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Introduction

Multivariate analysis deals with observations made on many variables simultaneously.
Data sets with such observations arise across many areas of linguistic inquiry. For instance,
(Jurafsky, Bell, Gregory, & Raymond, 2001) provide an overview of the many factors that
co-determine a word’s acoustic duration (including its neighboring words, syntactic and
lexical structure, and frequency). The importance of these factors is determined with the
help of multiple regression modeling of data extracted from speech corpora. Koesling,
Kunter, Baayen, and Plag (2012) used multivariate analysis to study the pitch contours of
English tri-constituent compounds, with as predictors not only time and compound struc-
ture, but also speaker, word, a word’s frequency of occurrence, and the speaker’s sex. In
morphology, the choice between two rival affixes can depend on a wide range of factors,
as shown for various Russian affix pairs by Janda et al. (2012). F. Jaeger (2010) showed
that whether the complementizer that is present in an English sentence depends on more
than 15 different factors. Gries (2003) and Bresnan, Cueni, Nikitina, and Baayen (2007)
clarified the many factors that join in determining the choice of particle placement and the
dative constructions respectively. In psycholinguistics, multivariate methods are becoming
increasingly important (see, e.g. Kuperman, Schreuder, Bertram, & Baayen, 2009, for eye-
tracking research), especially with the advent of so-called megastudies (Balota, Cortese,
Sergent-Marshall, Spieler, & Yap, 2004). Multivariate methods have a long history of use
in sociolinguistics (Sankoff, 1987), and play an important role in present-day dialectometry
(Wieling, n.d.). What is common across all these studies is that they address linguistic phe-
nomena for which monocausal explanations fail. Many phenomena can only be understood
properly when a great many explananda are considered jointly. This is where multivariate
statistics come into play.1

Table 1 presents a general description of a multivariate data set with n cases or
observational units, presented on the rows. Observations on k different random variables
X1, X2, . . . , Xk (presented in the columns) describe the properties of a given case. These
properties can be numerical (e.g., acoustic duration in ms., frequency of occurrence in a
100 million word corpus, a response latency in a word naming experiment) or categorical
(e.g., word category, discourse type, the sex of a speaker, dialect). Categorical predictors
are referred to as factors. The values that a factor can assume are known as its levels. For

1This chapter assumes familiarity with all concepts discussed in chapters 1 (Descriptive Statistics) and
15 (Basic Significance Testing).
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instance, in a given data set, a factor such as (major) Word Category may have as its levels
noun, verb, adjective, and adverb.

Table 1: A multivariate data set with n cases (rows) and k variables (columns).

Cases Variables

X1 X2 . . . Xk

1 x11 x12 . . . x1k
2 x21 x22 . . . x2k
3 x31 x32 . . . x3k
...

...
...

...
...

n xn1 xn2 . . . xnk

The objective of multivariate analysis is to clarify how the variables pattern together
and how they might distinguish the different cases on which the variables are observed.
Most data sets are multivariate, and for a proper understanding of the structure of the
data, it is often most informative to consider the different variables simultaneously.

Multivariate data sets fall into two main classes. On the one hand, we have data sets
for which all variables are equally important. For such data sets, the primary interest will
be in how the variables pattern together, and how they group or cluster the different cases,
or on the causal relations between the variables.

On the other hand, interest may focus on how a specific variable, henceforth the
response, is predicted from the other variables, henceforth the predictors. The response
can be numeric or categorical. In the latter case, the goal of the analysis can be described
as classification, i.e., the assignment of the different cases to the different classes defined
by the levels of the response. However, not only the accuracy of the predictions, whether
continuous or categorical, is of interest, but also how the variables pattern together to yield
the predictions. This chapter provides an overview of some important methods for analyzing
data with a specific response variable.

Within the limits of a single chapter, it is impossible to do justice to the full rich-
ness of the individual methods. The goal of this chapter is to provide the reader with the
gist of the different approaches, and to provide examples that illustrate what can be accom-
plished with these methods. For further details, references are provided to both book-length
introductions and to published studies using these methods.

Data sets from experiments often have a repetitive structure that requires special
attention. Consider an experiment in which 20 different speakers read aloud 15 different
words. Such a data set will have the structure shown in Table 2, where for each Subject
(speaker) there are n = 15 cases, one for each Item (word), and where for each Item (word)
there are g = 20 cases, one for each Subject. Experimental designs with this kind of
repetitive structure are known as repeated measures designs.

Factors such as Subject and Item typically have many levels, which distinguishes them
from factors such as Word Category (noun, verb, adjective, adverb) or the speaker’s sex
(female, male). Furthermore, subjects and items are — ideally — sampled randomly from
populations that have many more members than the subjects and items that happen to have
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Table 2: A repeated measures data set with gn cases with observations on k variables collected for
n items and g subjects.

Cases Response Predictors

Y X1 X2 . . . Xk Subject Item

1 Y1 x111 x121 . . . x1k1 1 1
2 Y2 x211 x221 . . . x2k1 1 2
3 Y3 x311 x321 . . . x3k1 1 3
...

...
...

...
...

... 1
...

n Yn xn11 xn21 . . . xnk1 1 n

n+1 Yn+1 x112 x122 . . . x1k2 2 1
n+2 Yn+2 x212 x222 . . . x2k2 2 2
n+3 Yn+3 x312 x322 . . . x3k2 2 3
...

...
...

...
...

... 2
...

2n Y2n xn12 xn22 . . . xnk2 2 n
...

...
...

...
...

...
...

(g-1)n+1 Y(g−1)n+1 x11g x12g . . . x1kg g 1

(g-1)n+2 Y(g−1)n+2 x21g x22g . . . x2kg g 2

(g-1)n+3 Y(g−1)n+3 x31g x32g . . . x3kg g 3
...

...
...

...
...

... g
...

gn Ygn xn1g xn2g . . . xnkg g n

been used in the experiment. By contrast, the levels ‘female’ and ‘male’ exhaust the levels
of the speaker’s sex, there are no other levels in the population. Factors such as Subject and
Item are referred to as random effect factors, and factors such as Sex as fixed-effect factors.
In data sets with subjects and items, the other predictors can quantify properties of the
subjects (e.g., age in years, sex, native speaker of English), properties of the items (e.g., a
word’s frequency, its word class, whether it is morphologically complex), or properties of the
experiment (e.g., the number of trials a subject is in the experiment when a given sentence
is presented). For the example presented in Table 2, all the predictors Xi are bound to the
items and represent properties of these items, as indicated by the indexation of the first
subscript of the predictor values x....

A great variety of multivariate techniques is available to the researcher, see, e.g.,
Venables and Ripley (2002) and Everitt (2005) for overviews. It will often be useful to
study a given data set with more than one technique, as the strengths of one technique may
counterbalance the weaknessses of the other. Only a subset of the available multivariate
statistical methods is described in this chapter, which focuses on multiple regression and
classification models.
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Multiple Regression

Basic concepts

When the response variable is a measurement (e.g., acoustic duration in ms., response
latency, pitch), and when there are no repeated measures, a multiple regression analysis
models the response Y as a function of a weighted sum of the predictors and Gaussian
(normally distributed) by-observation noise (ε).

Y = β0 + β1X1 + β2X2 + . . .+ βkXk + ε, ε ∼ N (0, σ2) (1)

When all predictors Xi are numerical, the analysis is described as a regression analysis.
When all predictors Xi are factors, the analysis is referred to as analysis of variance. When
both factorial predictors and numerical predictors are combined, the analysis is an analysis
of covariance.

The goal of regression modeling is to approximate the observed values of the response
as precisely as possible by decomposing the response into a weighted sum of the predictors.
Models as defined by (1) make several important simplifying assumptions that facilitate the
estimation of the model’s parameters (the coefficients β0, β1, . . . , βk). First, the contribution
of each predictor is assumed to be linear. When there is only one predictor, the fitted values
are on part of a straight line. When there are two predictors, the fitted values are located on
part of a flat surface. For more predictors, the fitted values are part of a flat hypersurface.
Second, the errors (the difference between the observed and fitted values) are supposed
to follow a normal distribution with mean zero and some unknown standard deviation (to
be estimated from the data). Third, the errors are assumed to be independent, and all are
supposed to follow the same normal distribution. This means that wherever one inspects the
positioning of the observed data points with respect to the fitted line, plane, or hyperplane,
one finds a cloud of points around the predicted values that is equally thick everywhere.

The regression model (1) specifies how the observed responses Y can be approximated
given the values of the predictors Xi, i = 1, . . . , k. Analysis of variance is a special case of
regression in which the fitted values are the group means defined by the levels of the factorial
predictors. For instance, given two factors with two and three levels respectively, there are
six group means. The regression equation for analysis of variance specifies how these group
means can be constructed. There are many ways in which this can be achieved, all of which
recode factor levels numerically using dummy coding. Here, we focus on treatment coding,
which offers the advantage of clarity of interpretation for analysis of covariance. Analyses
using treatment coding select one group mean as point of departure, and specify coefficients
that quantify the differences between this group mean and the other group means. Figure 1
and Table 3 illustrate the basic principles.

First consider Figure 1. The left panel shows a standard regression line, for 10 equally
spaced values on the horizontal axis. The intercept β0 of this line is at 1, and its slope β1
equals 2. The right panel shows a similar line connecting two group means with values 1 for
level a and 3 for level b. Since the group means of the two levels are exactly 1 unit apart on
the horizontal axis, the difference between the two group means, 2, is equal to the slope of
the line connecting the two group means. For both regression and analysis of variance, the
same regression equation holds: Y = 1 + 2X + ε. When a factor has more than two levels,
say m, then there are m−1 contrasts with the reference level, which are represented on m−1
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Figure 1. A regression line (left) and a factorial contrast between a reference group mean a on the
intercept and a group mean b. The difference between the two group means, the contrast, is equal
to the slope of the line connecting a and b: 2. Both the regression line and the line connecting the
two group means are described by the line y = 1 + 2x.

orthogonal dimensions. Thus, a ‘univariate’ one-way analysis of variance with a single factor
with more than two levels is recoded under the hood as a multivariate regression model.

Table 3: An example of treatment dummy coding for two-way analysis of variance.

Cases A B X1 X2 X3 X4

1 a e 1 0 0 0
2 a f 1 0 0 1
3 b e 1 1 0 0
4 b f 1 1 0 1
5 c e 1 0 1 0
6 c f 1 0 1 1

Table 3 illustrates dummy coding for a fictive data set with 6 cases and two factorial
predictors, one with three levels, and one with two levels. The reference group mean is
represented by A=a and B=e. Each of the other five group means is defined by a unique
combination of the dummy predictors X2, X3 and X4. The multiple regression equation

Y = β0X1 + β1X2 + β2X3 + β3X4 + ε, (2)

together with the dummy coding of Table 3, defines the group means listed in Table 4.
The regression equations (1) and (2) define flat planes in two or more dimensions.

In the case of regression, the fitted data points are on such planes, whereas in the case of
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Table 4: Predicted group means given the dummy coding in Table 3 and regression equation (2).

Cases A B predicted group mean

1 a e β0
2 a f β0 + β3
3 b e β0 + β1
4 b f β0 + β1 + β3
5 c e β0 + β2
6 c f β0 + β2 + β3

analysis of variance, the predicted group means are located on these planes. However, the
assumption that the regression surfaces are flat (hyper)planes is often too simplistic. The
standard linear model allows the user to relax this assumption by introducing multiplicative
interactions. For a regression model with predictors X1 and X2, the interaction is obtained
by adding a third predictor which has as its values the product of the values of X1 and X2:

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε. (3)

The left and center panels of Figure 2 visualize the general regression surface defined by
a multiplicative interaction. The left panel plots, for different values of X2, the regression
line for the response as a (still linear) function of X1. For large negative values of X2, the
effect of X1 has a negative slope. As the values of X2 increase, this effect reverses and the
slope becomes positive. The center panel uses a contour plot to present the joint effect of
X1 and X2. Contour lines connect points with the same fitted value. Lighter shades of gray
indicate higher values, darker shades of gray indicate lower values. The contour plot, which
visualizes a hyperbolic plane, is easier to interpret, as it allows the analyst to compare the
joint effect of X1 and X2 on the response for any pairs of (x1, x2) values. It should be kept
in mind that for a given data set, only part of a hyperbolic plane is used, for instance,
part of the upper left corner, just as when fitting data points to a straight line, only a line
segment, i.e., only part of an infinitely long line, is used.
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Figure 2. Multiplicative interactions in the linear model.
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The third panel of Figure 2 illustrates the corresponding so-called crossover interac-
tion for two factorial predictors, each with two levels. The effect of X2 reverses for the levels
of X1. A model with an interaction for the 2 by 3 design described in Table 3 is

Y = β0X1 + β1X2 + β2X3 + β3X4 + β4X2X4 + β5X3X4 + ε, (4)

and the expected group means are listed in Table 5. The weights β4 and β5 break the
parallelism of the effect of factor B within each level of A. In Table 4, where there is no
interaction, the contrast between the means for levels e and f is always the same, irrespective
of the levels of A, and equal to β3. With the interaction, as shown in Table 5, the effect is
modified by β4 for factor level b (of A) and by β5 for factor level c (of A).

Table 5: Predicted groupmeans for the data in Table 3 given the regression equation (4).

Cases A B predicted group mean

1 a e β0
2 a f β0 + β3
3 b e β0 + β1
4 b f β0 + β1 + β3 + β4
5 c e β0 + β2
6 c f β0 + β2 + β3 + β5

A linear model can comprise both numeric and factorial predictors. When the effect
of a numeric covariate varies depending on the specific level of a given factor, we have an
interaction of that covariate by the factor. An example is presented in Table 6 and Figure 3.

Figure 3 depicts a regression line with a positive slope for level a of factor A, but a
negative slope for level b. Table 6 shows the dummy coding for this data set, with a column
of ones for the intercept, a contrast for level b of A, the values of the covariate (X3), which
repeat within the levels of A, and the multiplicative interaction (X2X3). The regression
equation for this example is

Y = β0X1 + β1X2 + β2X3 + β3X2X3 + ε. (5)

The regression lines in Figure 3 are described by the equations y = 2 + 3x for level a and
y = 6−2x for level b. The β weights for these data given the dummy coding in Table 6 and
equation (5) are as follows. Given a as reference level, the intercept of the model will be the
intercept of the regression line for level a, so β0 = 2. The intercept for the second regression
line is at 6, hence β1, which quantifies the difference between the two group means when
the covariate X3 is 0, i.e., where the regression lines cross the Y-axis, equals 4. The slope
of the line for level a is 3 = β2. Finally, the slope for the regression line for level b is -2, a
difference of -5 with the slope for level a. This difference is the contrast for the slopes of the
two lines, hence β4 = −5. Note that since the product X2X3 is zero for factor level a, the
coefficient for X2X3 serves as a correction (i.e., a contrast) on the slope for the regression
line for level a, but, as required, only within level b.

Given a regression equation for a given data set, a first question that arises is how to
estimate the parameters of the model. Fortunately, excellent algorithms are available for
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Figure 3. Example of an interaction of a factor and a covariate in an analysis of covariance.

Table 6: An example of treatment dummy coding for an analysis of covariance with an interaction.

Cases A X1 X2 X3 X2X3

1 a 1 0 1 0
2 a 1 0 2 0
3 a 1 0 3 0
4 b 1 1 1 1
5 b 1 1 2 2
6 b 1 1 3 3

doing this, which have been implemented in many software packages. Although the mathe-
matics for simple linear regression and analysis of variance are relatively straightforward, the
more sophisticated algorithms underlying mixed-effects regression models and generalized
additive models, which will be discussed below, require substantial training in mathematics.
Fortunately, these models can be used responsibly without having to know the details of the
underlying mathematical theory. In the case of analysis of (co)variance, dummy coding can
be either hand-crafted by the analyst, or a specific dummy coding scheme can be specified,
with the actual creation of dummy variables being left to the software.

When fitting a regression model to the data, the software will generally return several
kinds of information to the user. First, information is provided about the estimated values of
the coefficients for the intercept, the slopes, and the factor contrasts. For a given coefficient,
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a measure is provided about the uncertainty of the estimate in the form of a standard error.
The ratio of the estimate and its standard error yields a statistic that follows a t-distribution.
If the observed value of the t statistic is far out in one of the tails of the distribution, there
is reason for surprise about the magnitude of the estimate, and a p-value based on the t-
distribution will allow the researcher to evaluate whether a coefficient is surprisingly different
from zero.

By way of example, consider a study of pitch (F0) in English tri-constituent com-
pounds (Koesling et al., 2012). Three predictors are of interest here: Time, Sex (female
versus male), and Branching. Branching is a factor that distinguishes between four kinds
of compound stress patterns on the basis of branching direction (left or right) and location
of the stress (first, second, or third noun):

code branching direction stress pattern example

LN1 left [ŃN]N [háy fever] treatment

LN2 left [NŃ]N [science f́ıction] book

RN2 right N[ŃN] business [crédit card]

RN3 right N[NŃ] family [Christmas d́ınner]

We expect pitch (in semitones) to decline over time. Pitch is also expected to be lower for
men than for women. Of main interest is whether there are significant differences in pitch
contours for the different types of compounds as distinguished by the factor Branching.

Table 7 presents the coefficients of a simple main effects model fitted to the data,
described (using the symbolic description language of

Pitch ∼ Time + Sex + Branching. (6)

In this model formula, the intercept and the error term are not mentioned explicitly. Nev-
ertheless, any software package will provide the analyst with estimates of both. In Table 7,
the intercept (93.1331) represents the pitch predicted at word onset for female speakers for
branching condition LN1. The negative slope for Time (-0.0327) indicates that pitch de-
creases over time, as expected. For male speakers, the intercept has to be lowered by 9.9297,
again as expected. The three contrasts in the last part of Table 7 specify the difference in
pitch between LN2 and LN1, between RN2 and LN1, and between RN3 and LN1. The
small standard errors, the large t-values, and the small p-values suggests that all coefficients
are significant.

Table 7 does not list all possible contrasts between the four branching conditions.
Of the

(4
2

)
= 6 possible contrasts, only three are listed. For instance, no information is

provided as to whether there is a real difference between the RN2 and RN3 conditions. In
addition, it would be useful to know which contrasts remain significant after being corrected
for multiple comparisons. Figure 4 presents each of the six contrasts together with its 95%
confidence interval, using Tukey’s all-pairs comparison method (Hothorn, Bretz, & Westfall,
2008). Of the four contrasts, only those between RN3 and LN2, and RN3 and RN2 do not
reach significance, as their confidence intervals straddle zero.

The model considered thus far assumes that the slope of the effect is the same across
all branching conditions, and the same across female and male speakers. This is a simplifying
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Estimate Std. Error t value p value

Intercept 93.1331 0.0437 2131.1298 0.0000
Time -0.0327 0.0005 -59.6105 0.0000
Sex=male -9.9297 0.0321 -309.4371 0.0000
Branching=LN2 0.3244 0.0447 7.2507 0.0000
Branching=RN2 0.4603 0.0447 10.3051 0.0000
Branching=RN3 0.4279 0.0447 9.5816 0.0000

Table 7: Coefficients of an analysis of covariance model fitted to the pitch of English tri-constituent
compounds.
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RN3 − RN2

RN3 − LN2

RN2 − LN2
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LN2 − LN1 (

(
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95% family−wise confidence level

Linear Function

Figure 4. Tukey all-pairs confidence intervals for contrasts between mean pitch for different branch-
ing conditions across English tri-constituent compounds.

assumption, and we need to check whether it is justified by allowing interactions of Time
by Branching and Time by Sex into the model. It turns out that both interactions improve
the fit of the model to the data. In order to assess the importance of the various terms in
the model, we compare a sequence of nested models, step by step increasing in complexity.
For the present data, the sequence of models (where we make explicit the presence of an
intercept term by adding 1 to the model formula)

Pitch ∼ 1
Pitch ∼ 1 + Time
Pitch ∼ 1 + Time + Sex
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Pitch ∼ 1 + Time + Sex + Branching
Pitch ∼ 1 + Time + Sex + Branching + Time : Branching
Pitch ∼ 1 + Time + Sex + Branching + Time : Branching + Time : Sex

is evaluated statistically by the sequential F -tests listed in Table 8, to which the reduction
in AIC has been added as a measure of variable importance.

Res. Df Df F-value p-value reduction in AIC

intercept 47573
+time 47572 1 3549.746 0.000 1159.878
+sex 47571 1 95840.330 0.000 52383.491
+branching 47568 3 44.433 0.000 127.023
+time*branching 47565 3 11.822 0.000 29.456
+sex*branching 47562 3 2.794 0.039 2.383

Table 8: Sequential model comparison for Pitch in English tri-constituent compounds (number of
observations: 47574)

The column labeled ‘Res. Df’ lists the residual degrees of freedom, which is equal to
the number of observations in the data minus the number of parameters. The first model,
which has an intercept only (which in this case represents the grand average) has only
one parameter (the intercept), and hence 47574-1=47573 residual degrees of freedom. The
second column, Df, lists the number of parameters required when adding one or more pre-
dictors. For Time, which requires a slope coefficient, one additional parameter is required.
For Branching, which has 4 levels, 3 contrast coefficients are required when it is added in
as a simple main effect. The column with p-values is obtained from the F statistics given
‘Df’ and ‘Res. Df’. The final column lists the change in aic, Akaike’s information criterion,
which is defined as

AIC = 2k − 2 ln(L) (7)

where L denotes the likelihood of the model and k denotes the number of parameters. The
aic measure describes the tradeoff between a model’s accuracy and its complexity. On the
one hand, a model should be as accurate as possible. At the same time, the model should
be as simple as possible. Simpler models have lower k, more accurate models have higher
L. In other words, the aic measure penalizes models for their complexity. Lower values
of aic indicate a better fit of the model. The greater the reduction in aic obtained by
adding a term to the model equation, the better the relative goodness of fit of the model.
Furthermore, the greater the reduction in aic is, the more important a term is.

For a set of n models with aic values aic1, aic2, . . ., aicn, we can select the model
with the smallest aic (model aicmin), and calculate evidence ratios (er)

er = exp

(
aici − aicmin

2

)
(8)

that express the relative probability that the model with the minimum aic is more likely
to provide a more precise model of the data.
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From Table 8 it is therefore immediately clear that Sex is the most important pre-
dictor, followed by Time and, at a distance, by Branching. The interaction of Sex by
Branching adds only a small improvement to the model’s goodness of fit. Its evidence ratio,
exp(2.383/2) = 3.32 nevertheless indicates that this model is approximately three times as
likely to provide a description of the data that loses less information about the data as the
model without the interaction.

A question with no definite answer is how to find the model that best describes the
data. There are automatized search procedures that start with the simplest possible model
and keep adding main effects and interactions until there is no significant improvement in
goodness of fit. Instead of forward stepwise model selection, one can start with the most
complex model and remove superfluous predictors until the simplest yet adequate model is
obtained. Backward and forward selection heuristics can be combined. Some researchers
prefer to use code that works through all possible models and then select the model with
the best fit (see, e.g., Kuperman & Van Dyke, 2011; Lumley & Miller, 2009). Other
researchers such as Harrell (2001) argue that only one model should be fit to the data,
as p-values become meaningless when large numbers of models are fitted and compared.
The present author favors hypothesis-driven exploration of the data, with theoretically
potentially relevant predictors being added successively to the model specification. Further
motivation of this research strategy is deferred till after discussion of generalized additive
mixed modeling. However, irrespective of how a final model for the data is obtained,
replication studies will be crucial for consolidating the validity of the conclusions reached.

In the absence of new data, bootstrap validation is one way in which the stability of
the model parameters can be evaluated. Bootstrap validation fits a given model to a large
number of bootstrap samples. Each bootstrap sample is a sample with replacement from
the original data points. Some observations will appear more than once in a given bootstrap
sample, and other observations will not appear at all. These observations constitute unseen,
new data points. The accuracy of the model fitted to the bootstrap sample can be gauged by
comparing its predictions with the actual values of the response for the unseen data points.
Averaging across all bootstrap samples yields information about the extent to which the
model overfits the data as well as about which predictors are significant across the bootstrap
runs (see, e.g., Harrell, 2001) for detailed examples of bootstrap validation.

Data points that are located outside the cloud of data points have the potential of
seriously distorting a regression model. There are several measures that help protect against
overly influential outliers. First, if a predictor has a highly skewed distribution, a square
root transformation or a log transformation may result in a more symmetrical distribution.
For instance, word frequency distributions have a long right tail, and without a logarithmic
transform, a small minority of very high frequency words will adversely dominate the regres-
sion model. Second, if the distribution of the response is highly skewed, a transformation
rendering it more normal may be necessary (Box & Cox, 1964; Venables & Ripley, 2002).
Without an appropriate transformation of the response, the distribution of the residuals
will be non-normal, violating the fundamental assumption of multiple regression that the
errors should be identically distributed. Third, one can inspect the leverage of the data
points to identify potentially harmful outliers. The leverage of a data point quantifies how
much the parameters of the model would change if the data point were not included when
fitting the model. The greater this change, the more likely the data point is an outlier (see,
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e.g., Chatterjee, Hadi, & Price, 2000, for detailed discussion).

Finally, it is worth noting that regression modeling cannot tease apart the effect of
predictors that are very strongly correlated. Data sets with highly correlated predictors are
described as collinear. By way of example, a data set with four frequency measures taken
from different corpora of contemporary written English would be highly collinear. A conse-
quence of collinearity is that the coefficients for collinear predictors may be significant but
with counterintuitive signs. For instance, frequency as a predictor for response latencies in
various psycholinguistic tasks usually has a negative coefficient, indicating that as frequency
increases, processing speed decreases. When two highly correlated frequency measures are
entered into the regression equation, one will have the expected negative coefficient, but
the other may have a significant positive coefficient. Jointly, the two highly correlated pre-
dictors provide a better fit, but from a cognitive perspective, the coefficients are no longer
interpretable. The phenomena of suppression and enhancement in regression are well de-
scribed in Friedman and Wall (2005). When the goal of modeling is to obtain accurate
predictions, the adverse consequences of enhancement and suppression are not a concern.
However, for the model coefficients to remain interpretable, the analyst has several choices.
First, centering and scaling (subtracting the mean, and dividing by the standard deviation)
often substantially reduces collinearity. This may not be sufficient for very strongly corre-
lated predictors. In this case, the simplest option is to consider only one of a set of collinear
predictors, e.g., select only one of the four frequency measures for inclusion in the model
specification. Alternatively, a dimension reduction technique such as principal components
analysis can be used to obtain a new frequency measure that combines the strengths of the
four separate frequency variables.

Mixed-Effects Modeling

For repeated measures designs (see Table 2 above), the standard linear model is
inappropriate. Although one could use dummy coding for subjects or items, this comes
with several important disadvantages. First, the dummy coding will tune the model to the
subjects and items in the experiment, but it will not allow inferences beyond exactly these
subjects and items. The model does not generate predictions about unseen subjects and
unseen items. Second, the standard linear model does not allow the user to gain insight
into the correlational structure in the data with respect to subjects and items.

Mixed-effects models (Pinheiro & Bates, 2000; West, Welch, & Galecki, 2007), i.e.,
regression models that combine fixed-effect factors with random-effect factors such as sub-
jects and items, treat random-effect factors as sources of random variation in the data.
This random variation can manifest itself at various “sites” in a regression model. First,
it can be tied to the intercept, in which case the intercept has to be adjusted upwards or
downwards depending on which unit (level of a random-effect factor) was sampled for the
experiment. For instance, if the response is the duration in ms of the vowel in a speech
corpus, it is important to bring the speaker into the model as a random-effect factor, as
speakers have different speech rates. Given an estimate of the average speech rate in the
population, represented by the intercept (β0) in the regression equation, the speech rate
of a specific individual speaker can be obtained by taking the average speech rate β0 and
adjusting it upwards (for slow speakers) or downwards (for fast speakers) by an amount b0i
for speaker i. The mixed-effects regression model assumes that the b0i adjustments follow a
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normal distribution with mean zero and unknown standard deviation that will be estimated
from the data. In other words, the variation in speech rates is modeled as Gaussian noise
around the population speech rate.

Such Gaussian noise need not be restricted to the intercept, it can extend to slopes
and contrasts. For instance, the effect of frequency of occurrence can be stronger for some
subjects, and weaker for others. This subject variation can be represented as Gaussian
noise around the population slope for frequency. These considerations lead to the general
mixed-effects regression equation

Y = (β0 + b0) + (β1 + b1)X1 + . . .+ (βk + bk)Xk + ε, (9)

where ε, b0, b1, . . . , bk all are normally distributed with mean zero and unknown (and gen-
erally different) standard deviations. Table 9 charts the individual adjustments bij for
coefficients j = 0, 1, . . . , k (columns) and subjects i = 1, 2, . . . , s (rows). Because the ad-
justments bi. are estimated for the same subject i, it is possible that any pair of (column)
vectors of adjustments {b.n, b.m} are correlated. As a consequence, the specification of a
mixed-effects model is complete only with the matrix of pairwise correlations of the b (col-
umn) vectors. Which standard deviation and correlation parameters are actually required
for a given dataset is an empirical issue. Generally, adjustments to the intercept (random
intercepts) for subjects and items lead to substantially better models, less often, but reg-
ularly, adjustments to slopes (random slopes) are also well supported. In the literature,
the adjustments are referred to as best linear unbiased predictors (blups) or as posterior
modes.

Table 9: Notation for adjustments to intercept and predictors.

level random intercepts random slopes
number b0 b1 b2 . . . bk
1 b01 b11 b21 . . . bk1
2 b02 b12 b22 . . . bk2
...

...
...

...
...

...
s b0s b1s b2s . . . bks

To illustrate mixed-effects modeling, consider again the study on pitch on English tri-
constituent compounds. The aic for the best model obtained above is 252840.7. When we
add random intercepts for Subject and for Item, the aic of the model is 202574, a decrease
of no less than 50266.7. A further improvement of the model is obtained by adding random
slopes (contrasts) for Sex, which reduces the aic by 539. The significance of the additional
random effects structure (here, a standard deviation for the by-word adjustments for Sex
and a correlation parameter for the by-word adjustments to the intercept and Sex) is assesed
with a likelihood ratio test. The likelihood ratio statistic, defined as twice the difference of
the log likelihoods of the more complex model (model 2) and the simpler model (model 1),

2 ln(L2/L1) = 2[log(L2)− log(L1)] (10)
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Groups Name Std.Dev. Correlation

Word Intercept 0.58029
Sex=male 0.50815 -0.703

Speaker Intercept 3.01529

Residual 2.01422

Table 10: Standard deviations and correlation parameter for the random-effects structure of the
mixed-effects model fitted to the pitch of English tri-constituent compounds.

follows a chi-squared distribution with as degrees of freedom the difference in the number
of parameters. For the present data, the lrt statistic is 542.69, the number of additional
parameters is 2, and the corresponding extremely small p-value indicates that the second
model improves significantly on the goodness of fit.

One consequence of including random intercepts and slopes is that the interaction of
Branching by Sex, which was the weakest predictor (see Table 8), is no longer significant.
With the individual speakers in the model, the factor Sex, which groups speakers into
females and males, becomes less important. An important general methodological issue that
is illustrated by this example is that analyses that fail to bring subject and item random
intercepts and slopes into the model may be anti-conservative, i.e., they may produce p-
values that are smaller than they should be, and therefore may mislead the analyst into
believing that a non-significant effect would be significant.

The estimates of the standard deviations and the correlation parameter are listed in
Table 10. When reporting a mixed-effects model, it is essential to report these parameters
as they are an intrinsic part of the model and provide the reader with insight into the
magnitude of the different sources of random variation in the data and their interrelations.

The large negative correlation for the by-word random intercepts and random con-
trasts for Sex invites further interpretation. Figure 5 presents a scatterplot of the words in
the plane spanned by the two dimensions of word-related variability in pitch. The horizontal
axis represents the by-word random intercepts, which are calibrated for the reference level
of Sex: female. The vertical axis represents the additional by-word adjustment required for
the male speakers. Recall that male speakers have lower pitch, represented in the model by
a downward shift of the population intercept for males. For some words, the shift for males
is not down far enough, for others, it is too far down. The by-word random contrasts on
the vertical axis show, for each word, how the intercept for the males has to be fine-tuned.
In the lower right of the scatterplot, we find words such as cream cheese recipe and student
season ticket for which females have a higher than average intercept (a large value on the
horizontal axis), whereas in the upper left, one finds compounds such as money market fund
and pilot leather jacket for which females have a lower than average intercept. Conversely,
compared to the female baseline, the males have a higher than average pitch for the latter
words, and a lower than average pitch for the former. What seems to be going on here is
that pitch rises for words that speakers find more exciting and interesting. However, what is
exciting and interesting differs between the sexes. Males show a clear disinterest in woman
fruit cocktail, while the female disinterest in money market fund is absent for the males.

An example of more complex by-subject random-effects structure can be found in a
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  adult jogging suit

  baby lemon tea

  business credit card

  celebrity golf tournament

  city hall restoration

  coffee table designer

  company internet page

  conference time sheet

  cotton candy maker

  cream cheese recipe

  day care center

  diamond ring exhibition

  family christmas dinner

  family planning clinic

  field hockey player

  gene therapy technology

  hay fever treatment

  kidney stone removal

  lung cancer surgery

  maple syrup production

  money market fund

  passenger test flight

  piano sheet music

  pilot leather jacket

  pizza home delivery

  prisoner community service

  restaurant tourist guide

  science fiction book

  security guard service
  sign language class

  silicon chip manufacturer

  silver jubilee gift

  student season ticket

  student string orchestra

  team locker room

  tennis grass court

  tennis group practice

  visitor name tag

  weather station data

  woman fruit cocktail

Figure 5. Correlation of the by-word random intercepts and the by-word random slopes for
Sex=male in the linear mixed-effects model fitted to the pitch of English tri-constituent compounds.

large-scale self-paced reading study reported in Baayen and Milin (2010). Of interest here
are two numerical predictors for the self-paced reading latencies: a word’s frequency and its
number of morphemes. The (log-transformed) frequency measure represents how practiced
a word is, the morpheme count is a measure of its morphological complexity. By-subject
variation with respect to these predictors indicates would imply that the experiment is
picking up on by-subject variability in using (remembering) the words, as well as by-subject
variation in the ability to deal with morphological complexity.

Figure 6 presents the by-subject random effects structure characterizing this data
set. The top panels show the blups, the bottom panels the subject-specific coefficients
(the blups incremented with the corresponding population mean values for the intercepts
and slopes). In these scatterplot, dots represent subjects. All that changes between the
upper and lower panels is position with respect to the vertical axis. The left panels indicate
that fast responders (with a small blup, i.e., a small coefficient for the intercept) are least
delayed by the number of morphemes in a word. Conversely, the slow responders are the
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Figure 6. Random effects structure for subject. Upper panels: correlations of the BLUPs, Lower
panels: correlations of the by-subject coefficients.

ones who are delayed most by morphological complexity. The center panels show that fast
responders (low values for the intercept) have little or no facilitation from word frequency.
Slow responders, on the other hand, show healthy facilitation from word frequency. The
right panels point to a trade-off between word frequency and morphological complexity,
such that subjects who are least affected by morphological complexity are also the subjects
with the weakest, if any, facilitation from word frequency. The importance of mixed-effects
models for language studies is that they clarify not only the main trends in the population,
but also the correlational structure tied to subjects and items. For the present example,
the trade-off between storage and computation across the subject population is one of the
most interesting findings of the study.

Generalized Additive Models

The preceding analyses assumed that the effects of predictors are linear, and can be
described mathematically as straight lines, flat planes, or flat hyperplanes. For numeric
predictors, the multiplicative interaction defines a curved surface, but when one predictor
is held constant, the effect of the other predictor is still linear (cf. Figure 2). The linearity
assumption may be plausible for some data, but it can be very implausible for other data
sets. The pitch data discussed in the preceding sections are a case for which the linearity
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assumption does not make sense at all. Anyone who has ever inspected a pitch contour for
English knows that pitch does not decrease linearly with time.

In order to model the functional dependency of pitch on time correctly, a flexible
toolkit is required that allows the analyst to consider nonlinear functional relations in two
dimensions (wiggly lines) or more than two dimensions (wiggly surfaces and hypersurfaces).
Generalized additive models (gams, Hastie & Tibshirani, 1990; Wood, 2006) provide the
user with exactly such a toolkit.

A gam combines a standard linear model with regression coefficients β0, β1, . . . , βk
with smooth functions s() in one or more predictors.

Y = β0 + β1X1 + . . .+ βkXk + s(Xi) + s(Xj , Xk) + . . .+ ε, ε ∼ N (0, σ2) (11)

For smooths in one predictor, a good choice is using cubic regression splines. Cubic splines
fit piecewise cubic polynomials (functions of the form y = a + bx + cx2 + dx3) to non-
overlapping intervals of the predictor values, such that at the points were intervals meet,
the so-called knots, the transitions are smooth (by forcing the first and second derivative to
be identical). The number of knots determines the smoothness of the curve. When too many
knots are used, a curve is undersmoothed, when too few knots are postulated, the curve
is oversmoothed. Recent advances in the mathematics of gam modeling (see Wood, 2006,
2011) have resulted a range of algorithms (e.g., generalized crossvalidation and relativized
maximum likelihood estimation) that make the estimation of the proper number of knots
part of the general parameter estimation process.

For smooths in higher dimensions with isotropic predictors (predictors expressed on
the same scale, such as longitude and latitude in dialectometry), thin plate regression splines
are available, which fit a wiggly regression surface as a weighted sum of geometrically regular
surfaces. For both isotropic predictors as well as for predictors that are measured on different
scales, tensor products provide a flexible and generally faster alternative. Tensor products
define wiggly surfaces given marginal basis functions, one for each dimension of the smooth.
Typically, these basis functions are themselves cubic splines, and the greater the number of
knots for the different basis functions, the more wiggly the fitted regression surface will be.
Recently, it has become possible to combine splines and tensor products with random-effect
factors, resulting in generalized additive mixed models (gamms).

Returning for a final time to the pitch data, the following sequence of models relax,
step by step, the linearity assumptions with which we have worked thus far. Following
the notational conventions of Wood (2006), with s() representing a cubic regression spline
(when the basis function bs is set to cr) or a random effect (when the basis is set to re),
we have:

Pitch ∼ 1 + Time + Sex + Branching + Time : Branching +

s(Speaker, bs="re") + s(Word, bs="re") + s(Word, Sex, bs="re")

Pitch ∼ 1 + Time + Sex + Branching + Time : Branching +

s(Speaker, bs="re") + s(Word, bs="re") + s(Word, Sex, bs="re") +

s(Time, bs="cr")

Pitch ∼ 1 + Sex + Branching +

s(Speaker, bs="re") + s(Word, bs="re") + s(Word, Sex, bs="re") +

s(Time, bs="cr", by=Branching)
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Pitch ∼ 1 + Sex + Branching +

s(Speaker, bs="re") + s(Word, bs="re") + s(Word, Sex, bs="re") +

s(Time, bs="cr", by=Branching) + s(Time, bs="cr", by=Sex)

The second model allows the pitch contour to be a nonlinear function of Time. The
third model allows this nonlinear function to differ for the four Branching conditions. In
other words, this model specification tests for an interaction of a smooth in Time by Branch-
ing condition. Separate linear terms for Time and its interaction with Branching are no
longer necessary. The final model adds a further smooth to relax the assumption that the
smooth in Time is the same for the two sexes. Table 11 indicates that these models provide
increasingly good fits to the data.

Res. Df Df Deviance F p value change AIC
linear 192647
+s(Time) 190218 7.64 2428.5 80.5 0.0000 588.2
+s(Time, by=Branching) 187949 22.22 2269.4 25.9 0.0000 526.6
+s(Time, by=Sex) 187308 4.79 641.1 33.9 0.0000 153.0

Table 11: Model comparision for a series of models with increasing nonlinear structure fitted to the
pitch data set.

Knowing that adding a smooth results in a significantly better fit does not inform us
about the shape of the shape of the nonlinearity. As cubic splines and tensor products are
black boxes to the end user, there are no parameters that might inform about the functional
shape of the nonlinear prediction curves or surfaces. The only way to gain insight into these
shapes is through visualization. The fitted smooths for Pitch as a function of Time, for each
of the four branching conditions, is shown in Figure 7. For a discussion of the interpretation
of these smooths, the reader is referred to (Koesling et al., 2012).

The use of gams for modeling wiggly surfaces is illustrated for two data sets, one
addressing auditory comprehension with eeg, the other addressing lexical diffusion in the
dialectometry of Dutch.

Kryuchkova, Tucker, Wurm, and Baayen (2012) studied the comprehension of isolated
words, presented over headphones, using evoked response potentials measured at the scalp.
They were specifically interested in the electrophysiological response to the danger of the
words’ referents, as gauged by independently collected danger ratings on a 9-point Likert
scale. Here, we consider a generalized additive model fitted to the microvoltages elicited at
channel FC2 with a spline in Time for the interval [100, 400] ms post stimulus onset.

MicroVoltage ∼ s(Time) + te(Time, Danger)

In this model equation, te denotes a tensor product. Figure 8 shows how the electrophysio-
logical response of the brain varies with time as a function of a word’s danger rating score.
Darker shades of green indicate lower (negative) voltages, whereas brown to white colors
indicate higher (positive) voltages. Focusing on the 150–350 ms time window, the graph
shows a negative inflection around 150–200 ms post stimulus onset across all danger scores,
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Figure 7. Fitted smooths (with 95% confidence intervals) for Pitch as a function of Time for the
four branching conditions of the pitch data set of English tri-constituent compounds.

followed by a positive inflection. For words with higher danger ratings, this positive inflec-
tion has a reduced amplitude. This reduced posititivity in the 250–300ms time interval fits
well with research on emotion processing in other modalities (see Kryuchkova et al., 2012,
for further details).

It is worth noting that although one could dichotomize Danger into a factor with levels
‘low’ and ‘high’, followed by an inspection of the time intervals at which the curves for the
low and high conditions diverge, the result would be a model with an inferior goodness
of fit, in line with the literature on the detrimental costs of dichotomization of numerical
predictors (Cohen, 1983; MacCallum, Zhang, Preacher, & Rucker, 2002; Baayen, 2010).
The beauty of gams is that they make it possible to let the data speak for themselves
without having to impose prior — often arbitrary — categorizations.

A final example of modeling nonlinear regression surfaces is based on the study of
Wieling, Nerbonne, and Baayen (2011), who investigated word pronunciation distances
from standard Dutch for 424 locations in the Netherlands. We focus here on an interaction
of longitude, latitude, and word frequency, but note that other predictors representing socio-
economic variables related to the informants can be included as well, allowing the analyst
to integrate sociolinguistics with dialectometry. The model equation,

DialectDistance ∼ te(Longitude, Latitude, Frequency)

invokes a three-dimensional tensor that defines a complex hypersurface that can be repre-
sented graphically by means of a sequence of dialect maps for different frequencies, as shown
in Figure 9 for four typical quantile frequencies.

The contour plots in this figure present, from left to right, the dialect distance maps for
word frequency at the 0.05, 0.33, 0.66 and 0.95 quantiles. The graphs indicate that dialect
leveling, which has progressed furthest for the lower frequency words, is highly regionally
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Figure 8. Tensor product for the interaction of Time by Danger Rating Score at channel FC2.

cohesive. Figure 9 fits well with the lexical diffusion model of (Wang, 1969). The greater
the geographical distance from the heartland of the Dutch standard (central west), and
the greater a word’s frequency, the less the standard language has penetrated a speaker’s
lexicon.
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Figure 9. The pronunciation distance from standard Dutch for different quantiles of word frequency.

Generalized additive models offer the analyst a very powerful tool for understanding
the structure of data sets in the language sciences. In the author’s experience, models
including nonlinear curves and surfaces often improve substantially over traditional models
with linear effects and/or multiplicative interactions. Often, multiplicative interactions fail
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to detect the true but far more complex structure of the data. The results obtained with
gams can be embarrassingly rich, in the sense that the results are far more complex than
expected given current models. Gams will often challenge the state of the art of current
theories, and the author’s intuition is that they may force the field to move more into the
direction of dynamic systems approaches to language.

Model selection also becomes a more challenging process in the case of generalized
additive modeling. Whereas for simple factorial designs it is still feasible to inspect the aic
for all possible models, this is no longer possible for gams. There are too many dimensions
to explore, with too many options with respect to how many parameters should be invested
in nonlinearities. Here, the only way to proceed is by hypothesis-driven model exploration.
The three-way tensor for the Dutch dialects, for instance, was hypothesized on the basis of
the theory of lexical diffusion. Higher-order interactions in theoretical hyperspace might be
present (e.g., tensor products involving seven or eight predictors), but without theoretical
insights to guide the analyst, the results, even if significant, would remain uninterpretable
and hence not particularly helpful for the advancement of knowledge.

Classification

Thus far, we have considered numeric response variables. Response variables, how-
ever, can describe different classes of outcomes: alternative constructions, alternative affixa-
tion patterns, correct versus incorrect responses, whether an informant is a dialect speaker,
near-synonyms, etc. For data sets with such response variables, the analyst may want to
ascertain whether these classes are predictable from, and hence supported by, the other
variables describing the properties of the individual data points. There are many different
classification techniques available, here only a small subset is reviewed.

Logistic Regression

For binary response variables, i.e., variables that assume one of two values (success
versus failures, correct versus incorrect responses, construction A versus construction B,
etc.), an extension of the multiple regression approach known as logistic regression is often
a good choice (see, e.g. T. Jaeger, 2008).

Binary response variables have the property that the variance depends on the mean.
This property is easy to understand intuitively: When a success has a theoretical probability
around 0.5, there will be enormous variability in the responses actually observed. But when
the probability of a success is close to zero or close to one, the system will look like it is
deterministic with only a little bit of leakage.

The property that the variance depends on the mean violates the fundamental as-
sumption of the Gaussian framework of standard regression modeling, namely, that the
errors are independent and identically distributed and follow a normal distribution. The
solution offered by logistic models is to recast the dependent variable (that a novice to the
field would want to cast as a proportion) in the form of a logit, the logarithm of the odds
ratio:

logit(Y ) = log

(
successes

failures

)
= log

(
P

1− P

)
, (12)
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where P is the probability of success. This logit is modeled as a function of the other
predictors,

logit(Y ) = β0 + β1X1 + β2X2 + . . . . (13)

and the whole machinery of multiple regression, including mixed-effects models and gen-
eralized additive modeling, is now available to the analyst. Unlike for Gaussian models,
however, there is no parameter for the error term, and errors (the difference between a
predicted probability and the observed discrete outcome) are now referred to as deviances.
Crucially, with logistic regression, it is the probability of a given class that is modelled.

Within linguistics, logistic models were pioneered by sociolinguistics under the name
of variable rule analysis, see, e.g., Tagliamonte and Baayen (2012) and references cited there.
As a working example, their data set on was/were variation is touched upon here.

The york data were collected to study the conditions under which was occurs in the
spontaneous speech of inhabitants of York (UK) where the standard norm requires were,
as in There was still quite strong winds in these parts. The response variable is Form, with
levels were and was. Predictors are Adjacency (is the verb adjacent to its referent, with
levels adjacent and non-adjacent), the informant’s Age, and Polarity (affirmative versus
negative). The logistic mixed-effects covariance model

log(was/were) ∼ Adjacency + Age*Polarity + s(Informant, bs="re")

is visualized in Figure 10. (In the symbolic formula of the S language, Age*Polarity

specifies main effects for Age and Polarity as well as an interaction between these two
predictors.) Figure 10 indicates that the probability of was is somewhat greater under non-
adjacency. As indicated by the right panel, there is a substantial effect of Age in interaction
with Polarity. In negative sentences, the younger informants almost categorically prefer
was whereas the older informants prefer were. This effect is more muted in affirmative
sentences. On the proportions scale, used in Figure 10, the effect of Age is non-linear. This
non-linearity is due to the nonlinear nature of the transformation from logits to proportions.
On the logit scale, the effect of Age is actually modeled (in this example) as linear.

Further examples of logistic modeling can be found in Janda et al. (2012), Bresnan
et al. (2007) and F. Jaeger (2010). The latter two papers discuss more complex logistic
regression models. Janda, Nesset, and Baayen (2010) discuss in detail the consequences of
treatment dummy coding for the correlational random-effects structure for logistic regression
models.

Polytomous Regression

Polytomous regression is a modeling option for data sets for which the response vari-
able is discrete and has more than two levels. There are several strategies available for this
kind of data. One option is to fit a series of binary logistic models contrasting one level
with all the other levels, the one versus rest heuristic (Arppe, 2008, 2011). (For including
a random-effect factor as predictor, see Faraway (2006) and Arppe (2011).) Multinomial
models (Venables & Ripley, 2002; Højsgaard, Edwards, & Lauritzen, 2012) estimate the ef-
fects for all response classes simultaneously. In practice, the one-versus-rest heuristic yields
results that are very similar to those of more complex methods, whereas the results tend to
be more transparently interpretable. Table 12 presents a summary of the coefficients (on
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Figure 10. The probability of using was as a function of Age, Adjacency and Polarity.

ajatella harkita miettia pohtia

Intercept 0.76 -2.7 -2 -1.9
Agent=Group -1.4 (0.38) (-0.33) 0.83
Agent=Individual (-0.066) (-0.13) 0.69 -0.59
Patient=Abstraction -1.6 (0.28) 0.58 1.6
Patient=Activity -2.1 2.4 (-0.12) 0.89
Patient=Communication -2.5 1.1 1.3 1.2
Patient=DirectQuote -4.6 (-15) 0.8 2.9
Patient=etta.CLAUSE 0.72 -1.1 -0.61 (-0.41)
Patient=IndirectQuestion -3 (-0.029) 1.7 1.5
Patient=IndividualGroup 0.72 (0.076) -0.75 (-0.99)
Patient=Infinitive 1.7 (0.21) (-15) (-1.4)
Patient=Participle 1.5 (0.13) (-15) (-0.92)

Table 12: Log odds for four Finnish near-synonyms meaning think. Brackets mark non-significance.

the logit scale) for four Finnish near-synonyms for think, predicted from properties of the
Agent and properties of the Patient. For completeness, we note that Arppe (2008) considers
many more predictors for this lexical choice. Given the present limited set of predictors,
Table 12 indicates that for patients expressing an activity, ajatella is dispreferred whereas
harikta is strongly preferred.

Random forests

Regression models lose precision when, as is often the case for language data, the
observations are distributed very unequally across the different predictor values. Regression
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models may also work less well when the data is characterized by complex interactions. In
the case of the York data, for instance, there are very few instances of negative adjacent
sentences, and half of the informants show no variability at all in their use of was versus were.
Such very unequal and complex data may challenge the regression modeling framework.

For this kind of data, but also for data sets with relatively few observations and
a great many predictors, conditional inference trees and random forests (Breiman, 2001;
Strobl, Malley, & Tutz, 2009; Strobl, Boulesteix, Kneib, Augustin, & Zeileis, 2008), building
on earlier work on classification and regression trees (Breiman, Friedman, Olshen, & Stone,
1984) are an excellent choice.

Conditional inference trees estimate a regression relationship by means of binary
recursive partitioning. The ctree algorithm begins with testing the global null hypothesis
of independence between any of the predictors and the response variable. The algorithm
terminates if this hypothesis cannot be rejected. Otherwise, that predictor is selected that
has the strongest association to the response, as measured by a p-value corresponding to
a test for the partial null hypothesis of a single input variable and the response. A binary
split in the selected input variable is carried out. These steps are recursively repeated until
no further splits are supported.

Figure 11 presents a conditional inference tree for a Russian data set (Sokolova, Janda,
& Lyashevksaya, 2012; Janda et al., 2012) that addresses the question of whether verb mor-
phology (Verb, with as levels the prefixes po-, na-, za- and zero, i.e., no prefix) co-determines
the choice between theme-object versus goal-object constructions. Further predictors are
Reduced (is the construction reduced — levels yes versus no) and Participle (yes: passive
participle, no: active form). The ovals in the recursive partitioning graph represent the
choice points, and the p-value specifies the significance of the split. The branches are la-
beled with the class values governing the partitioned subsets. The thermometers at the
leaf nodes present the proportion of goal constructions in black and the complementary
proportions of the theme construction in light grey. The tree graph presents an easy to read
summary of the structure of the data. The asymmetry of the tree, with different predictors
appearing in the various branches, points to a complex interaction of Verb by Reduced by
Participle.

The accuracy of recursive partitioning trees is often close to or comparable to that of
regression models. However, a conditional inference tree locally optimizes the partitioning,
which may have an adverse effect on its prediction accuracy. Random forests sidestep the
limitations of a single locally optimal tree by constructing a large number of conditional
inference trees, resulting in a (random) forest of conditional inference trees. Each tree
in the forest is grown for a subset of the data generated by randomly sampling without
replacement from observations and predictors. The predictions of the random forest are
based on a voting scheme for the trees in the forest: Each tree in the forest provides a
prediction about the most likely class membership, and the class receiving the majority of
the votes is selected as the most probably outcome. Generally, the prediction accuracy of
a random forest is greater than that of the locally optimal conditional inference tree, and
highly competitive with the accuracy of logistic models.

Random forests also provide insight into the relative importance of the predictors by
assessing the loss of prediction accuracy when the association between a predictor and the
response variable is broken by randomly permuting the values of the predictor. The greater
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the decrease in accuracy, the more important a predictor is. For the Russian data, the
variable importance scores are 0.003 for Reduced, 0.076 for Participle, and 0.335 for Verb,
indicating that the verb morphology is the most important predictor of the construction.

Recursive partitioning is less effective for data sets with random-effect factors. In the
languages sciences, subject variability is often the strongest predictor for such data, and
often one finds that the tree graphs split almost exclusively on the subjects. Furthermore,
unfortunately, with large numbers of subjects and items, recursive partitioning becomes
computationally prohibitive. However, when information about subjects and items is with-
held, recursive partitioning trees may still provide useful information about interactions in
the data that help the formulation of mixed-effects regression models.

Memory-based learning

Memory-based learning (Daelemans & Bosch, 2005), software available at http://

ilk.uvt.nl/timbl/, is a technique that assigns a class to an observation based on the class
membership of its nearest neighbors. Unsurprisingly, the accuracy of a nearest neighbor
classifier depends on the definition of what constitutes a nearest neighbor. The simplest
similarity metric counts the number of features that two exemplars share. (If a predictor is
numeric, it has to be binned into a small number of factor levels.)

Sets of neighbors can be at various distances. Some neighbors may differ in only one
predictor value, others may differ with respect to two values, etc. The set of neighbors
taken into account can be restricted to the set of closest neighbors, but neighbor sets at
larger distances can also be taken into account. Given a set of neighbors, an observation is
assigned to that class that is best represented in this set of the nearest neighbors.

The similarity metric for neighbors can be refined in many ways. For instance, pre-
dictors (or features in the terminology of memory based learning) can be weighted for how
informative they are about the response class across the data set, and further adjusted for
the number of different levels of a predictor. This often result in a highly-effective classifier
that is entirely competitive with the classifiers described in the preceding sections. Fur-
thermore, memory-based learning scales up very well to large data sets and to data sets
with predictors with many levels. From a theoretical perspective, memory-based learning
is important because it is a computational implementation of exemplar theory, albeit only
for discrete (or discretisized) data.

Examples of linguistic studies making use of memory-based learning in computational
linguistics are found in (Daelemans & Bosch, 2005). Krott, Baayen, and Schreuder (2001)
made use of memory-based learning to predict interfixes in Dutch compounds, Plag, Kunter,
and Lappe (2007) applied it to the analysis of stress patterns in English compounds, whereas
Keuleers et al. (2007) used it to study Dutch plural inflection. Keuleers (2008) provides a
detailed comparison of memory-based learning with the rule-induction approach of Albright
and Hayes (2003), focusing on regular and irregular verbs in English.

Naive discrimination learning

Naive discrimination learning implements a classifier based on principles of human
learning as formalized in the Rescorla-Wagner equations (Wagner & Rescorla, 1972) and
the equilibrium equations for the Rescorla-Wagner equations developed by Danks (2003).
Currently, there is only one implementation of the naive discrimination learning, the ndl
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package (Arppe, Milin, Hendrix, & Baayen, 2011) for R (R Development Core Team, 2011).
Several studies (Baayen, 2011; Janda et al., 2012) suggest that its classificatory accuracy
is comparable to that of other state-of-the-art classifiers. It is mentioned here as model
that offers a learning perspective on the probabilistic knowledge that speakers have of their
language. For naive discrimination learning as a computational model of lexical processing,
see Baayen, Milin, Filipovic Durdjevic, Hendrix, and Marelli (2011).

Table 13 lists the weights from predictor-value pairs (rows) to the four Finnish think
verbs of Arppe (2008). Figure 12 shows the network layout, with darker shades of gray
indicating stronger positive connections. Exactly mirroring the results with one-versus-
rest polytomous regression (see Table 12), for patients expressing an activity, ajatella is
dispreferred with a large negative weight, whereas harkita is favored with a strong positive
weight. The total support for a given verb is obtained by adding the weights from all
relevant predictor-value pairs. For instance, a patient expressing an activity and an agent
expressing an individual give rise to maximal support for harkita (summed weights 0.42)
followed at a distance by miettia (0.21), ajatella (0.20) and pohtia (0.17).

ajatella harkita miettia pohtia Abbreviation

Agent=Group 0.23 0.13 0.07 0.37 AgnG
Agent=Individual 0.41 0.07 0.22 0.10 AgnI
Agent=None 0.42 0.08 0.11 0.18 AgnN
Patient=Abstraction -0.12 0.01 0.11 0.22 PtntAb
Patient=Activity -0.21 0.35 -0.00 0.07 PtntAc
Patient=Communication -0.26 0.10 0.27 0.11 PtnC
Patient=DirectQuote -0.39 -0.07 0.17 0.50 PtDQ
Patient=etta.CLAUSE 0.40 -0.05 -0.07 -0.06 P.CL
Patient=Event 0.28 -0.04 0.00 -0.03 PtnE
Patient=IndirectQuestion -0.31 -0.01 0.37 0.17 PtIQ
Patient=IndividualGroup 0.39 -0.01 -0.08 -0.09 PtIG
Patient=Infinitive 0.51 0.00 -0.19 -0.10 PtnI
Patient=None 0.25 -0.01 0.01 -0.04 PtnN
Patient=Participle 0.49 -0.00 -0.18 -0.09 PtnP

Table 13: Naive discrimination learning weights for four Finnish near-synomyms for think.

Concluding remarks

This chapter has focused on multivariate regression and classification, both of which
consider a response variable as functionally dependent on a set of predictors. A great many
statistical methods have been developed for data sets for which there is no specific response
variable, and for which the goal is to clarify how all variables pattern together. Introductions
to methods for dealing with such data sets can be found in, for instance, Everitt (2005),
Baayen (2008), and Højsgaard et al. (2012).

Statistics is a field in which progress is rapid. As a consequence, many new techniques
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AgnG AgnI AgnN PtntAb PtntAc PtnCPtDQ P.CL PtnE PtIQ PtIG PtnI PtnN PtnP

ajatella harkitamiettia pohtia

Figure 12. The ndl network for the Finnish think verbs. Darker shades of gray indicate stronger
positive connections, lighter shades of gray larger negative connections. For the abbreviations in the
nodes, see Table 13.

have become available in recent years (such as random forests and generalized additive mixed
models) that considerably facilitate the analysis of language data. With the continued de-
velopment of new statistical techniques that are increasingly well suited for the analysis of
data from the complex dynamic systems that languages are, it will happen more often that
analysts find themselves facing significant results that defy explanation within the concep-
tual framework within which a study was conceived. This, I believe, is good: Statistics will
challenge linguistics to move beyond the boundaries of its current imagination.
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