.
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We note here that the quadratic functions in Figure 7 are due to the gradual changes
in the frequencies of the inflected forms, ranging from {10, 20, 30, 40} for lemma A to
{40, 30, 20, 10} for lemma F. For distributions for which a majority of relative entropies
reflect attraction (or all reflect repulsion), the relation between relative entropy and ran-
dom intercepts (and stem support) can be roughly linear, with a slope that can be both
positive and negative. For an example discussing the statistical analysis of an empirical
data set, see Baayen (2011).

How exactly the effects of relative entropy work out for a given data set is highly
dependent on the distributional characteristics of that data set. For the Serbian data,
interpretation is complicated further by the presence of subliminal primes. Nevertheless,
the prediction that follows from the above considerations for the Serbian data is that the
effect of weighted relative entropy should reflect the support provided by the cues of the
noun stems for the meanings of the case endings. We therefore calculated the stem support
for each of the cases (nominative, genitive, etc.). We first inspected whether the weighted
relative entropy can be predicted from the summed support for the cases in interaction
with grammatical gender. This was indeed the case: For non-masculine nouns, the total
support correlated negatively with weighted relative entropy, while for masculine nouns
the correlation was positive (p < 0.0001 for the coefficients of both the two main effects
and the interaction). We then defined a simplified simulated response latency as negative
total support (as greater total support should contribute to a shorter response latency),
and examined whether this simulated RT is predictable from weighted relative entropy in
interaction with grammatical gender. We obtained results very similar to those listed in
Table 9, with a positive slope for weighted relative entropy for non-masculine nouns, and a
negative slope for masculine nouns (all p < 0.0001).

In summary, the (weighted) relative entropy measure, as applied to case paradigms,
is a non-parametric and unsigned measure of the degree of attraction (or repulsion) for
a given lemma to the average (population) probability distribution of case endings. The
naive discriminative reader explains this attraction (or repulsion) in the empirical data as
originating in the association of stem cues to case meanings as a result of discriminative
learning. We note here that the association of stem cues to case meanings, and the rel-
ative entropy effects that bear witness to these associations, challenge linguistic theories
that regard agglutination, in the sense of item-and-arrangement, as the underlying formal
property of morphology.

Modeling morphological processing in English: from simple words
to prepositional paradigms

We have seen that a model based on naive discriminative learning correctly replicates
the effects of a wide range of predictors, including weighted relative entropy, observed to
co-determine the sentential reading of Serbian case-inflected nouns. The input to the model,
however, is limited to just 3240 wordforms of those 270 nouns for which all case forms are
attested in the Frequency Dictionary of Contemporary Serbian Language (Kostić, 1999). As
a consequence, the results obtained might be due to overfitting.

To rule out this possibility, and to obtain further insight in the potential of naive
discriminative learning for understanding morphological processing, we trained the model
on a substantial part of the British National Corpus (henceforth bnc, Burnard, 1995), and
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pitted the predictions of the model against the by-item average lexical decision latencies
available in the English Lexicon Project (henceforth elp, Balota et al., 2004) as well as in
previously published data sets.

In what follows, we first introduce the corpus data used to set the weights of the
Rescorla-Wagner network that is the engine of the naive discriminative reader. We then
discuss morphological effects across simple words, inflected words, derived words, pseudo-
derived words, and compounding. Next, we consider whether phrasal frequency effects might
also be captured within the same modeling framework. We conclude with showing that the
paradigmatic exemplar-prototype effects characterizing the reading of Serbian nouns are
also present in English, using as example the English equivalent of Serbian case paradigms:
prepositional paradigms.

The training data

From the celex lexical database (Baayen, Piepenbrock, & Gulikers, 1995), we ex-
tracted all monomorphemic nouns, verbs, and adjectives, as well as all compounds and
derived words with a monomorphemic noun, verb or adjective as base word. For each of
these words, forms inflected for number, person, tense and aspect were also extracted. This
set of words was complemented with the word stimuli used in the studies of Rastle et al.
(2004), Bergen (2004), and Christianson, Johnson, and Rayner (2005), resulting in a lexicon
with 24710 different words (word types).

All instances of the words in our lexicon that occurred in the constructions listed
in Table 11 were retrieved from the bnc, together with the preceding words in these con-
structions. Function words in the constructions were restricted to those occurring in a
precompiled list of 103 determiners, prepositions, pronouns, and adverbs. Those words that
did not appear in these constructions but that were used as stimuli in published experiments
were extracted from the bnc, together with the preceding word (when not sentence-initial).
Constructions with non-ascii characters were discarded. The resulting phrasal lexicon com-
prised 1,496,103 different phrase types, 11,172,554 phrase tokens, to a total of 26,441,155
words (tokens), slightly more than a quarter of the total corpus size.

In summary, the input to the naive discriminative reader in the simulation studies
below is a realistic sample of English words with simple morphological structure, in a wide
range of locally restricted syntactic contexts as attested in the bnc. The connection weights
of the Rescorla-Wagner network were calculated by solving the equilibrium equations (8).
All following simulation are based on the resulting matrix of connection weights.

Simple words

Although simple words such as shoe or think have no internal syntagmatic morphemic
structure, they enter into paradigmatic relations with inflected words (shoes, thinks, as well
as with derived words and compounds snowshoe, thinker. The consequences for lexical pro-
cessing of the entanglement of a simple word with its inflectional paradigm has been gauged
in previous studies with Shannon’s entropy (Shannon, 1948), a measure which estimates the
amount of information carried by an inflectional paradigm (Baayen, Feldman, & Schreuder,
2006; Baayen et al., 2007; Baayen, Levelt, Schreuder, & Ernestus, 2008):

Hi = −
∑

k

pk log2(pk). (17)
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Table 11: Constructions retrieved from the bnc. Words marked as X were included even when not
available in the initial 24710-word lexicon.

Preposition + Article + Noun about a ballet
Preposition + Possessive Pronoun + Noun about her actions
Preposition + X + Noun about actual costs
Preposition + Noun about achievements
X’s + Noun protege’s abilities
Article + Noun a box
Article + X + Noun the abdominal appendages
Possessive Pronoun + Noun their abbots
Article + X’s + Noun the accountant’s bill
Pronoun + Auxiliary + Verb they are arrested
Pronoun + Verb he achieves
Auxiliary + Verb is abandoning
Article + Adjective the acute

In (17), k ranges over a word’s inflectional variants (for shoe, the singular shoe and the
plural shoes, for think the verb forms think, thinks, thinking, and thought). The probability
pk is the conditional probability of the k-th word in the paradigm:

pk =
fk∑
i fi

, (18)

where fi denotes the frequency of the i-th form in a word’s inflectional paradigm. In
visual lexical decision, inflectional entropy enters into a negative correlation with response
latencies. For simple words, the kind of words under consideration here, Baayen et al. (2006)
show that information-rich inflectional paradigms tend to afford shorter reaction times in
the visual lexical decision task.

Simple words are entangled not only with their inflectional variants, but also
with the derived words and compounds in which they occur. The type count of
such words, its morphological family size, has also been observed to co-determine re-
sponse latencies, such that words with greater morphological families are responded
to more quickly (Schreuder & Baayen, 1997; Bertram, Baayen, & Schreuder, 2000;
De Jong et al., 2000; Dijkstra, Moscoso del Prado Mart́ın, Schulpen, Schreuder, & Baayen,
2005; Moscoso del Prado Mart́ın et al., 2005; Moscoso del Prado Mart́ın et al., 2004).
Moscoso del Prado Mart́ın et al. (2004) showed that the family size count is the upper
bound of the entropy of the conditional probabilities of the family members given the fam-
ily.

We pitted the predictions of the naive discriminative reader for the simple nouns stud-
ied by Baayen et al. (2006), using as predictors, in addition to family size and inflectional
entropy, a word’s mean bigram frequency, its length, its written frequency, its neighbor-
hood density (using the N-count measure), its number of synonyms as listed in WordNet
(Fellbaum, 1998), and the frequency ratio of the word’s use as a noun or a verb. We also
included a new predictor, prepositional relative entropy, which will be discussed in more
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detail below.
For the simulation, we selected from our lexicon the 1289 monomorphemic words

that can be used as nouns for which lexical decision latencies are available in the elp. The
observed latencies were inverse-transformed (−1000/RT ) to remove most of the right skew
from the distribution. Table 12 lists the coefficients obtained with a regression model fitted
to the empirical lexical decision latencies.

Shorter latencies were typical for more frequent words (Written Frequency), for words
with large morphological families (Family Size), for words with more morphologically com-
plex synonyms (Complex Synset Count), for words with more information-rich inflectional
paradigms (Inflectional Entropy), and for words used more often as nouns than as verbs
(Noun Verb Ratio). The effects of Word Length and Neighborhood Density (N-Count) did
not reach significance. Words with greater Mean Bigram Frequency elicited longer latencies.

The question of interest is whether the processing costs predicted by the naive dis-
criminative reader reflect the same set of predictors, with effect sizes of similar magnitude.
A good fit can be obtained by defining the simulated RT simply as log(1/aword), in which
case the model is completely parameter-free and driven entirely by the corpus-based input.
The fit improves slightly by taking a word’s strongest competitors into account. We first
define the probability of identification of a word i in its competitor set as

Pidi =
ai

ai +
∑n

j=1 aj
, (19)

where ai is the activation of the i-th word, aj is the activation of a competitor and n
the number of highest-activated competitors taken into account. As Yarkoni, Balota, and
Yap (2008) report that their Levenshtein-distance based neighborhood measure performs
optimally when the 20 nearest neighbors are considered, we set n to 20. Response latencies
are taken to be proportional to the reciprocal of the probabilities of identification. To remove
the rightward skew in the distribution of these reciprocals, simulated RTs were defined as

RTi = log(1/Pidi). (20)

The correlation for the observed and simulated response latencies was r = 0.56,
(t(1293) = 24.09, p = 0). This correlation is comparable to the correlations reported by
Moscoso del Prado Mart́ın (2003) for the goodness of fit of his connectionist model to the
lexical decision latencies in the English Lexicon Project. The correlations of simulated and
observed response latencies reported by Norris (2006) for his Bayesian Reader model, for
4-letter words, were slightly higher, at 0.56 (for recognition threshold 0.95) and 0.61 (for
recognition threshold 0.99).

However, as for the Serbian data, the model predicts facilitation from word length.
We therefore adjusted (20) to bring into the model the costs of additional fixations for longer
words.

RTi = log
(

1
Pidi

+ φI[li>5]

)
. (21)

A regression model with exactly the same model specification that was used for the
empirical latencies was fitted to the simulated latencies, with φ = 3.2. The coefficients of
this model are listed in Table 13. All coefficients in the simulated model have the appropriate
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sign, and the correlation of the coefficients for the regression models fitted to the observed
and the simulated latencies reached significance r = 0.87, (t(7) = 4.73, p = 0.0021), see
Figure 8, indicating that effect sizes are modeled reasonably well. It is only the N-count
measure for which the model predicts a small but significant positive slope while the observed
slope is effectively zero.

Table 12: Coefficients for the model fitted to the observed response latencies of monomorphemic
English nouns.

Estimate Std. Error t-value p-value
Intercept -1.451 0.051 -28.278 0.0000
Mean Bigram Frequency 0.023 0.008 2.713 0.0068
Written Frequency -0.048 0.003 -16.408 0.0000
Family Size -0.015 0.006 -2.545 0.0111
Length -0.003 0.008 -0.382 0.7022
Noun Verb Ratio -0.004 0.002 -2.109 0.0351
Inflectional Entropy -0.039 0.010 -3.927 0.0001
Complex Synset Count -0.014 0.004 -4.059 0.0001
Prepositional Relative Entropy 0.009 0.003 3.241 0.0012
N-Count -0.000 0.001 -0.033 0.9739

Table 13: Coefficients for the model fitted to the simulated response latencies of monomorphemic
English nouns.

Estimate Std. Error t-value p-value
Intercept 0.217 0.493 0.441 0.6594
Mean Bigram Frequency 1.113 0.081 13.714 0.0000
Written Frequency -0.540 0.028 -19.246 0.0000
Family Size -0.404 0.057 -7.108 0.0000
Length -0.117 0.080 -1.465 0.1433
Noun Verb Ratio -0.114 0.019 -6.073 0.0000
Inflectional Entropy -0.625 0.095 -6.606 0.0000
Complex Synset Count -0.104 0.034 -3.033 0.0025
Prepositional Relative Entropy 0.166 0.027 6.194 0.0000
N-Count 0.043 0.009 4.970 0.0000

It is noteworthy that an effect of morphological family size emerges in the simulated
reaction times without the presence of any separate representations for complex words in the
model. Similarly, we find an effect of inflectional entropy without the presence of separate
representations for inflected words, and without any explicit paradigmatic organization
imposed on such representations. These effects all fall out straightforwardly from naive
discriminative learning.



MORPHOLOGICAL PROCESSING WITH DISCRIMINATIVE LEARNING 40

−0.04 −0.02 0.00 0.02 0.04

−
0.

5
0.

0
0.

5
1.

0

observed coefficients

ex
pe

ct
ed

 c
oe

ffi
ci

en
ts

* Bigram Frequency

* Frequency

* Family Size

* Length* Noun−to−Verb Ratio

* Inflectional Entropy

* Synsets

* Prepositional RE

* N−count

r = 0.87, p < 0.0001

Figure 8. Observed and expected coefficients for the linear models for 1295 monomorphemic English
nouns.
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In addition to the effects described above, other orthographic frequency measures
have been shown to play a role in word processing, at least in terms of eye-movement
patterns during reading. One measure that is particularly relevant here is orthographic
familiarity (White, 2008), defined as the sum of the token frequencies of the n-grams within
a given word (e.g., in a four-letter word, the two trigrams, the three bigrams, and four
unigrams). Orthographic familiarity has a significant (albeit small) facilitatory effect on
several reading time measures, independently of word-frequency effects. Since n-grams are
the very representation the present model adopts to implement orthographic information, it
is no surprise that an effect of orthographic familiarity emerges in the naive discriminative
reader in the form of a strong bigram frequency effect, with a positive slope as in the model
for the observed latencies. (We have experimented with including higher-order n-grams
as cues, but the increase in prediction accuracy was tiny compared to using letter pairs
as cues in addition to letter unigrams.) The model correctly predicts inhibition for mean
bigram frequency because high-frequency bigrams are shared between many different words,
and hence have a low cue validity for their meanings. As the current implementation of
our model is blind to how the eye extracts information from the visual input, the precise
modeling of the early facilitatory effect of orthographic familiarity, which is believed to
emerge at initial stages of fixation programming (White, 2008), is beyond the scope of the
present study.

Inflected words

We begin our evaluation of the potential of naive discriminative learning for the com-
prehension of morphologically complex words with a study of present and past-tense inflec-
tion in English. Although the semantics of inflection tend to be straightforwardly regular,
the formal expression of tense can be quite irregular, as is the case for the irregular verbs
of English. Of specific interest to us is whether naive discriminative learning is sufficiently
powerful to model the effects of (ir)regularity in visual comprehension of English verbs.

From the celex lexical database Baayen et al. (1995), we selected all verbs listed as
monomorphemic. For these verbs, we took the (uninflected) present and past-tense plural
forms (walk, walked, come, came) and extracted (where available) the corresponding lexical
decision latencies from the English Lexicon Project (Balota et al., 2004), together with their
frequency in the hal corpus (Lund & Burgess, 1996b), their orthographic length, and their
number of neighbors at Hamming distance 1 (the N-count measure). This resulted in a data
set with 1326 different verb lemmas, of which 1209 were regular and 131 were irregular verbs.
The total number of different verbal word forms was 2314. Response latencies were inverse
transformed (−1000/RT ), and hal frequency was log-transformed (base e). For each verb,
its log-transformed morphological family size and its inflectional entropy were included as
additional covariates, together with two factors specifying whether a verb was regular or
irregular (Regularity), and whether a verb form was in the past tense (PastTense).

A mixed-effects model fitted to the empirical lexical decision latencies with random
intercepts for verb lemma (as a given verb contributes a present and a past-tense form)
revealed the expected negative slopes for Frequency, Family Size, and Inflectional Entropy,
and the expected positive slope for Length. The N-Count measure did not reach signifi-
cance. Regularity and Tense interacted as shown in the upper left panel of Figure 9, with
a difference in the group means for past and present tense forms for irregulars but not for
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the observed and simulated latencies for English present and past-tense verbs.



MORPHOLOGICAL PROCESSING WITH DISCRIMINATIVE LEARNING 43

regulars (see Table 14).

Table 14: Coefficients for the mixed-effects model fitted to the observed response latencies for in-
flected verbs. Lower, Upper: 95% highest posterior density interval; P: Markov chain Monte Carlo
p-value.

Estimate Lower Upper P
Intercept -1.1828 -1.2491 -1.1297 0.0001
Frequency -0.0433 -0.0474 -0.0414 0.0001
Tense = Past 0.1160 0.0789 0.1433 0.0001
Family Size -0.0306 -0.0358 -0.0189 0.0001
N-count -0.0009 -0.0025 0.0008 0.3662
Length 0.0169 0.0127 0.0238 0.0001
Inflectional Entropy -0.0305 -0.0474 -0.0123 0.0006
Regularity = Regular 0.0314 0.0071 0.0558 0.0104
Tense = Past : Regularity = Regular -0.1136 -0.1498 -0.0802 0.0001

The modeling of tense inflection raises three implementational issues. A first issue
is how to represent tense, as an equipollent opposition (with a past-tense semantic rep-
resentation as well as a present-tense representation) or as a single graded representation
representing the amount of evidence supporting the (marked) past-tense interpretation. We
opted for the second, more parsimonious solution. The binary distinction between present
and past tense was modeled with a single semantic representation capturing the amount
of evidence supporting a past tense interpretation. We rescaled the activation apast of the
past-tense meaning for a given verb into a probability. Defining apast to denote the vector
of activations of the past-tense meaning across all inflected words, the rescaled activation
of a paste-tense meaning is given by

a′past =
apast + min(apast)

max(apast)−min(apast)
. (22)

For present-tense verbs, we take the complementary probability:

ptense =

{
a′past for past-tense verb forms
1− a′past for present-tense verb forms.

(23)

A second issue concerns what semantic information is made available to the model
during training. Many verb forms are ambiguous with respect to tense: come is either
a finite present-tense form (I come) or the infinitive (I want to come), walked is either a
past-tense form (I walked) or a past participle (I have walked), and hit can be either a
present or past tense finite form (I hit) or a past participle (I have hit). The interpretation
of these forms is context-dependent. The constructions extracted from the bnc providing
information about verb inflections to our model contained a verb preceded by a pronoun,
an auxiliary, or a pronoun and an auxiliary. A verb was coded as expressing past tense
semantics if and only if it appeared in the context of an immediately preceding auxiliary
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that unambiguously signals paste-tense semantics (e.g., had, was, were). As a consequence,
the model critically depends on contextual cues for learning the past-tense semantics of
regular verbs with the -ed suffix. Irregular past-tense forms, by contrast, were associated
with past-tense meaning independently of context (had, was, were, came, went, saw, . . . ).

A third issue concerns how to weight the contributions of the semantic representations
for the verb and past tense. As the semantics of the verb itself is, in general, much richer
than that of the more abstract semantics of present or past, we expect that a better fit
is obtained when the weight for the past tense meaning is smaller than that of the verb
meaning. We therefore introduce a weight 0 < wtense < 1.

As for the monomorphemic words, the simulated RT was defined as the log-transform
of the reciprocal of the probability of identification of a word in the set of its most highly
activated competitors:

Pid =
wtenseptense + averb

wtenseptense + averb + wc
∑n

i=1 ai
(24)

simulated RT = log(1/Pid),

where wc is a weight for the summed activations of the n strongest competitors. As for the
monomorphemic words, n was fixed at 20. A good fit was obtained for wtense = 0.15 and
wc = 0.1. Finally, the effect of multiple fixations is brought into the model as before,

simulated RT = log
(

1
Pid

+ φI[l>5]

)
, (25)

with φ = 0.2.
For two words (bade, whiz), the simulated activation was less than zero. These verbs

were removed from the data set. The correlation between the observed and simulated
response latencies was r = 0.47, (t(2312) = 25.39, p = 0). Table 15 lists the coefficients
of the mixed-effects model fitted to the simulated latencies. The correlation between the
coefficients of the regression models for the observed and expected latencies was r = 0.9,
(t(6) = 5.15, p = 0.0021). This correlation is illustrated in the right panel of Figure 9.

Frequency and Family Size were significantly facilitatory for both observed and sim-
ulated response latencies. The N-count measure was not predictive in both mixed-effects
models. Longer words elicited significantly longer response latencies, which the model at-
tributes to additional fixations being required for longer words.

Whereas Inflectional Entropy was facilitatory for the observed latencies, it emerged
as inhibitory for the simulated latencies, indicating that the model fails to learn the inflec-
tional meanings associated with verbal meanings properly. Again, there is a good reason
for this. The model was trained on data that specified past tense wherever possible, but did
not provide information on the aspectual meanings such as the present/past perfect (she
has/had walked) or the continuous (she is/was walking). Hence, the empirical inflectional
entropy (based on celex) does not match the model’s learning experience. For the simple
nouns studied above, the empirical inflectional entropies provided a much better character-
ization of the model’s learning opportunities — number specification was available to the
model through disambiguating pronouns and determiners in the context. As a consequence,
inflectional entropy could emerge with the correct sign in the simulation of the simple nouns.
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Table 15: Coefficients for the mixed-effects model fitted to the simulated response latencies for
inflected verbs. Lower, Upper: 95% highest posterior density interval; P: Markov chain Monte Carlo
p-value.

Estimate Lower Upper P
Intercept 1.4467 1.5663 1.8048 0.0001
Frequency -0.0557 -0.0916 -0.0795 0.0001
Tense = Past 0.1939 0.0704 0.1991 0.0001
Family Size -0.1352 -0.1123 -0.0792 0.0001
N-count 0.0003 -0.0018 0.0048 0.3580
Length -0.0041 -0.0223 -0.0008 0.0410
Inflectional Entropy 0.0660 0.0249 0.0955 0.0001
Regularity = Regular 0.0397 -0.0274 0.0700 0.3884
Tense = Past : Regularity = Regular -0.1816 -0.2082 -0.0695 0.0004

The contrast coefficients for Tense, Regularity, and their interaction all agreed in
sign and reached significance for both the observed and simulated latencies. The lower
panel of Figure 9 visualizes the interaction of Regularity by Past Tense in the simulated
latencies. The interaction in the simulated RTs mirrors well the interaction characterizing
the observed latencies, with a large difference between present and past-tense irregulars
forms, and similar latencies for regular present and past tense forms.

The interaction of regularity by tense is difficult to interpret in current models assum-
ing parsing of regulars and storage for irregulars. Under such accounts, regular past-tense
forms, requiring some decompositional processing, should elicit longer latencies than the cor-
responding present-tense forms, contrary to fact. Furthermore, the processing advantage
for irregular present-tense forms compared to regular present-tense forms is not expected.
Crucially, the interaction of regularity by tense occurs in a model in which frequency and
other variables are included as covariates.

Our model suggests a very different interpretation. Recall that during training, the
information available to the model for discriminating between present and past meanings
is very different for regulars and irregulars. For irregular past-tense forms, the past-tense
interpretation is made directly available during learning, independently of the context. For
regulars, by contrast, the past-tense reading is available for learning only in the presence of
past-tense auxiliaries.

The observed lexical decision latencies were elicited for words presented in isolation,
without context, and our model likewise simulates reaction times for isolated word reading.
Since the present/past distinction is not context-dependent for irregulars, a large difference
emerges for the means of the simulated latencies of irregulars. By contrast, the low cue
validity of -ed as a marker for the past tense causes regular past-tense forms to be highly
context-dependent for their tense interpretation. Regular past-tense forms do become as-
sociated with the past-tense meaning to a greater extent than present-tense forms, but
compared to irregular verbs, the association is weaker. With only a small weight for the
Tense meaning (w1 = 0.14), the group means for present and past-tense regulars collapse,
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potentially reflecting a list effect in the English Lexicon Project, in which many different
words were presented and in which Tense was not a prominent feature.

In summary, this simulation study shows that a reasonable fit to the data can be
obtained with the basic engine introduced for the simulation of simple nouns, combined
with four free parameters: the weight for the tense meaning, two parameters defining the
weight and size of the competitor set, and a fixation penalty. The model faithfully re-
flects the interaction of Regularity by Tense, an interaction that challenges classical, purely
representation-based theories of morphological processing.

We suspect that the pattern of results observed for lexical decision will change when
these forms are read in sentential context. In sentential context, information is available for
disambiguation of the ambiguous -ed suffix. As a consequence, we expect that in context,
the past tense meaning will be activated more strongly for regular verbs. It is impor-
tant to note, however, that the naive discriminative reader models only the initial stage of
visual comprehension, in which orthographic information contacts meanings. Subsequent
processes of context-driven disambiguation and interpretation are not accounted for. There-
fore, two assumptions are crucial to the present explanation. Firstly, if our explanation is
on the right track, then the lexical decision task provides a window on this context-free
initial activation of lexical meanings from orthographic forms. Secondly, it is assumed that
discriminative learning of the mapping from form to meaning is informed only by meanings
that are unambiguous and that do not need higher-level cognitive processes to resolve their
ambiguity. In other words, our hypothesis is that the initial mapping from form to meaning
is learned not on fully specified meanings that are the outcome of complex and late processes
of sentential interpretation, but rather on the underspecified meanings that form the input
to those processes.

Derived words

Whereas the forms of inflected words typically tend to mark aspects of meaning
that are relevant for syntactic coreferential processing (e.g., number and person agreement
marking), derived words tend to express meanings that differ more substantially from those
of their base words. While for many words, the semantics of the base are transparently
visible in the semantics of the derived word (e.g., true in truth), some derived words can
have meanings for which this is no longer true (e.g., busy in business). Derivation is therefore
described as involving word formation, in the sense that it allows for the creation of labels
for new concepts that have gained currency in the speech community.

Inflectional morphology tends to be quite regular (the irregular past tenses of English
being exceptional), but derivational processes are characterized by degrees of productivity.
Some suffixes are hardly ever used for the creation of new words (e.g., English -th in warmth),
while others give rise to large numbers of new formations (e.g., -ness in English). The extent
to which a derivational affix is available for the formation of new words is known as its degree
of productivity (see, e.g., Baayen & Renouf, 1996; Bauer, 2001; Baayen, 2008).

In what follows, we first consider what lexical distributional properties predict the
processing of derived words, following Baayen et al. (2007), and examine whether naive
discriminative learning replicates the importance of these properties. We then consider
whether the model also predicts that more productive affixes require longer processing
latencies, as observed by Plag and Baayen (2009). Next, we consider whether it is necessary
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to postulate a special early morphographic parsing process, as claimed by Rastle et al.
(2004). Finally, we examine whether the notion of the morpheme, a theoretical construct
that many current theories of morphology consider to be obsolete (Beard, 1977; Aronoff,
1994; S. Anderson, 1992) can be dispensed with in the discriminative learning framework
by considering the processing of phonaesthemes.

Derived word processing. We selected 3003 derived words (569 prefixed words and
2434 suffixed words) with 81 different affixes and 1891 different base words for analysis.

As predictors for the observed and simulated lexical decision latencies, we considered
the frequency and length of the derived word, the frequency of its base, the family size
of its base, the family size of the suffix, and the frequency of the letter bigram spanning
the transition from base into suffix or prefix into base (the boundary bigram frequency).
Effects of the frequency and family size of the base have often been interpreted as evidence
of the orthographic input being parsed into stem and affix representations (see, e.g., Taft
& Forster, 1976b; Bertram, Schreuder, & Baayen, 2000; Kuperman, Bertram, & Baayen,
2008), Whole-word frequency effects, by contrast, would indicate non-compositional, holistic
processing. Furthermore, it has been argued that morphological effects are due to complex
words typically having low-frequency boundary bigrams (Seidenberg, 1987; Seidenberg &
McClelland, 1989, for discussion and counterevidence, see Rapp, 1992). Given these tradi-
tional diagnostic measures for morphological processing, the question we need to address is
whether the present discriminative learning framework can properly reflect the importance
of these predictors for lexical processing.

As these predictors are highly collinear with a condition number κ = 33.6 (Belsley,
Kuh, & Welsch, 1980), we orthogonalized them as follows. Base frequency was residualized
on word frequency. The residualized base frequency strongly correlated with the original
count (r =0.96). Base family size was residualized on word frequency (r =0.98). Suffix
family size was residualized on (residualized) family size and word frequency (r =0.99).
Finally, the boundary bigram frequency was residualized on all other predictors (r =0.99).
The condition number for the resulting set of predictors was substantially reduced to κ =
12.9. At the same time, the high correlations of the new variables with their originals ensure
that the new variables remain well interpretable.

We fitted a mixed-effects regression model to the observed latencies with random
intercepts for base and affix. The estimated coefficients are listed in Table 16. Response
latencies increased with word length. Words with a higher boundary bigram frequency
elicited longer latencies as well. More frequent words, words with more frequent base words,
and words with large base families or suffix families, elicited shorter response latencies.

The simulated response latencies were defined along the same lines as for inflected
words:

Pid =
waffixaaffix + abase

waffixaaffix + abase + wc
∑n

i=1 ai
(26)

simulated RT = log
(

1
Pid

+ φI[l>5]

)
(27)

The number of competitors n was fixed at 20 as in the preceding simulations. A good
fit was obtained for affix weight waffix = 0.25, for competitor weight wc = 0.1, and for
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Table 16: Coefficients for the mixed-effects model fitted to the observed response latencies for derived
words. Lower, Upper: 95% highest posterior density interval; P: Markov chain Monte Carlo p-value.

Estimate Lower Upper P
Intercept -1.2956 -1.3282 -1.2541 0.0001
Length 0.0277 0.0230 0.0310 0.0001
Word Frequency -0.0664 -0.0701 -0.0636 0.0001
Base Frequency -0.0071 -0.0107 -0.0037 0.0001
Base Family Size -0.0119 -0.0182 -0.0039 0.0040
Affix Family Size -0.0151 -0.0272 -0.0050 0.0066
Boundary Bigram Frequency 0.0068 0.0047 0.0112 0.0001

φ = 0.2. The correlation between the observed and simulated latencies was r = 0.25,
(t(3001) = 13.86, p < 0.0001). We fitted the same mixed-effects model to the simulated
latencies. The coefficients of this model are reported in Table 17. Figure 10 visualizes
the correlation between the coefficients of the model fitted to the observed and expected
latencies.

Table 17: Coefficients for the mixed-effects model fitted to the simulated response latencies for
derived words. Lower, Upper: 95% highest posterior density interval; P: Markov chain Monte Carlo
p-value.

Estimate Lower Upper P
Intercept 1.0359 1.0267 1.0598 0.0001
Length 0.0041 0.0021 0.0055 0.0001
Word Frequency -0.0110 -0.0144 -0.0118 0.0001
Base Frequency -0.0172 -0.0192 -0.0164 0.0001
Base Family Size -0.0064 -0.0088 -0.0024 0.0004
Affix Family Size -0.0081 -0.0134 -0.0014 0.0146
Boundary Bigram Frequency 0.0045 0.0046 0.0073 0.0001

Although the coefficients for the simulated reaction times have the right sign and reach
significance, the correlation between the two sets of coefficients fails to reach significance,
indicating that there is room for improvement. Most striking is the imbalance of word
frequency and base frequency. For the observed latencies, the coefficient for word frequency
is larger than that for base frequency. For the simulated latencies, the reverse holds. This
is due to the model being a fully decompositional model that does not do justice to the
loss of transparency of many derived words (e.g., the meaning of business, ‘enterprise’, is
not straightforwardly related to the meaning of its base, busy). We expect more balanced
results once opaque derived words are assigned separate meaning representations, distinct
from those of their base words.

Whereas facilitatory effects of base frequency and family size are traditionally under-
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Figure 10. Coefficients for the observed and simulated response latencies for 3003 English derived
words.

stood as the result of the input being parsed into its constituents, the present simulation
shows that these facilitatory effects can arise without any explicit parsing process being
involved. Furthermore, a whole-word frequency effect is present in the simulation in the
absence of any whole-word representations.

As expected, words with higher boundary bigram frequencies emerge with both
greater observed and greater simulated latencies. Conversely, processing is faster for lower-
frequency boundary bigrams, or ‘bigram troughs’ (Seidenberg, 1987). This effect co-exists
peacefully with stem-frequency and constituent family size effects, indicating that it is one
of several processing diagnostics of morphological complexity. We note here that bigram
trough effects are open to very different interpretations. The original hypothesis of Seiden-
berg (1978) was that low-level processing of letter-pairs is at issue. By contrast, Hay (2003)
argues that affixes with deeper bigram troughs are easier to parse out, affording greater affix
productivity.

The naive discriminative reader predicts that bigram troughs also should give rise
to shorter response latencies, but not because morphological decomposition would pro-
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ceed more effectively. The reason bigram troughs provide facilitation in our model is very
different, although straightforward. High-frequency boundary bigrams are typically used
word-internally across many words, and therefore have a low cue validity for the meanings
of these words. Conversely, low-frequency boundary bigrams are much more typical for spe-
cific base+affix combinations, and hence are better discriminative cues, affording enhanced
activation of meanings, and hence allowing faster processing.

Affix productivity. As mentioned above, derivational affixes differ in their degree of
productivity. Affixal productivity can be gauged by considering the number of different
word types with a given affix. In the present data set, unproductive -th is represented by 16
word types, and productive -ness by 177 word types. Although the number of types in which
an affix occurs, referred to above as affix family size, provides a decent first approximation
of affixal productivity, a more sensitive measure considers the likelihood of encountering
new, previously unseen formations. The measure we examine here (P) is the Good-Turing
estimate of the probability mass of words present in the population but absent in a (corpus)
sample (Good, 1953; Baayen, 1992):

P =
V1

N
, (28)

where V1 denotes the number of types with the affix appearing once only in the sample
(corpus), and N the total number of tokens of all words with the affix in the sample. An
intuitive understanding of this measure can be obtained by considering a vase with marbles
of different colors, with different colors occurring with varying frequencies (e.g., red 6, yellow
1, blue 15, purple 1, magenta 2, green 3, white 7, black 2, brown 3). When a marble is drawn
from the vase without replacement, the likelihood that its color occurs once only is equal
to the ratio of the number of colors with frequency 1 (V1) to the total number of marbles
(N), for the present example leading to the probability (2/40). Once sampled (without
replacement), the color uniquely represented by the marble drawn from the vase will never
be sampled again. By symmetry, the probability that the last marble sampled has a color
that has not been seen previously equals V1/N . In other words, P is the probability that,
having seen N −1 tokens, an unseen type will be sampled at ‘sampling time’ N . For formal
proofs, see, e.g., Baayen (2001). This productivity measure outperforms the affix family
size in that it correctly predicts that an affix instantiated in a relatively small number of
types can nevertheless be productive, see Baayen (1994) for experimental evidence.

Recently, Plag and Baayen (2009) observed for a selection of English derivational
suffixes that the by-affix processing cost, estimated by averaging response latencies across
all words with a given affix, entered into a positive correlation with degree of productivity
P. It is only for the most productive suffixes that this effect was slightly attenuated. The
upper panel of Figure 11 replicates the main trend for a larger selection of affixes, including
not only suffixes but also prefixes. As productivity increases, processing latencies increase
(r = 0.34, (t(73) = 3.08, p = 0.0029)). The lower panel shows that the same pattern is
present in the simulated latencies (r = 0.37, (t(73) = 3.45, p = 0.0009)).

The traditional psycholinguistic interpretation of the P measure is that (i) words with
many low-frequency formations (such as formations which occur once only, contributing to
V1) are unlikely to have whole-word representations, and hence depend on rule-based pars-
ing, and (ii) that the more high-frequency, lexicalised formations there are (contributing to a
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Figure 11. Log affix productivity (P) as predictor of mean affix latency for observed (left panel)
and simulated (right panel) data. Observed latencies are on the −1000/RT scale. Regression lines
are non-parametric lowess regression smoothers.

large N), the more rule-based processing will be superfluous. In other words, productive af-
fixes have relatively few higher-frequency words, and many lower-frequency forms, providing
a bias against whole-word based access and a bias in favor of decompositional processing
(see, e.g., Baayen, 1992). Since our discriminative learning model does not incorporate
whole-word representations for derived words, and yet faithfully reproduces the positive
correlation of affix productivity and average processing latency, a different explanation is
required.

What Figure 11 shows is that less productive suffixes, which tend to be suffixes with
relatively fewer but higher-frequency formations, guarantee shorter latencies, on average.
Their higher frequency of occurrence ensures better by-item learning. Furthermore, because
a less productive suffix is more constrained in its morphological micro-context — it co-occurs
with fewer stems — it should become a relatively good cue for these few stems. Conversely,
low token frequencies and many types lead to reduced item-specific learning, with as flip
side better generalisation to previously unseen words. This line of reasoning predicts that



MORPHOLOGICAL PROCESSING WITH DISCRIMINATIVE LEARNING 52

for a productive suffix such as -ness the activation of the suffix in new words should be
greater than the activation of an unproductive suffix such as -th.

To test this prediction, we made a list of formations that were new for the model,
by adding these suffixes to the 322 monomorphemic adjectives in the training set, and sub-
sequently removing all forms to which the model had been exposed during training. For
-ness (as in goodness, P = 0.0047), there were 208 unseen derived words. There were 321
unseen formations for -th (P < 0.0001). For each of these new words, we then calculated
the predicted activation of the suffix meaning. A Wilcoxon rank sum test indicated that, as
expected, the average activation of the suffix was greater (W = 38171, p = 0.0053) for pro-
ductive -ness (0.382) than for unproductive -th (0.273) The model therefore predicts reduced
processing costs for neologisms with productive suffixes. In other words, the processing ad-
vantage that less productive suffixes enjoy over more productive suffixes for existing words
is reversed into a processing disadvantage for unseen words.

Interestingly, even though -th is typically described as no longer productive in English
(see, e.g. Bauer, 2001), occasionally new words emerge (Baayen, 2009). Among the novel
words predicted by the model to have a higher activation for -th, we find strongth, slowth,
firmth and oldth, all attested on Urban Dictionary (http://www.urbandictionary.com).
Although these new words have the flavor of being quite unusual, it is not difficult to
deduce their meanings (as in “Caution: installation of too many Firefox add-ons may induce
slowth”, Urban Dictionary s.v. slowth). This fits well with the relatively high activation
levels predicted for -th: Even though smaller on average than those for -ness, they tend to
be larger than zero. In fact, there is considerable overlap in the distributions of activations
for the two suffixes. The model predicts that even for new words, the meaning of the
unproductive suffix is activated, hence, neologisms such as slowth are correctly predicted
to be comprehensible, even though most speakers would not spontaneously produce such
words themselves.

We conclude that naive discriminative learning succeeds in capturing important as-
pects of morphological productivity, without having to posit separate representations for
complex words or separate morphological rules associated with some kind of probability
that would specify their likelihood of application.

Pseudo-derived words. Thus far, we have shown that morphological effects arise in
our model in the absence of any specifically morphological processes or representations.
However, a well known and widely discussed phenomenon in the recent psycholinguistic
literature is a pattern of morphological priming effects emerging in masked priming exper-
iments that would support the existence of an early morpho-orthographic parsing process.
In what follows, we focus on the study of Rastle et al. (2004), who observed that the
magnitude of the priming effect for target words preceded by a derived prime was compa-
rable irrespective of whether the prime was a semantically related morphological relative
(e.g., dealer-deal) or whether the prime-target relationship was semantically opaque (e.g.,
corner-corn). The priming effects obtained for these conditions were significantly larger
than those obtained in a form condition in which no suffix is present (brothel-broth). This
evidence has been interpreted as indicating that complex words are decomposed at an early
morpho-orthographic level of processing, and that this decomposition process is triggered by
apparent morphological structure. The hypothesis of an early purely form-driven morpho-
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orthographic decomposition process is not uncontested, and may depend on the kind of
filler materials in the experimental list (Feldman, O’Connor, & Moscoso del Prado Mart́ın,
2009). Since our model does not comprise a morpho-orthographic processing module, it
is important to clarify whether or not the data of Rastle et al. (2004) can nevertheless be
adequately simulated.

A first question that we need to address for modeling the data of Rastle et al. (2004)
is how to represent the meanings of the pseudo-derived items in their study: words such as
early, fleeting, fruitless, archer, and cryptic (examples taken from the appendix of Rastle
et al., 2004). Linguistically, these pseudo-derived words are a very heterogeneous set. The
stem of early is related historically to modern English ere, a link not many native speakers
will be aware of, but the suffix -ly is still functional as an adverbial marker.

The adjective fruitless is opaque when considered in isolation: the meaning ‘in vain’,
‘unprofitable’ seems unrelated to the meaning of the base, fruit. Yet there are metaphors in
English that build on this meaning, as found in expressions such as the fruits of his labors,
and fruitless labors are then ‘labors that did not bear fruit’. Moreover, one finds expressions
such as a fruitless tree, in which the literal meaning, ’without fruit’ is appropriate. For this
example, it is debatable whether the meaning of the base is totally irrelevant for the meaning
of the derived word. What is clear, however, is that the privative meaning of -less, ‘without
fruit’, or ‘without success’, is still present in the complex word.

The etymological origin of archer, ‘someone who wields a bow’, is Latin arcus (bow,
arc). It is similar in structure to a denominal formation such as trucker, ‘someone who
drives a truck’. Again, the suffix is transparently present in the complex word, marking it
as an agent noun, even if the base is no longer synchronically that clearly visible.

For the adjective cryptic, Rastle et al. must have had in mind the free-standing
base word crypt, ‘a vault wholly or partly under ground’. And indeed, the meaning of
the adjective cryptic, ‘hidden, secret, incomprehensible’ is unrelated to this meaning of the
base. Leaving aside that the meaning of crypt goes back to a proto-Indo-European root
meaning ’to hide’, and that English does make use of a transparent bound root crypt- as in
cryptography, it is clear that the suffix -ic is contributing to the meaning of the adjective
just as it does in rhythm-ic or Semit-ic. For fleeting, the suffix -ing is contributing to the
adjectival reading ’transient’ just as it does in words such as daring or humbling.

It should be noted that functional suffixes in words with bases that do not contribute
to the meaning of the derived word are sometimes active in the grammar. In Dutch, simple
words take a prefix for their past participle (“zitten” - “gezeten”, sit; “wandelen” - “gewan-
deld”, walk). Complex verbs don’t take this prefix (“behandelen” - “behandeld”, treat).
Although Dutch does not have a verb “ginnen”, the derived word “beginnen” (begin) be-
haves as a complex word by not taking the prefix for its past participle, which is “begonnen”
and not “gebegonnen”.

Although these examples show that the degree of opacity of the pseudo-complex words
is debatable for at least a subset of the items, we have chosen to assign these pseudo-complex
words their own meanings, rather than the meanings of their base words. However, where
a suffix is synchronically active, as in the examples discussed above, the word is also linked
to the suffix meaning. For words such as ample and trolley, in which there is no synchronic
suffix, no suffix meaning was assigned. This coding scheme is probably conservative, as the
example of fruitless shows.
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Table 18: Assignment of meanings to selected words in the opaque, transparent, and form conditions
in the study of Rastle et al. (2004).

Word Type Lexical Meaning Suffix Meaning
archer opaque archer er
cryptic opaque cryptic ic
fruitless opaque fruitless less
trolley opaque trolley -
employer transparent employ er
alcoholic transparent alcohol ic
cloudless transparent cloud less
arsenal form arsenal -
brothel form brothel -
candidacy form candidacy -

For both prime and target, we estimate probabilities analogous to (25),

Pidword =
waffixaaffix + aword

waffixaaffix + aword +
∑n

i=1 ai
, (29)

where waffix is a weight for the affixal meanings, and where n represents the number of
strongest competitors taken into account.

To model the masked priming results of Rastle et al. (2004), we again make use of the
compound cue theory of Ratcliff and McKoon (1988). We allow prime and target to have
different weights, by defining the compound cue strength as

S′ = Pidw
P Pid1−w

T ,

Simulated RT = log(1/S′), (30)

with as prime weight w = 0.05. The correlation of the simulated and observed latencies
was 0.51. Crucially, the magnitude of the priming effects matched those from the empirical
study. The transparent and pseudo-derived words had empirical priming effects of 22 and 24
ms that were both significant and did not differ significantly between them. Similarly in the
model, priming effects of 0.064 and 0.071 were obtained, that were both highly significant
(t = 13.92 and 15.59 respectively), and that did not differ (for both treatment coefficients,
the standard error was 0.0046).

It is noteworthy that a morpho-orthographic effect is replicated in a model without
a morpho-orthographic parsing component. If our model is on the right track, the reason
that the transparent and opaque conditions give rise to a similar priming effect is not that
a semantically blind orthographic parser separates affix from stem, allowing the parsed-
out stem to prime the target. Instead, due to discriminative learning, the orthographic
representations for the suffix (unigrams, bigrams) have become associated with the suffix
meaning. Crucially, these associations emerge because for the majority of opaque items,
the suffix is fully functional in the meaning of the complex word.
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Table 19: Coding of the meanings of the items in the simulation of the primed lexical decision
experiment of Bergen (2004). Each word pair in the Meaning condition was assigned an arbitrary
and unique semantic label.

condition prime target

input meaning1 meaning2 input meaning1 meaning2
Phonaestheme glimmer gl glimmer gleam gl gleam
Baseline dial - dial ugly - ugly
Meaning collar x1 collar button x1 button
Form druid - druid drip - drip
Pseudo-phon. bleach bl bleach blank bl blank

Is independent evidence available that morphological units can be fully functional even
when there is no obvious semantic contribution from the base? To answer this question, we
consider the processing of phonaesthemes.

Phonaesthemes. Phonaesthemes are frequently recurring sound-meaning pairings in
the absence of a stem. Classic examples from Bloomfield (1933) are word initial gl in glow,
glare, gloom, gleam, glimmer and glint. Bergen (2004) observed that 38.7% of the types and
59.8% of all tokens in the Brown corpus beginning with gl have dictionary definitions that
refer to light or vision. For sn, 28% of the word types and 19% of the word tokens have
meaning related to ‘nose’ or ‘mouth’ (e.g., sniff, snore, snort, snot, snout, sneeze).

Bergen studied the processing of phonaesthemes using a primed visual lexical decision
with a prime duration of 150 ms and a 300 ms interval between the presentation of prime
and target. Stimuli fell into five categories. The set of Phonaesthemes shared a phonological
onset and a meaning well supported across a large number of word types and tokens (e.g.,
glitter, glow). Then, in the Form condition words shared an onset, but no meaning (druid,
drip). In the Meaning condition they shared meaning (cord, rope). The set of Pseudo-
phonaesthemes comprised words sharing onset and meaning, but in this case the potential
phonaestheme was not well-supported distributionally (crony, crook). Finally, the Baseline
condition included words unrelated in form and meaning (frill, cook). Stimuli were matched
for frequency, number of letters, number of phonemes, and number of syllables. The words
in the Phonaestheme condition elicited significantly shorter latencies than the words in any
of the other four conditions, indicating that distributionally well-supported phonaesthemes
enjoy a processing advantage of nearly 60 ms compared to the baseline condition.

Using the lists of stimuli listed in Appendix B of Bergen (2004), we calculated the sim-
ulated response latencies for his materials. The meanings of the words were coded as shown
in Table 19, with phonaesthemes and pseudo-phonaesthemes receiving a second meaning
(in addition to the meaning of the whole word) represented simply by the phonaestheme.
Words in the Meaning condition were also assigned a second meaning, which varied from
pair to pair. Probabilities of identification were defined as

pword =
wmashared meaning + aword

wmashared meaning + aword +
∑n

i=1 ai
, (31)

with wm the weight for the shared meaning (the equivalent of the weight for affix meanings
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Figure 12. Observed and simulated group means for the baseline condition (Base), the form condi-
tion (Form), the semantic condition (Semantic), and the Pseudo-phonaestheme and Phonaestheme
conditions, using the data of Bergen (2004).

for derived words), and n the number of highest-activated competitors taken into consider-
ation. A good fit requires approximately the parameter values wm = 0.01 and n = 40. As
for the pseudo-derived words, we made use of the compound cue theory, setting the prime
weight to 0.2 (cf. equations 30).

As Bergen (2004) does not provide item means, we calculated the mean simulated
latency for each condition. As illustrated in Figure 12, the model captures the main trend
in the observed group means: r = 0.97, (t(3) = 6.95, p = 0.0061). An analysis of covariance
of the simulated latencies with word frequency as covariate indicated that the group mean
for the phonaesthemes contrasted significantly with the joint group mean of the other four
groups (β̂ = 0.020, t(48) = −2.339, p = 0.024). With only 10 observations for each condition,
the model was not accurate enough to support the significance of the contrasts of the
Phonaesthemes with each of the other four conditions separately.

This simulation study suggests, albeit tentatively, that priming effects for phonaes-
themes similar to those found for regular morphemes can emerge within the framework of
naive discriminative learning. Morpheme-like effects can be present without an input string
requiring a parse into a sequence of morphemes that jointly span the input. The model
therefore dovetails well with theories in linguistic morphology which have challenged the
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explanatory value of the theoretical construct of the morpheme (see, e.g., Matthews, 1974;
Aronoff, 1994; S. Anderson, 1992; Stump, 2001; Blevins, 2003, 2006; Booij, 2010).

Although we can label particular forms such as gl as phonaesthemes, setting them
apart from ‘accidental’ series where aspect of form and meaning would coincide supposedly
by chance, the phenomenon itself is in all likelihood a gradual one. We suspect that it is
only for the strongest and semantically most consistent series that morpheme-like effects
are detectable in on-line behavioral experiments. Yet a discriminative learning approach
predicts that even small local consistencies in the fractionated chaos of local form-meaning
correspondences will be reflected in the weights, and that they will codetermine lexical
processing, however minute these contributions may be. Interestingly, even in this chaos
there seems to be some order, as Shillcock, Kirby, McDonald, and Brew (2001) observed
that in English, for the most frequent monosyllabic words, there is a small but significant
correlation between the phonological distance and the semantic distance between each pair
of words. Words with more similar meanings tend to have more similar forms. Morphology,
as the study of the relation between form and meaning in words, can begin to account for
these kinds of phenomena only by freeing itself from the chains of the morpheme.

In the next section, we consider compounding, the most productive word formation
process in English, and the one that comes closest to syntactic phrase formation.

Compounds

Studies on compound processing (e.g., Pollatsek, Hyönä, & Bertram, 2000; De Jong,
Feldman, Schreuder, Pastizzo, & Baayen, 2002; Juhasz, Starr, Inhoff, & Placke, 2003; Ku-
perman et al., 2008, 2009; Baayen, 2010) have documented a wide range of variables explain-
ing processing latencies, including compound frequency, word length, and both the family
size and frequency of the head and modifier constituents. In what follows, we consider 921
compounds for which lexical decision latencies are available in the English Lexicon Project.

Following Baayen (2010), we analyse the response latencies with a generalized additive
model (Wood, 2006), with as well-established predictors the positional family size of the
modifier (the number of compounds sharing the left constituent as modifier), the frequency
of the modifier, the positional family size of the head, the length of the compound, and the
frequency of the compound.

A factor specifying whether the head of the compound (e.g., worm in silkworm) is also
used as a modifier in other compounds (e.g., worm in wormwood) was included, as well as
a factor specifying whether a compound is part of the strongly connected component of the
compound graph. The strongly connected component of a directed graph is that part of the
graph in which any node can be reached from any other node by following the directed links
between the nodes. For the present data, being part of the strongly connected component of
the directed compound graph implies that it is possible, by following modifier-to-head links,
to reach a compound’s modifier by starting at its head, as in the cycle silkworm wormwood
woodcock cockhorse horsehair hairoil oilsilk.

Recall that the head and modifier family sizes count the number of compounds sharing
head or modifier. The count of the number of compounds that these compounds share a
constituent with, henceforth the secondary family size (Baayen, 2010), was also included as
a predictor. (The secondary family size count was orthogonalized with respect to the head
and modifier family sizes by taking residuals from a model regressing secondary family size
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on the head and modifier family sizes.)
These three predictors (whether a constituent is used both as head and as modifier,

secondary family size, and being part of the strongly connected component of the compound
graph) are of special interest as the original motivation for exploring these measures came
from a spreading-activation approach to lexical organization. If meanings are connected in a
network, then the properties of that network can be summarized using concepts from graph
theory, and the consequences of network organization should then be visible in processing
costs as gauged by visual lexical decision and word naming latencies. This is indeed what
Baayen (2010) found. If activation spreading in a lexical network is indeed the underlying
process, then these measures should not be predictive for the simulated latencies generated
by the naive discriminative reader, as it addresses only the mapping from orthographic cues
to meanings, and not subsequent semantic processes. Therefore, these measures provide an
excellent opportunity for falsifying the naive discriminative learning approach.

As a final predictor we included the amount of information carried by the compound
as gauged by means of Shannon’s entropy applied to the probability distribution of the
compound’s constituents:

Hcompound = −
2∑

i=1

pi log2 pi, (32)

with pi the probability of the i-th constituent given the compound:

pi =
fi∑2

j=1 fj

. (33)

A nonlinear interaction involving head family size, secondary family size, and be-
ing part of the strongly connected component was modeled with a tensor product, using
generalized additive modeling (gam). Table 20 lists the coefficients of the linear terms of
the resulting gam model fitted to the observed response latencies of the English Lexicon
Project. The regression surfaces for the compounds outside and in the strongly connected
component required 7.036 and 6.124 estimated degrees of freedom respectively, and reached
significance (both p < 0.0003). These regression surfaces are shown in the upper panels
of Figure 13. For compounds not in the strongly connected component, longer latencies
are found for small head family sizes and large secondary productivity. For compounds
in the strongly connected component, head family size is facilitatory, but mainly for sec-
ondary productivity values around zero, i.e., for secondary family sizes near the mean of
the distribution. In other words, for less probable secondary family sizes, longer latencies
are found.

Table 21 lists the linear coefficients obtained when the same generalized additive
model specification is used for the simulated latencies, defined as

simulated RT = log
(

1
amod + whahead

+ φI[l>8]

)
, (34)

with the expectation that wh < 1 because modifiers tend to be read before heads. A good
fit to the data was obtained for wh = 0.5 and φ = 3.5. Since the lengths of compounds were
longer than those of the simple, inflected, and derived words, ranging from 6 to 14, the cutoff
point for multiple fixations is placed slightly further into the word, and φ is set at a larger
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Table 20: Coefficients for the generalized additive model fitted to the observed response latencies of
two-constituent English compounds.

Estimate Std. Error t value p value
Intercept 6.776 0.036 187.177 0.0000
Modifier Family Size -0.016 0.006 -2.595 0.0096
Compound Frequency -0.042 0.003 -13.526 0.0000
Modifier Frequency -0.008 0.003 -2.524 0.0118
Head also used as Modifier -0.021 0.012 -1.758 0.0791
Compound Entropy -0.061 0.013 -4.611 0.0000
Compound Length 0.017 0.003 5.196 0.0000

Table 21: Coefficients for the generalized additive model fitted to the simulated response latencies
of two-constituent English compounds.

Estimate Std. Error t value p value
Intercept 2.477 0.232 10.675 0.0000
Modifier Family Size -0.192 0.040 -4.771 0.0000
Compound Frequency -0.111 0.020 -5.651 0.0000
Modifier Frequency -0.148 0.020 -7.304 0.0000
Head also used as Modifier -0.206 0.076 -2.709 0.0069
Compound Entropy 0.086 0.085 1.006 0.3148
Compound Length 0.160 0.021 7.502 0.0000

value to reflect that more than one additional fixation may have been required. The by-item
correlation of observed and simulated latencies was r = 0.31, (t(919) = 9.71, p < 0.0001).
The two tensor products both reached significance (both p < 0.0001) for 8.07 and 7.78
estimated degrees of freedom.

A comparison of Table 20 and Table 21 shows that the model correctly predicts
facilitatory effects of compound frequency, modifier family size, modifier frequency, and
also mirrors the shorter latencies for compounds with heads that are also used as modifiers.

The empirical decision latencies are characterized by a facilitatory effect of compound
entropy. The facilitatory effect of compound entropy is consistent with the facilitatory effect
of inflectional entropy. When a word is characterized by a higher amount of information,
carried by its inflectional paradigm or carried by its constituents as in the case of compounds,
there is more information about the word available in long-term memory. Therefore, a
higher entropy (more information in memory) predicts shorter response latencies in the
lexical decision task.

The model, however, does not capture the facilitation from compound entropy, which
suggests to us that the compound entropy effect in the observed latencies reflects a process-
ing stage subsequent to the initial process of activating meanings from orthographic cues.
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The magnitude of the effects of compound frequency and modifier frequency are out
of balance in the model, which overestimates the effect size of modifier frequency and un-
derestimates the effect size of compound frequency. As in the simulation of derived words,
this is due to the model being withheld information about semantic opacity. Nevertheless,
even though the model assumes full transparency, whole-word frequency effects do emerge,
indicating that semantic opacity is not the only force underlying whole word frequency
effects.

The regression surfaces estimated for the simulated latencies are shown in the bottom
panels of Figure 13. It is clear that the model does not capture the full details of the interac-
tion of head family size by secondary productivity by membership in the strongly connected
component. Nevertheless, there are some encouraging similarities. For compounds outside
the strongly connected component (left panels), the model captures the facilitation for large
head families, and part of the inhibition for small head families and low secondary produc-
tivity. The model fails to capture that inhibition is strongest for small head family size and
large secondary productivity. Turning to the compounds in the strongly connected compo-
nent, the model faithfully replicates the trough that is visible for the observed latencies for
zero secondary productivity (the mode of the distribution of secondary productivity values).

The ability of the model to approximate the effects of secondary productivity and
membership in the strongly connected component came as a surprise to us. We thought
that without further knowledge of the semantic relations between the semantic nodes, and
without a mechanism of spreading activation in this network of semantic relations, these
effects would not emerge in the naive discriminative reader. Since these effects are nev-
ertheless present in the simulated latencies, it must be the case that the distributional
information on the basis of which the weights are estimated is not uniformly distributed
with respect to secondary productivity and membership in the strongly connected compo-
nent. We therefore examined more closely how (dis)similar words are as a function of their
membership of the strongly connected component and their secondary productivity.

The Levensthein distance of the modifier to the head in the compounds in the strongly
connected component is significantly smaller than the corresponding distance for compounds
that are not part of the strongly connected component (t(663.2) = -2.34, p = 0.0194).
Furthermore, the mean of the average Levenshtein distances of constituents in the strongly
connected component to any other constituent is significantly smaller than the mean of
the average distances calculated for constituents outside the strongly connected component
(t(426.22) = -1.97, p = 0.0496).

Finally, while there is no correlation of this average Levenshtein distance for modifiers
and secondary productivity, r = 0, (t(919) = -0.07, p = 0.9432), the corresponding correla-
tion for the head is markedly present, r = -0.21, (t(919) = -6.51, p = 0), such that greater
average Levenshtein distances predict reduced secondary productivity. In other words, the
more similar a word is to other words, the greater its secondary productivity is. This pattern
of results helps explain why the interaction displayed in Figure 13 pivots around the head
and not around the modifier: It is only heads, and not modifiers, that are non-uniformly
distributed with respect to their similarity to other constituents.

The non-uniform distribution of form similarity with respect to secondary produc-
tivity and membership in the strongly connected component implies a non-uniform distri-
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Figure 13. Partial regression surfaces (modeled with tensor products) for observed (upper panels)
and simulated (lower panels) response latencies, for the interaction of head family size by secondary
productivity by membership of the strongly connected component of the compound graph. Fitted
observed latencies specified on the contour lines are on the log scale. Fitted simulated latencies are
also on a log scale, as defined by (34).
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bution of the difficulty of discriminative learning. Words with denser neighborhoods are
more difficult to associate with their meanings. As a consequence, the effects of secondary
productivity and membership in the strongly connected component may, at least in part,
be effects of neighborhood similarity in disguise.

We conclude our discussion of compounds with a comment on the observation, coming
from recent eye-tracking studies, that compound frequency effects can be present already
at the first fixation (Kuperman et al., 2008, 2009). Following Bruza, Kitto, Nelson, and
McEvoy (2009a, 2009b), one could attribute such an early effect as arising due to quantum
entanglement.

Nelson, McEvoy, and Pointer (2003), in a study on cued recall, showed that connec-
tions among a target word’s associates facilitate recall regardless of the number of con-
nections returning from those associates to the target. They proposed an ‘activation at a
distance’ equation that outperformed a spreading activation account. Bruza et al. (2009a)
explore the possibility of accounting for such ‘spooky distance effects’ in terms of quantum
entanglement. For compound processing, quantum entanglement might likewise account for
the apparently simultaneous activation of the first constituent and the full compound.

However, within the context of naive discriminative learning, the early effect of com-
pound frequency in the eye-movement record follows straightforwardly. To simulate first
fixation durations, we assume that only the first constituent of the compound is visible, and
that there is sufficient parafoveal information to clarify that the modifier is not followed
by a space. Modeling the first fixation duration as proportional to log(1/amod), we obtain
significant facilitatory effects of modifier frequency, modifier family size, and also compound
frequency (β̂ = −0.08, t(916) = −3.44, p = 0.0006). If we assume that the first character
of the head is also available, the facilitatory effect of compound frequency increases and
remains significant (β̂ = −0.17, t(916) = −6.47, p < 0.0001). In other words, naive discrim-
inative learning obviates the need for an appeal to quantum entanglement. The activation
at a distance phenomenon reported by Nelson et al. (2003) may likewise find an alternative
explanation in discriminative learning.

Phrasal effects

The frequency effects observed for inflected words, derived words, and compounds
were replicated in our simulation studies without any assumptions about processes or rep-
resentations that would be specifically morphological in nature. The naive discriminative
reader therefore predicts frequency effects also for multi-word sequences that are not com-
pounds or other morphological units: The model is trained on sequences of words (see Table
11) and not on isolated words.

A model that does not presuppose a strict distinction between lexicon and syntax
fits well with recent linguistic theories rejecting a strict boundary between morphology and
syntax (as typically assumed in mainstream generative grammar), and that instead situate
morphology and syntax on a continuum with pairings of form and meaning (often referred
to as constructions) exhibiting different degrees of complexity (Goldberg, 2006; Jackendoff,
2009; Booij, 2010).

In what follows, we explore two kinds of phrasal effects: a phrasal frequency effect
(facilitating phrasal comprehension), and a phrasal exemplar-prototype effect affecting the
processing of individual words that is structurally similar to the relative entropy effect
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discussed above for Serbian nouns.

Phrasal frequency effects. Multi-word frequency effects have recently been reported
(Bannard & Matthews, 2008; Arnon & Snider, 2010; Tremblay & Baayen, 2010), even for
n-grams that are fully transparent and fully compositional. Within the present framework
of discriminative learning, conditional on learning not being restricted to words in isolation,
such phrasal frequency effects should emerge.

To test this prediction, we selected from the 11,000 prepositional phrases in the
model’s lexical input, 558 phrasal pairs such as in a flour (low-frequency, 2 occurrences
in the bnc) and in the flour (high-frequency, 37 occurrences in the bnc), comprising 133
different nouns and 39 different prepositions. For each pair, one phrase had a high frequency,
and the other a low frequency. For each phrase, a comprehension latency was simulated on
the basis of the (unweighed) activations of the three constituents:

Simulated Latency = log
(

1
anoun + apreposition + adeterminer

)
. (35)

The pairwise differences in the simulated latencies and the corresponding pairwise
differences in trigram frequencies were significantly correlated r = -0.17, (t(556) = -4.07,
p = 1e − 04). The facilitation from frequency was confirmed by a mixed-effects regression
model fitted to the simulated latencies with as predictors the log-transformed frequency of
the trigram in the bnc, the identity of the determiner (a or the as fixed-effect factor, and
preposition and noun as random-effect factors. In addition to random intercepts, random
slopes for frequency were supported by likelihood ratio tests for both random effect factors
(all p < 0.0001). A third potential random-effect factor, the combination of preposition
and noun, did not explain any variance and was removed from the model specification.
The identity of the determiner and trigram frequency emerged with independent main ef-
fects, with phrases with the and higher frequency phrases having shorter simulated latencies
(frequency: β̂ = −0.01, t = −3.169).

Crucially, an effect of phrasal frequency is predicted by our model without there be-
ing explicit representations for prepositional phrases in a model that is fully compositional
and extremely economical in the number of semantic representations that it admits. What
this simulation study shows is that the benefits of experience for compositional phrases, as
attested recently in the behavioral study of Arnon and Snider (2010) and the electrophysio-
logical study of Tremblay and Baayen (2010), may be understood without postulating that
phrases are somehow “stored”, which would lead to a combinatorial explosion of “supra-
lexical” representations. Further evidence for this possibility is reported in Baayen and
Hendrix (2011), who successfully simulated a phrasal frequency effect for the four-word
materials used in Experiment 1 of Arnon and Snider (2010).

Phrasal paradigmatic effects on single-word lexical processing. In the framework of
discriminative learning, morphological family size and inflectional paradigmatic effects do
not arise due to co-activation of morphologically related words. Instead, experience with
morphologically related words makes it possible for their base words to be learned bet-
ter, resulting in stronger connections from form to meaning. If a strict division between
morphology and syntax is abandoned, then experience with words in phrasal rather than
morphological contexts should also affect learning. More specifically, just as a Serbian noun
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Table 22: Phrase frequency and probability, and prepositional frequency and probability, for 7
prepositions in indefinite prepositional phrases with plant. For phrasal probabilities, we backed off
from zero by adding one to the phrasal frequencies. The relative entropy for this example is 0.143.

phrase phrasal phrasal preposition prepositional prepositional
frequency probability frequency probability

on a plant 28608 0.279 on 177908042 0.372
in a plant 52579 0.513 in 253850053 0.531
under a plant 7346 0.072 under 10746880 0.022
above a plant 0 0.000 above 2517797 0.005
through a plant 0 0.000 through 3632886 0.008
behind a plant 760 0.007 behind 3979162 0.008
into a plant 13289 0.130 into 25279478 0.053

incurs a processing cost if its use of case inflections is different from the prototypical use of
case inflections in its inflectional class, we may expect that nouns in English will occur a
processing cost if their phrasal use is atypical.

To test this prediction, we considered simple prepositional phrases in English, con-
sisting of a preposition, a determiner, and a noun. The prepositions were taken from the
set above, across, against, along, amid, amidst, among, amongst, around, at, atop, before,
behind, below, beneath, beside, besides, between, beyond, following, from, in, inside, into,
near, next, off, on, onto, outside, over, past, round, through, to, toward, towards, under,
underneath, up, upon, with, within, and without, the determiners were a and the, and the
noun was selected from the 1452 simple words that have a nominal reading (and possi-
bly a verbal reading) and for which response latencies are available in the English Lexicon
Project.

Using the Google 1T n-gram data (Brants & Franz, 2006), we compiled a data set of
38577 trigrams with the definite article, and a data set of 14851 trigrams with the indefinite
article. For both data sets, we extracted the Google 1T 3-gram frequency, from which we
also calculated the frequencies of the prepositions summed across all the trigrams in which
they occurred. As illustrated for a sample of 3-grams in Table 22, the n-gram frequencies
and prepositional frequencies were transformed into probabilities, which served as input for
the calculation of relative entropies to which we will refer as prepositional relative entropies.

The prepositional relative entropies for indefinite and definite phrases were highly
correlated (r = 0.659), and both were predictive for the response latencies to simple nouns.
In the models for the observed and simulated latencies of simple nouns presented above
(see Tables 12 and 13), we used the indefinite prepositional relative entropy, which seemed
slightly more robust, possibly because lexical decisions for words presented in isolation are
elicited for words in an indefinite context.

The predictivity of prepositional relative entropy for isolated word reading in English
provides further support for our hypothesis that the processing of words is co-determined
not only by the morphological contexts in which that word occurs, but also by its syntac-
tic contexts. Crucially, it is not simply the frequency of such syntactic contexts, but also
how such syntactic contexts are structured paradigmatically. The unconditional probabil-
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ities with which prepositions are used represent a noun’s prototypical prepositional usage.
The nouns’ own probabilities of occurrence with these prepositions represent exemplar pro-
files. The prepositional relative entropy captures the distance between an exemplar and its
prototype.

It is possible that exemplars have their own representation, and that in lexical process-
ing the distance of that representation to the prototypical representation is somehow taken
into account. However, explanations positing exemplar representations place high demands
on memory capacity. The naive discriminative learning framework, in which relative en-
tropy effects emerge naturally, by contrast, imposes very limited demands on memory, and
also does not require a separate process evaluating an exemplar’s distance to the prototype.

It is important to realize that prepositional paradigms capture only one paradigmatic
aspect of phrasal syntax. For instance, our theory predicts that the prepositions used in
verbal adjuncts constitute a second paradigmatic domain for which a relative entropy can be
defined. This relative entropy should correlate positively with response latencies to verbs.
Phenomena typically explored with collostructional analysis (Stefanowitsch & Gries, 2003;
Gries & Stefanowitsch, 2004) may similarly constitute dimensions of paradigmatic variation
affecting lexical processing.

Discussion

The experimental data on the reading of Serbian case-inflected nouns reported in the
present study, combined with the data previously obtained by Milin, Filipović Durdević,
and Moscoso del Prado Mart́ın (2009), indicate that the processing of a word form is co-
determined by the probabilities of all inflectional variants of this particular word, and the
probabilities of the exponents of inflectional class to which a given word belongs. Similarly,
for English, we have shown that the processing latencies of simple nouns are co-determined
by the probabilities with which these nouns co-occur with prepositions vis-a-vis the un-
conditional probabilities of these prepositions. These experimental results fit well with
previous data documenting the importance of paradigmatic structure for lexical processing,
as witnessed by the effects of inflectional entropy and morphological family size.

We have shown that a naive discriminative learning architecture suffices to capture
these paradigmatic effects for both morphological and phrasal processing. Although the
good fit to the Serbian data initially obtained with the naive discriminative reader could
have been due to the restricted data set on which the model was trained, the subsequent
good fits obtained for the English data, based on a broad and general instance base extracted
from the bnc, indicates that overfitting is not at issue. We have also shown that the naive
discriminative reader is able to account for a wide range of phenomena, from morphological
effects to pseudo-prefixed words, and from phonaesthemes to phrasal frequency effects.

The success of the naive discriminative reader raises the question of whether other
models might be equally succesful. In what follows, we therefore compare the naive dis-
criminative reader in some detail with the Bayesian Reader of Norris (2006), and briefly
discuss other models of word recognition.

In the Bayesian Reader model for word recognition the probability of identifying a
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word wi given input I is defined as

Pr(wi|I) =
Pr(wi) Pr(I|wi)∑m

i=j Pr(wj) Pr(I|wj)
. (36)

The likelihood function Pr(I|wi) is defined stochastically as a function of time and the
Euclidian distance of wi to the input as available at a given point in time. We skip the
details of the stochastic modeling of the time course of lexical activation, which renders the
model computationally extremely demanding. Instead, we discuss a simplified version that
we have implemented, henceforth the Easy Bayesian Reader.

Recall that for the naive discriminative reader, a word’s orthographic input was coded
as the set of its unigrams and bigrams. For the Easy Bayesian reader, we encoded a word’s
form as a binary vector indicating which of the 27 + 272 = 756 unigrams and bigrams
was instantiated for that word. For a prime-target pair, following Norris and Kinoshita
(2008) that in masked priming prime and target are blurred into one percept, the input
was encoded as binary vector representing both the prime and the target simultaneously.
the likelihood Pr(I|wi) was assessed as the Euclidean distance of the binary orthographic
vectors of the visual input I and word wi, normed to the interval [0, 1]. The probability
Pr(wi) was estimated by its relative frequency in our corpus. Finally, the response latency
for wi was defined as 1/Pr(wi|I), and log-transformed to obtain an approximately normal
response variable.

Table 23: Coefficients estimated for the simulated self-paced reading latencies using the Easy
Bayesian Reader model.

Estimate Std. Error t-value p-value
Length 0.046 0.017 2.761 0.0058
Weighted Relative Entropy 0.224 0.066 3.379 0.0008
Target Gender = masculine -0.227 0.053 -4.300 0.0000
Normalized Levenshtein Distance 0.236 0.145 1.629 0.1036
Target Lemma Frequency -0.999 0.026 -37.928 0.0000
Target Case = Nominative -0.854 0.054 -15.746 0.0000
Prime Word Frequency -0.079 0.019 -4.134 0.0000
Prime Condition = DSSD -0.076 0.082 -0.932 0.3515
Priming Condition = SS -0.270 0.157 -1.715 0.0865

We investigated how well the predictions of the Easy Bayesian Reader fitted the
primed self-paced reading latencies of our Serbian case-inflected nouns (Experiment 1).
The simulated latencies entered into a significant correlation with the observed by-item
mean self-paced reading latencies, r = 0.15, (t(1185) = 5.16, p = 0), albeit to a lesser extent
than the latencies simulated using naive discriminative learning (r = 0.23). The model does
not capture the interaction of Weighted Relative Entropy by Case nor the interaction of
Weighted Relative Entropy by Gender. After removal of these interactions from the model
specification, the model summarized in Table 23 was obtained. The model correctly predicts
an inhibitory effect of Weighted Relative Entropy. It also correctly predicts inhibition
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from Word Length, and shorter latencies for nouns in nominative case. The effect size
for nominative case, however, is four times as large as the effect of the identity priming
condition, instead of being an order of magnitude smaller (compare Table 5 and Figure
1). Apparently, the Easy Bayesian Reader captures important aspects of the data, but
with reduced precision. Since the way we coded the orthographic input differs from the
implementation in the original Bayesian Reader model, it is possible that the original full
model will provide enhanced results.

Assuming that this is indeed the case, three important differences between the two
approaches should be noted. First, the Bayesian Reader compares the orthographic input
with orthographic representations in memory. In our implementation of the Easy Bayesian
Reader, it is assumed that Serbian words inflected for case and number have such ortho-
graphic representations. In other words, the Easy Bayesian Reader is a full-form based
model. By contrast, the naive discriminative reader is a full-decomposition model in which
inflected forms do not have their own representations in memory, and in which orthographic
form information is directly mapped onto meaning representations.

Second, the growth-rate of the Easy Bayesian Reader is quadratic in the number of
entries N in the lexicon. Simulating a response latency for each of the 1776 distinct Serbian
case-inflected wordforms requires the calculation of 17762 = 3154176 distances. For the
discriminative learning model, we have 27 + 272 = 756 orthographic representations for
unigrams and bigrams (including the space character), and 278 semantic representations
(270 noun lemmas, 6 cases, and 2 numbers), in all M = 278 + 756 = 1034 representations.
The number of weights in the model is 756 ∗ 278 = 210168. Since each additional meaning
node requires only 756 additional weights, the growth-rate of the discriminative learning
model is linear. Even for the small data set of Serbian nouns, the number of distances the
Easy Bayesian Reader has to compute is already 15 times the number of weights that need
to be set in the discriminative learning model.

Third, the Bayesian Reader simulates the time course of lexical activation, the Easy
Bayesian Reader and our discriminative learning model do not. A time course for the
activation of a word wi can in principle be generated by using the probability Pr(wi|I) to
estimate the word’s drift rate in a lexical diffusion model (Ratcliff, Gomez, & McKoon,
2004).

This example comparison illustrates the dilemma facing computational models of
simple word recognition that build on a lexicon of representations for simple words, not
only the Bayesian Reader, but also models such as act-r (see, e.g., Van Rijn & Anderson,
2003) and drc (Coltheart et al., 2001). For the modeling of morphological and phrasal
effects, this family of models has two options.

A first option is to add complex words to the lexicon, as if they were simple words.
For the small data set of Serbian case-inflected nouns, the results obtained with the Easy
Bayesian Reader suggest this may work in principle. For realistic lexicons, the price of a
lexicon with huge numbers of entries may become prohibitive. For instance, the number
of n-gram types on which our model was trained, 1,496,103, represents only a fraction of
the number of n-grams occurring in the bnc alone. Yet no fewer than 2,238,324,000,000
distances would have to be evaluated to estimate the posterior probabilities of just these
phrases in the Bayesian Reader approach.

A second option is to restrict the lexicon to monomorphemic words, and to supplement
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current models with a probabilistic parser. However, for such a parser to work, a morpheme-
based theory of morphology would have to be assumed, which, apart from being linguistically
unattractive, makes the wrong predictions for phonaesthemes and pseudo-derived words.
Furthermore, it is unclear to us how and why such a parser would give rise to paradigmatic
entropy effects in lexical processing.

The naive discriminative learning approach that we have pursued is similar to the
triangle model (Harm & Seidenberg, 1999; Seidenberg & Gonnerman, 2000; Harm & Sei-
denberg, 2004) in that the orthographic input is mapped onto meaning without intervening
lexical representations and without requiring explicit rules for parsing. It differs from the
triangle model in several ways, however. First, we have not made any attempt to model
phonology. Hence, our model is more limited and does not provide accurate predictions
for word naming and reading aloud. Given the neurophysiological evidence for two corti-
cal streams in reading (a ventral, occipital-temporal, stream used when accessing familiar
words encoded in lexical memory, and a dorsal, occipital-parietal-frontal, stream used when
mapping sublexical spelling onto sounds, see, e.g., Borowsky et al., 2006), we believe it is
worth exploring whether our model could function as part of the lexical (ventral) route in,
for instance, the drc architecture (see Hendrix & Baayen, 2010, for a proposal).

A second difference with the triangle model is that we have substantially simplified the
computational engine, which does not incorporate hidden layers and does not use backprop-
agation for estimating connection weights. All we need for modeling morphological effects
is a (symbolic) layer of orthographic nodes (unigrams and bigrams) and a (symbolic) layer
of meanings. This offers the advantages of simplicity and interpretability: the activation
of a meaning is the model’s discriminative learning estimate of the posterior probability of
that meaning given its unigrams and bigrams and the co-occurrence probabilities of these
unigrams, bigrams, and meanings.

A disadvantage of the present model is that it is blind to the semantic relations be-
tween words. The connectionist model presented in chapter 10 of Moscoso del Prado Mart́ın
(2003), in which orthographic input units map, via a hidden layer, onto independently estab-
lished corpus-based semantic vector representations of word meanings, offers the advantage
of better modeling the role of semantic similarity in word processing. Thus, the effect of the
cosine distance in semantic space between prime and target, that reached significance as
predictor for the self-paced reading latencies of Serbian case-inflected words in Experiment
1, is not captured by our model.

Finally, we note that the naive discriminative reader is compatible with theories as-
signing hierarchical structures to complex words. For instance, for rethinking, a structure
such as [[repeat[think+continuous]]] specifies scope relations that are part of the mean-
ing of this word. All that the naive discriminative reader does is assign probabilities to the
meanings repeat, think, and continuous. Therefore, the current implementation is con-
sistent with the possibility that semantic rules build such hierarchical structures on the basis
of these meanings. Crucially, the present simulation results indicate that for explaining the
consequences of morphological structure as gauged by the lexical decision task, it is not nec-
essary to duplicate such hierarchical structure at a morphemic level with structures such as
[[re[think+ing]]]. Given discriminative learning, such morphemic structures are completely
redundant.

This also absolves the modeler from thorny implementational problems such as how
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to represent allomorphic variants. By way of example, consider the Dutch diminutive suf-
fix, which appears in five different forms: je (muis-je, ‘small mouse’), pje (bloem-pje, ‘small
flower’), etje (wang-etje, ‘small cheeck’), kje (woning-kje, ‘small house’), tje (bever-tje, ‘small
beaver’). Models with morpho-orthographic morphemic representations have to posit five
different orthographic morphemes for the diminutive, they need some competition mech-
anism between these (highly similar) allomorphs, as well as a disambiguation mechanism
distinguishing the allomorph je from the personal pronoun je (‘you’). These kinds of com-
plications do not arise for the naive discriminative reader.

Concluding remarks

We have shown that basic principles of discriminative learning applied to the map-
ping of form to meaning suffice to explain a wide range of phenomena documented for the
processing of complex words and n-grams in reading. The naive discriminative reader model
is parsimonious in its parameters. The basic engine estimating the connection weights of
the Rescorla-Wagner network is parameter-free. We introduced one parameter that allows
the weight of syntactic adjustments (affixal meanings) to be less than the weight of lexical
meanings. We also made use of two further parameters for modeling the influence of the
highest-activated competitors. Longer words often require more than one fixation. As the
current implementation of the naive discriminative reader is blind to how the eye moves
through longer words, a parameter was invested in accounting for the costs of planning and
executing additional saccades. Finally, for the modeling of priming, we needed one addi-
tional parameter, the weight for the relative importance of the prime using the compound
cue theory of Ratcliff and McKoon (1988). The naive discriminative reader is also sparse
in the number of representations required: at the orthographic level, letter unigrams and
bigrams, and at the semantic level, meaning representations for simple words, inflectional
meanings such as case and number, and the meanings of derivational affixes. As a conse-
quence, the number of connections required is a linear function of meaning representations.

The model contrasts with the many unimplemented verbal models proposed for mor-
phological processing. According to the supralexical model of Giraudo and Grainger (2001),
whole-word representations would mediate access to constituents. According to the obliga-
tory decomposition model of Taft (2004), constituents would mediate access to whole-word
representations. The parallel dual route models of Frauenfelder and Schreuder (1992);
Schreuder and Baayen (1995); Baayen et al. (1997) allow whole-word and constituent ac-
cess representations to race for word recognition. Computational implementations correctly
replicating paradigmatic effects, as gauged by family size and entropy measures, are not
available. We doubt that insightful computational implementations of such models can
ever be made to work, given the subtlety of, e.g., the prepositional entropy effect in En-
glish, which is only one of the many paradigmatic dimensions that we suspect co-determine
single-word reading.

Although our model can be viewed as a simplified connectionist model, it can also be
viewed as a symbolic Bayesian model specifying, for a given orthographic input, a distribu-
tion of probabilities over the meaning representations. In other words, the naive discrim-
inative reader is as a statistical classifier grounded in basic principles of human learning.
Baayen (2011) shows, for a binary classification task, that the naive discriminative reader
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performs with a classification accuracy comparable to state-of-the-art classifiers such as
generalized linear mixed models and support vector machines.

We note here that the naive discriminative reader is compatible with the results of
Bowers, Davis, and Hanley (2005) (for a replication in visual lexical decision, see Baayen et
al., 2007), which suggest that the meanings of partially matching words become accessible
irrespective of whether they are legitimate morphological constituents.

Although the naive discriminative reader does not incorporate explicit parsing rules,
it is sensitive to the different degrees of productivity of derivational suffixes, and therefore
fits well with ‘a-morphous’ theories of morphology (S. Anderson, 1992). The Rescorla-
Wagner engine of the model can be viewed as a formal, computational implementation of
the notion of analogy in word and paradigm morphology (Matthews, 1974; Blevins, 2003),
a tantalizing notion in linguistics that remains frustratingly vague without computational
implementation.

The inductive modeling approach that we have pursued in this work contrasts with
deductive styles of modeling, in which processes (literal brain processes or metaphorical
cognitive processes) are posited, from which processing consequences are derived and then
tested against observed data. The advantage of the deductive style is that observed effects
can be related to and understood in terms of the processes originally posited and imple-
mented in the model. The present inductive approach shares with the deductive approach
that at the start a cognitive process is posited, in our case, discriminative learning as for-
malized in the Rescorla-Wagner equations. However, we find it extremely difficult to derive
predictions for the consequences of discriminative learning for the adult system, as formal-
ized by the equilibrium equations of Danks (2003), when the weights are set on the basis of
realistic language input. This is why we have adopted an inductive approach in which simu-
lated processing costs generated from the combination of real data and a cognitive learning
principle are pitched against an array of empirical results. The advantage is precision and
model simplicity, the disadvantage is ‘explanatory disappointment’ — results now follow
from the data and a simple learning principle, rather than from more intuitively accessible
higher-order explanatory principles. Nevertheless, we think it is worth considering that the
simpler explanation may be on the right track.

In a recent review article, Evans and Levinson (2009) argued that there are no lan-
guage universals, and that we are the only species with a communication system that is
fundamentally variable at all levels of structure, across time, and across space. One of the
central questions for the cognition of language that they put forward is whether the very
different language systems of the world can be acquired by the same general learning strate-
gies (p. 447). It is our hope that naive discriminative learning provides a step forwards as
a powerful, flexible, computationally implementable, and computationally efficient learning
algorithm.

Of course, many questions and challenges remain to be addressed. For instance, stay-
ing within the domain of morphology, it is currently unknown whether naive discriminative
learning can predict the specific processing effects documented for the non-concatenative
morphological systems of Arabic and Hebrew (Deutsch, Frost, & Forster, 1998; Boudelaa
& Marslen-Wilson, 2001). For languages with reduplication, we anticipate that higher-
order n-gram orthographic representations will be essential, as well as more sophisticated
positional encoding. Another open issue is whether the present approach generalizes to
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different writing systems such as Chinese and Japanese. Furthermore, the current level
of simplicity achieved for English lexical decision cannot be maintained for reading aloud,
for which a dual route extension based on the same principles of discriminative learning is
required (and sufficient) to obtain accurate predictions for word naming latencies (Hendrix
& Baayen, 2010). For multiple-fixation reading, as well as for auditory comprehension, even
more complex architectures will be required. Furthermore, we expect a complete compre-
hension model to require a hierarchy of discriminative learning systems. Finally, even for
responses in visual lexical decision, the naive discriminative reader provides a high-level
characterization of contextual learning that at the level of cortical learning may be more
adequately modeled by hierarchical temporal memory systems (Hawkins & Blakeslee, 2004;
Numenta, 2010).

However, for understanding single word reading as gauged by the lexical decision
task, the naive discriminative reader provides a computational model that is as simple and
economical as possible, while providing good fits to the empirical data. When dealing with
the intricacies of language as a complex dynamic system, and when probing the possible
role of context-sensitive, discriminative learning, there is no harm in starting small.
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Pollatsek, A., Hyönä, J., & Bertram, R. (2000). The role of morphological constituents in read-
ing Finnish compound words. Journal of Experimental Psychology: Human, Perception and
Performance, 26 , 820–833.

Ramscar, M., & Yarlett, D. (2007). Linguistic self-correction in the absence of feedback: A new
approach to the logical problem of language acquisition. Cognitive Science, 31 (6), 927–960.

Ramscar, M., Yarlett, D., Dye, M., Denny, K., & Thorpe, K. (2010). The effects of feature-label-order
and their implications for symbolic learning. Cognitive Science, 34 (6), 909–957.

Rapp, B. (1992). The nature of sublexical orthographic organization: The bigram trough hypothesis
examined. Journal of Memory and Language, 31 (1), 33–53.

Rastle, K., Davis, M. H., & New, B. (2004). The broth in my brother’s brothel: Morpho-orthographic
segmentation in visual word recognition. Psychonomic Bulletin & Review , 11 , 1090–1098.

Ratcliff, R., Gomez, P., & McKoon, G. (2004). A diffusion model account of the lexical decision
task. Psychological Review , 111 , 159–182.



MORPHOLOGICAL PROCESSING WITH DISCRIMINATIVE LEARNING 77

Ratcliff, R., & McKoon, G. (1988). A retrieval theory of priming in memory. Psychological Review ,
95 (3), 385–408.

Rescorla, R. A. (1988). Pavlovian conditioning. it’s not what you think it is. American Psychologist ,
43 (3), 151–160.

Schreuder, R., & Baayen, R. H. (1995). Modeling morphological processing. In L. B. Feldman (Ed.),
Morphological Aspects of Language Processing (p. 131-154). Hillsdale, New Jersey: Lawrence
Erlbaum.

Schreuder, R., & Baayen, R. H. (1997). How complex simplex words can be. Journal of Memory
and Language, 37 , 118–139.

Schreuder, R., Burani, C., & Baayen, R. H. (2003). Parsing and semantic opacity. In E. Assink &
D. Sandra (Eds.), Reading complex words. cross-language studies (pp. 159–189). Dordrecht:
Kluwer.

Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36 (2), 241–263.
Seidenberg, M. S. (1987). Sublexical structures in visual word recognition: Access units or ortho-

graphic redundancy. In M. Coltheart (Ed.), Attention and Performance XII (pp. 245–264).
Hove: Lawrence Erlbaum Associates.

Seidenberg, M. S., & Gonnerman, L. M. (2000). Explaining derivational morphology as the conver-
gence of codes. Trends in Cognitive Sciences, 4 (9), 353-361.

Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word recog-
nition and naming. Psycholgical Review , 96 , 523–568.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal ,
27 , 379-423.

Shaoul, C., Westbury, C., & Baayen, R. H. (2009). Agreeing with Google: We are sensitive to the
relative orthographic frequency of phrases. (Poster presented at Psychonomics 2009)

Shillcock, R., Kirby, S., McDonald, S., & Brew, C. (2001). Filled pauses and their status in the
mental lexicon. In Proceedings of the 2001 conference of disfluency in spontaneous speech (pp.
53–56). Edinburgh: International Speech Communication Association.

Siegel, S., & Allan, L. G. (1996). The widespread influence of the rescorla-wagner model. Psycho-
nomic Bulletin & Review , 3 (3), 314–321.
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Appendix

Given the example lexicon shown in Table 8, and using as cues the letter unigrams a, d, h,
l, n, s, we first calculate the matrix of cooccurrence frequencies C, which has as its elements
the frequencies f(i, j) with which unigrams i and j co-occur:

C =

0BBBBBBBB@

a d h l n s
a 419 250 30 301 76 210
d 250 250 30 167 76 41
h 30 30 30 0 30 20
l 301 167 0 301 11 137
n 76 76 30 11 76 23
s 210 41 20 137 23 210

1CCCCCCCCA
(37)

The main diagonal of C contains the unigram frequencies, the off-diagonal elements the
co-occurrence frequencies. In words such as lass, the s is counted once. In models with not
only unigram but also bigram cues, geminates are accounted for by bigrams (e.g., ss).

The co-occurrence matrix is transformed into a conditional probability matrix C ′ the
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elements of which specify the conditional probability of unigram j given unigram i.

p(j|i) = p(j, i)/p(i) = p(j, i)/
∑

j

p(j, i) = f(j, i)/
∑

j

f(j, i). (38)

For the example lexicon, we have

C′ =

0BBBBBBBB@

a d h l n s
a 0.33 0.19 0.02 0.23 0.06 0.16
d 0.31 0.31 0.04 0.21 0.09 0.05
h 0.21 0.21 0.21 0.00 0.21 0.14
l 0.33 0.18 0.00 0.33 0.01 0.15
n 0.26 0.26 0.10 0.04 0.26 0.08
s 0.33 0.06 0.03 0.21 0.04 0.33

1CCCCCCCCA
(39)

For instance, p(a|d) = 250/(250 + 250 + 30 + 167 + 76 + 41) = 0.31. The rows of C ′ add
up to unity (

∑
j p(j|i) = 1).

The outcome matrix O specifies for each outcome (meaning) j and each cue (unigram)
i the frequency with which they co-occur:

O =

0BBBBBBBB@

and lass sad as land plural lad hand
a 35 134 18 35 11 77 156 30
d 35 0 18 0 11 77 156 30
h 0 0 0 0 0 20 0 30
l 0 134 0 0 11 57 156 0
n 35 0 0 0 11 23 0 30
s 0 134 18 35 3 23 0 20

1CCCCCCCCA
(40)

This matrix is transformed into a matrix of conditional probabilities p(o|i) specifying the
probability of an outcome o given cue i:

p(o|i) = p(o, i)/p(i) = Oi,o/
∑

j

Cj,i. (41)

For instance,

p(hand|h) =
30

30 + 30 + 30 + 0 + 30 + 20
= 0.21.

The conditional outcome matrix for the example lexicon is

O′ =

0BBBBBBBB@

and lass sad as land plural lad hand
a 0.03 0.10 0.01 0.03 0.01 0.06 0.12 0.02
d 0.04 0.00 0.02 0.00 0.01 0.09 0.19 0.04
h 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.21
l 0.00 0.15 0.00 0.00 0.01 0.06 0.17 0.00
n 0.12 0.00 0.00 0.00 0.04 0.08 0.00 0.10
s 0.00 0.21 0.03 0.05 0.00 0.04 0.00 0.03

1CCCCCCCCA
. (42)

Let vj denote the j-th column of O′. The vector wj of weights on the connections from the
cues to the j-th meaning is obtained by solving

C ′wj = vj . (43)
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The weight matrix W ensues when (43) is applied once to each of the columns of O′, binding
the resulting vectors column-wise, i.e.,

W =

0BBBBBBBB@

and lass sad as land plural lad hand
a 0.38 −0.03 −0.41 1.03 −0.38 −0.45 0.41 0
d −0.16 −0.56 0.61 −0.44 0.16 0.53 0.39 0
h −0.69 −0.05 −0.36 0.05 −0.31 0.49 0.36 1
l −0.21 0.62 −0.17 −0.62 0.21 0.22 0.17 0
n 0.61 0.42 −0.19 −0.42 0.39 −0.09 −0.81 0
s −0.21 0.34 0.54 −0.34 0.21 0.27 −0.54 0

1CCCCCCCCA
(44)

The simplifying assumption that the estimation of the weights for a given meaning can
proceed independently of the weights for the other meanings, is what makes the model a
naive discriminative learning model.

Let uj denote the vector specifying which unigrams are present in the input for
meaning j. For hand,

u8 =



1
1
1
0
1
0

 . (45)

The activation of meaning j is given by

aj =
∑

i

W ij = W T uj . (46)

In this example, the activation of the meaning of hand is 1. As the unigram h occurs only
in hand and hands, its carries the full burden of activating this meaning.

The conditional cooccurrence matrix can be singular. For instance, when the words
as and lass are removed from the example lexicon,

C′ =

0BBBBBBBB@

a d h l n s
a 0.31 0.31 0.04 0.21 0.09 0.05
d 0.31 0.31 0.04 0.21 0.09 0.05
h 0.21 0.21 0.21 0.00 0.21 0.14
l 0.32 0.32 0.00 0.32 0.02 0.01
n 0.26 0.26 0.10 0.04 0.26 0.08
s 0.24 0.24 0.12 0.02 0.14 0.24

1CCCCCCCCA
is exactly singular, since the probabilities in the first two rows and those in the first two
columns are identical. We therefore use the Moore-Penrose pseudoinverse of the matrix,
implemented in R as ginv in the MASS package of Venables and Ripley (2003). The pseu-
doinverse of a matrix provides a unique solution that is optimal in the least squares sense.
Let C+ denote the pseudoinverse of the conditional co-occurrence matrix C ′. Calculating
the weight matrix amounts to solving a series of systems of equations

C ′W = O, (47)

achieved with the pseudoinverse as follows:

W = C+O. (48)


