Supplementary materials for

Baayen, Vasishth, Kliegl, and Bates (2016), The cave of shadows: addressing the human factor with generalized additive mixed models. Journal of Memory and Language.

This document describes how data sets discussed in this paper can be obtained, and presents the Rcode for the models and corresponding figures and tables.

Required software: $\mathrm{R}(>=3.2 .2)$ and R packages devtools (1.9.1 or later), itsadug (2.2 or later), lattice ($0.20-33$ or later), lme4 (1.1-10 or later), plotfunctions (1.0 or later), mgcv (1.8-12 or later), Rcurl (1.95-4.7 or later), and xtable (1.7-4 or later).

Contents

1 Preliminaries 2
2 Introduction to the generalized additive mixed model 3
2.1 Figure 1 3
2.2 Figure 5 and the model for the vietnamese dataset 6
3 The KKL dataset 8
3.1 Table 1 (main text) and Table 3 (appendix) 8
3.2 Table 4 (appendix) 12
3.3 Figure 9 14
3.4 Figure 10 17
3.5 Figure 11 18
3.6 Figure 12 19
3.7 Figure 13 21
3.8 Table 2 22
4 The baldey dataset 24
4.1 Model and code for Table 5 24
4.2 Table 6: the model with linear effects only 26
4.3 Figure 14 28
5 The poems dataset 31
5.1 The full GAMM 31
5.2 A decompositional GAMM 32
5.3 A model with linear effects only 33
5.4 Figure 15 35
5.5 Figure 16 38
5.6 Figure 17 and corresponding LMMs 39
5.7 Figure 18 42

1 Preliminaries

Once R is started up, the abovementioned packages must be activated. This accomplished in the following code snippet:

```
require(mgcv)
require(lme4)
require(xtable)
require(itsadug)
require(plotfunctions)
require(devtools)
require(RCurl)
require(RePsychLing)
```

The RePsychLing package is currently available on github. It is installed and made available as follows:

```
devtools::install_github("dmbates/RePsychLing",build_vignettes=FALSE)
require(RePsychLing)
```

All data sets analysed in this document are available in the RePsychLing package, with the exception of the baldey dataset, which is available at http://www.mirjamernestus.nl/Ernestus/Baldey/baldey_data.zip. After downloading and unpacking the zip file in a subfolder named data, the database can be loaded into R.

```
baldey = read.table("data/baldey.txt", header=TRUE)
```

One figure requires R code available on github:

```
source(textConnection(getURL(
"https://gist.github.com/mages/5339689/raw/576263b8f0550125b61f4ddba127f5aa00fa2014/add.alpha.R")))
```

Generalized additive models for the larger data sets (baldey, poems) may take up to several hours to fit.

The R code and R output given below make it possible to replicate all results reported in our manuscript, including tables and figures. Technical details on the figures illustrating regression splines in section 2 of the manuscript are not included as they are not part of actual data analysis.

2 Introduction to the generalized additive mixed model

2.1 Figure 1

```
data("KKL")
dfr123 = KKL[KKL$subj==123,]
# set up one row of three plots
par(mfrow=c(1,3), oma=c(2,2,2,2), mar=c (5,5,2,1))
# two regression models with polynomials
poly10.lm = lm(lrt ~ poly(trial,9), data = dfr123)
poly20.lm = lm(lrt ~ poly(trial,19), data = dfr123)
# make left panel
cx=1.8
plot(dfr123$trial, dfr123$lrt,
    pch=19, cex=0.5, cex.lab=cx+0.3, cex.axis=cx,
    xlab="trial", ylab="log RT")
lines(dfr123$trial, predict(poly10.lm),
    col="steelblue2", lwd=3, lty=1)
lines(dfr123$trial, predict(poly20.lm),
    col="indianred", lwd=3, lty=1)
mtext("polynomials", 3, 1.5, cex=cx-0.5)
legend(0.1, 5.4,
    legend = c("degree 9", "degree 19"),
    lty = rep(1, 2), lwd = rep (3,3),
    col = c("steelblue2", "indianred"), bty = "n", cex = cx+0.2)
# regression splines with 10 basis functions
dfr123.gam = bam(lrt ~ s(trial, bs="cr", k=10),
                            data = dfr123, method="fREML")
dfr123$GamCR = predict(dfr123.gam)
dfr123.gamTPRS = bam(lrt ~ s(trial, m=2, bs="tp", k=10),
    data = dfr123, method="fREML")
dfr123$GamTPRS = predict(dfr123.gamTPRS)
# make center panel
plot(dfr123$trial, dfr123$lrt,
    pch=19, cex=0.5,cex.lab=cx+0.3, cex.axis=cx,
    xlab="trial", ylab="log RT")
lines(dfr123$trial, dfr123$GamCR,
    col="steelblue2", lwd=3)
lines(dfr123$trial, dfr123$GamTPRS,
    col="indianred", lwd=3)
legend(0.1, 5.4,
    legend=rev(c("cr", "tp")),
    lty=rep(1, 2), lwd=rep(3,2),
    col=c("indianred", "steelblue2"), bty="n", cex=cx+0.2)
mtext("regression splines with 10 basis functions", 3, 1.5, cex=cx-0.5)
# regression splines with 20 basis functions
```

```
dfr123.gam = bam(lrt ~ s(trial, bs="cr", k=20),
                data=dfr123, method="fREML")
dfr123$GamCR = predict(dfr123.gam)
dfr123.gamTPRS = bam(lrt ~ s(trial, m=2, bs="tp", k=20),
                        data=dfr123, method="fREML")
dfr123$GamTPRS = predict(dfr123.gamTPRS)
# make right panel
plot(dfr123$trial, dfr123$lrt,
    pch=19, cex=0.5, cex.lab=cx+0.3, cex.axis=cx,
    xlab="trial", ylab="log RT")
lines(dfr123$trial, dfr123$GamCR,
    col="steelblue2", lwd=3)
lines(dfr123$trial, dfr123$GamTPRS,
    col="indianred", lwd=3)
mtext("regression splines with 20 basis functions", 3, 1.5, cex=cx-0.5)
legend(0.1, 5.4,
    legend=rev(c("cr", "tp")),
    lty=rep(1, 2), lwd=rep(3,2),
    col=c("indianred", "steelblue2"), bty="n", cex=cx+0.2)
```

Figure 1

AIC values for the models discussed with respect to Figure 1.

```
# a model with a linear effect of trial
AIC(lm(lrt ~ trial, data=dfr123))
[1] -206.4587
# the models with polynomials
AIC(lm(lrt ~ poly(trial, 9), data=dfr123))
```

```
[1] -274.739
AIC(lm(lrt ~ poly(trial, 19), data=dfr123))
[1] -332.2674
# the models with restricted cubic splines
AIC(bam(lrt ~ s(trial, bs="cr", k=10), data=dfr123, method="fREML"))
[1] -316.748
AIC(bam(lrt ~ s(trial, bs="cr", k=20), data=dfr123, method="fREML"))
[1] -331.5204
# the models with thin plate regression splines
AIC(bam(lrt ~ s(trial, bs="tp", k=10), data=dfr123, method="fREML"))
[1] -311.4005
AIC(bam(lrt ~ s(trial, bs="tp", k=20), data=dfr123, method="fREML"))
[1] -334.0553
```

Comparison of restricted cubic splines with 10 and 20 basis functions.

```
dfr123.10 = bam(lrt ~ s(trial, k=10), data=dfr123, method="fREML")
dfr123.20 = bam(lrt ~ s(trial, k=20), data=dfr123, method="fREML")
anova(dfr123.10, dfr123.20, test="F")
Analysis of Deviance Table
Model 1: lrt ~ s(trial, k = 10)
Model 2: lrt ~ s(trial, k = 20)
    Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 624.36 21.944
2 618.58 20.778 5.7799 1.1664 6.0082 5.676e-06
```


2.2 Figure 5 and the model for the vietnamese dataset

```
data(vietnamese)
# a GAM for this single-subject data set
vietnamese.gam = bam(RTinv ~ MidLevelTone +
    s(LogFreq) +
    te(LogFreqSyl1, LogFreqSyl2),
    data=vietnamese, method="ML")
# a summary of the parametric part of the model
summary(vietnamese.gam)$p.table
# a summary of the smooths in the model
summary(vietnamese.gam)$s.table
# the corresponding figure
par(mfrow =c(2,2), mar = c(4,4,1,1))
plot(c(0.5,2.5),c(0, -0.017215), xlim=c(0, 3), ylim=c(-0.03, 0), xaxt="n",
    xlab=" ", ylab="partial effect (-1000/RT)", pch=19, cex=1.5)
abline(h=0, col="gray")
lines(c(2.5, 2.5), c(-0.017215+2*0.004544, -0.017215-2*0.004544), lwd=2, col="steelblue2")
mtext(c("FALSE", "TRUE"), side=1, line=2.5, at=c(0.5, 2.5))
plot(vietnamese.gam, select=1, scheme=1, shade.col="steelblue2", rug=FALSE,
    xlab="log frequency", ylab="partial effect (-1000/RT)")
abline(h=0, col="gray")
plot(vietnamese.gam, select=2, rug=FALSE,
    xlab="log frequency first constituent", ylab="log frequency second constituent",
    main=" ")
vis.gam(vietnamese.gam, view=c("LogFreqSyl1", "LogFreqSyl2"),
    color="topo", plot.type="contour", too.far=0.1,
    xlab="log frequency first constituent", ylab="log frequency second constituent",
    main=" ")
```

Figure 5.

3 The KKL dataset

3.1 Table 1 (main text) and Table 3 (appendix)

```
data(KKL)
# identify starting point for time series of RTs
KKL$FirstTrial = KKL$first==1
# scale trial and soa
KKL$Trial = scale(KKL$trial)
KKL$Soa = scale(KKL$SOA)
# add a quadratic term for trial
KKL$TrialQ = KKL$Trial^2
# define interaction of size by orientation
KKL$Int = interaction(KKL$size, KKL$cardinal)
```

A sequence of linear mixed models and pairwise likelihood ratio tests:

```
kkl.lmer0 = lmer(lrt ~ sze * (spt + obj + grv) * orn +
    (1|subj)+
    (0+sptlsubj)+
    (0+grv|subj)+
    (0+objlsubj)+
    (0+orn| subj)+
    (0+spt_orn|subj)+
    poly(Soa, 2,raw=TRUE),
    data=KKL, REML=FALSE)
fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
# add in Trial and its interactios with sze and orn
kkl.lmer1 = lmer(lrt ~ sze * (spt + obj + grv) * orn +
    (1|subj)+
    (0+spt|subj)+
    (0+grv|subj)+
    (0+objlsubj)+
    (0+orn|subj)+
    (0+spt_orn|subj)+
    Trial*(sze+orn)+
    poly(Soa,2,raw=TRUE),
    data=KKL, REML=FALSE)
```

fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
anova(kkl.lmer0, kkl.lmer1)
Data: KKL
Models:
kkl.lmer0: lrt ~ sze * (spt + obj + grv) * orn + (1 | subj) + (0 + spt |
kkl.lmer0: subj) + ($0+$ grv | subj) $+(0+$ obj | subj) + ($0+$ orn |
kkl.lmer0: subj) + (0 + spt_orn | subj) + poly(Soa, 2, raw = TRUE)
kkl.lmer1: lrt ~ sze * (spt + obj + grv) * orn + (1 | subj) + (0 + spt |
kkl.lmer1: \quad subj $)+(0+\operatorname{grv} \mid \operatorname{subj})+(0+$ obj | subj) $+(0+$ orn |
kkl.lmer1: subj) + (0 + spt_orn | subj) + Trial * (sze + orn) + poly (Soa,
kkl.lmer1: $\quad 2$, raw $=$ TRUE)

```
        Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
kkl.lmer0 25 -25088 -24865 12569 -25138
kkl.lmer1 28-25885 -25636 12970 -25941 802.96 3 < 2.2e-16
# add in quadratic effect of Trial
kkl.lmer2 = lmer(lrt ~ sze * (spt + obj + grv) * orn +
    (1|subj)+
    (0+sptlsubj)+
    (0+grv|subj)+
    (0+obj|subj)+
    (0+orn|subj)+
    (0+spt_orn|subj)+
    Trial*(sze+orn)+
    TrialQ*(sze+orn)+
    poly(Soa, 2,raw=TRUE),
    data=KKL, REML=FALSE)
```

fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients anova(kkl.lmer1, kkl.lmer2)

Data: KKL
Models:

```
kkl.lmer1: lrt ~ sze * (spt + obj + grv) * orn + (1 | subj) + (0 + spt |
kkl.lmer1: subj) + (0 + grv | subj) + (0 + obj | subj) + (0 + orn |
kkl.lmer1: subj) + (0 + spt_orn | subj) + Trial * (sze + orn) + poly(Soa,
kkl.lmer1: 2, raw = TRUE)
kkl.lmer2: lrt ~ sze * (spt + obj + grv) * orn + (1 | subj) + (0 + spt |
kkl.lmer2: subj) + (0 + grv | subj) + (0 + obj | subj) + (0 + orn |
kkl.lmer2: subj) + (0 + spt_orn | subj) + Trial * (sze + orn) + TrialQ *
kkl.lmer2: (sze + orn) + poly(Soa, 2, raw = TRUE)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
kkl.lmer1 28-25885 -25636 12970 -25941
kkl.lmer2 31 -26174 -25899 13118 -26236 295.77 3 < 2.2e-16
```

\# and allow slope of Trial to vary by subject
kkl.lmer3 $=\operatorname{lmer}(l r t ~ \sim ~ s z e ~ * ~(s p t ~+~ o b j ~+~ g r v) ~ * ~ o r n ~+~$
(1+Triallsubj)+
($0+$ sptlsubj) +
($0+$ grvlsubj) +
($0+o b j \mid$ subj) +
(0+orn|subj) +
($0+$ spt_orn|subj) +
Trial*(sze+orn)+
TrialQ*(sze+orn) +
poly (Soa, 2, raw=TRUE),
data=KKL, REML=FALSE)
fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
anova(kkl.lmer2, kkl.1mer3)
Data: KKL
Models:
kkl.lmer2: lrt ~ sze * (spt + obj + grv) * orn + (1 | subj) + (0 + spt |


```
sze:grv -3.750e-02 1.024e-02 -3.7
sze:orn 3.931e-02 1.785e-02 2.2
spt:orn
obj:orn
grv:orn
sze:Trial
orn:Trial
sze:TrialQ
orn:TrialQ
sze:spt:orn
sze:obj:orn
sze:grv:orn
    2.028e-02 6.499e-03 3.1
    9.050e-03 7.168e-03 1.3
    1.093e-02 7.192e-03 1.5
    1.835e-02 1.145e-02 1.6
    2.785e-02 3.225e-03 8.6
    -9.166e-05 1.790e-03 -0.1
    -6.078e-03 4.794e-03 -1.3
    -1.425e-02 1.300e-02 -1.1
    -3.466e-03 1.434e-02 -0.2
    -4.680e-02 1.438e-02 -3.3
fit warnings:
fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
```

The summary of kkl.lmer3 is reported as Table $\mathbf{3}$ in the Appendix. The above log likelihood ratio tests are summarized in Table 1.

3.2 Table 4 (appendix)

Table 4 (in the appendix) reports the summary of the following Gamm:

```
kkl.gamD = bam(lrt ~ sze * (spt + obj + grv) * orn +
    s(Trial, subj, bs="fs", m=1)+
    s(subj, spt, bs="re") +
    s(subj, grv, bs="re") +
    s(subj, obj, bs="re") +
    s(subj, orn, bs="re") +
    s(subj, spt_orn, bs="re") +
    s(Trial, by=Int)+
    s(Soa),
    AR.start=FirstTrial, rho=0.15,
    data=KKL, method="fREML", discrete=TRUE)
summary(kkl.gamD)
```

Family: gaussian
Link function: identity
Formula:
lrt ~ sze * (spt + obj + grv) * orn + s(Trial, subj, bs = "fs",
$m=1)+s(s u b j, ~ s p t, b s=" r e ") ~+~ s(s u b j, ~ g r v, ~ b s ~=~ " r e ") ~+~$
s(subj, obj, bs = "re") + s(subj, orn, bs = "re") + s(subj,
spt_orn, bs = "re") + s(Trial, by = Int) + s(Soa)
Parametric coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $5.68505840 .0189221300 .445<2 e-16$
sze $\quad 0.1839522 \quad 0.0378441 \quad 4.861 \quad 1.17 \mathrm{e}-06$
spt $0.0729251 \quad 0.0079223 \quad 9.205<2 \mathrm{e}-16$
obj $0.04107580 .0041140 \quad 9.984<2 e-16$
grv $\quad-0.0004952 \quad 0.0049377$-0.100 0.920111
$\begin{array}{llllll}\text { orn } & 0.0374653 & 0.0141694 & 2.644 & 0.008193\end{array}$
sze:spt $\quad 0.0482519 \quad 0.0158446 \quad 3.0450 .002326$
sze:obj $\quad-0.0088449 \quad 0.0082283-1.0750 .282407$
sze:grv $\quad-0.0366134 \quad 0.0098757-3.7070 .000210$
sze:orn $\quad 0.0095644 \quad 0.0283388 \quad 0.3380 .735741$
spt:orn $0.0213368 \quad 0.0063789 \quad 3.3450 .000824$
$\begin{array}{llllll}\text { obj:orn } & 0.0082761 & 0.0068235 & 1.213 & 0.225181\end{array}$
$\begin{array}{lllll}\text { grv:orn } & 0.0077985 & 0.0068488 & 1.139 & 0.254848\end{array}$
sze:spt:orn $-0.0097831 \quad 0.0127578$-0.767 0.443181
sze:obj:orn -0.0075086 0.0136470 -0.550 0.582183
sze:grv:orn -0.0482719 0.0136977 -3.524 0.000425
Approximate significance of smooth terms:

	edf	Ref.df	F	p-value
s(Trial, subj)	557.867	774.000	661.847	$<2 e-16$
s (spt, subj)	77.793	86.000	31.591	$<2 e-16$
s(grv, subj)	47.606	84.000	2.164	$1.82 \mathrm{e}-10$
s(obj, subj)	29.571	84.000	1.340	0.00114
s(orn, subj)	44.080	84.000	1.148	$<2 e-16$
s(spt_orn, subj)	47.373	84.000	1.315	$1.68 \mathrm{e}-10$

s(Trial): Intbig.cardinal	8.349	8.679	13.402	$<2 \mathrm{e}-16$
s(Trial): Intsmall.cardinal	8.053	8.489	9.837	$1.44 \mathrm{e}-14$
s(Trial): Intbig.diagonal	5.887	6.574	5.856	$8.00 \mathrm{e}-06$
s(Trial) : Intsmall.diagonal	7.997	8.453	8.862	$6.39 \mathrm{e}-08$
s(Soa)	5.602	6.747	103.115	$<2 \mathrm{e}-16$
R-sq. (adj) $=0.532 \quad$ Deviance explained $=$	54%			
fREML $=-15136$	Scale est. $=0.032571$	$\mathrm{n}=53765$		

AIC(kkl.gamD)
[1] -31890

3.3 Figure 9

```
# For Figure 9, we first define a function for acf plots with lattice
acfs = function(m=dat.gamA, s=selectedSubjects, mydata=dat, add_NA=FALSE,
                    ci=0.95, rawplot=FALSE) {
    mydata$resids = resid(m)
    res = list()
    n.used = rep(0,length(s))
    for (i in 1:length(s)) {
        tmp = mydata[mydata$subj == s[i],]
        if (!add_NA) {
            x = acf(tmp$resids, plot=rawplot)
        } else {
            v = rep(NA, max(tmp$trial))
            v[tmp$trial] = tmp$resids
            x = acf(v, na.action=na.pass, plot=rawplot)
        }
            res[[i]] = data.frame(
            lag = x$lag,
            acf = x$acf,
            subj = factor(s[i]))
        n.used[i] = x$n.used
    }
    Dfr = do.call(rbind, res)
    civec = qnorm((1 + ci)/2)/sqrt(n.used)
    theplot = xyplot(acf ~ lag | subj, type = "h", data = Dfr, #col.line = "black",
        panel = function(x, y, subscripts, ...) {
            panel.abline(h = civec[panel.number()], col.line = "grey")
            panel.abline(h = -civec[panel.number()], col.line = "grey")
            panel.abline(h = 0, col.line = "black")
            d=Dfr[subscripts,]
            panel.xyplot(d$lag, d$acf,
                col=ifelse(abs(d$acf)>civec[panel.number()] & d$lag > 0,
                                    "indianred", "steelblue2"),
                            ...)
        },
        #strip = strip.custom(bg = "grey90"),
        #par.strip.text = list(cex = 0.8),
        xlab="lag", ylab="autocorrelation",
        layout=c(4, 1, 1))
    return(list(vals=Dfr, plot=theplot))
}
# a LMMM
kkl.lmer = lmer(lrt ~ sze * (spt + obj + grv) * orn +
    (1|subj)+
    (0+sptlsubj)+
    (0+grv|subj)+
    (0+objlsubj)+
    (0+orn|subj)+
```

```
    (0+spt_orn|subj)+
    poly(Soa,2,raw=TRUE), data=KKL, REML=FALSE)
# make plot for selected subjects
selectedSubjects = c(3, 43, 136, 123)
x = acfs(kkl.lmer, selectedSubjects, KKL)
print(x[[2]]) # this produces the plot
```

Figure 9, lower panels.

```
selectedSubjects = c(3, 43, 136, 123)
dfr = droplevels(KKL[KKL$subj %in% selectedSubjects,])
dfr$subj = ordered(dfr$subj, selectedSubjects)
dfr.gam = bam(lrt~1+s(trial, subj, bs="fs", m=1), data=dfr, method="fREML")
dfr$Gam = predict(dfr.gam)
keys = list(space="top", text=list(c("loess", "GAM")), columns=2,
            lines=list(lty=c(1,1), col=c("steelblue2", "indianred"), lwd=3))
xyplot(lrt ~ trial | subj, data = dfr, #col.line = "indianred",
    panel = function(x, y, subscripts, ...) {
        panel.xyplot(x, y, pch=19, col="gray", cex=0.4, ...)
        panel.loess(x, y, lwd=3, span=0.3, col="steelblue2", ...)
        d = dfr[subscripts,]
        panel.lines(d$trial, d$Gam, col="indianred", lwd=3)
    },
    #strip = strip.custom(bg = "grey90"),
    #par.strip.text = list(cex = 0.8),
    xlab="trial", ylab="log RT",
    layout=c(4,1,1),
    key=keys)
```

Figure 9.

3.4 Figure 10

```
selectedSubjects = c(3, 43, 136, 123)
myColor="steelblue2"
add.alpha <- function(col=NULL, alpha=1){
    if(missing(col)) stop("Please provide a vector of colours.")
    apply(sapply(col, col2rgb)/255, 2,
        function(x) rgb(x[1], x[2], x[3], alpha=alpha))
}
myColorAlpha = add.alpha(myColor, alpha=0.3)
xyplot(lrt~Trial|size+cardinal, data=KKL, type=c("p", "smooth"),span=0.2,
    col.line="indianred", cex=0.3, pch=19, col=myColorAlpha, lwd=3,
    xlab="Trial (scaled)", ylab="log RT")
```


3.5 Figure 11

```
x = acfs(kkl.lmer3, selectedSubjects, KKL)
print(x[[2]])
```

```
load("models/kkl.lmer3.rda")
x = acfs(kkl.lmer3, selectedSubjects, KKL)
pdf("figs/Figure11.pdf", he=4, wi=8)
print(x[[2]])
dev.off()
```


3.6 Figure 12

```
par(mfrow=c (2, 2),mar=c (5,5,3,1),oma=rep (2,4))
ylimit=c(-0.15, 0.35)
plot(kkl.gamD, select=7, rug=F, ylim=ylimit, scheme=1,
    xlab="Trial", ylab="partial effect (log RT)",
    shade.col="steelblue2", col="indianred", lwd=2)
mtext("big, cardinal", 3, 1.0)
plot(kkl.gamD, select=8, rug=F, ylim=ylimit, scheme=1,
    xlab="Trial", ylab="partial effect (log RT)",
    shade.col="steelblue2", col="indianred", lwd=2)
mtext("small, cardinal", 3, 1.0)
plot(kkl.gamD, select=9, rug=F, ylim=ylimit, scheme=1,
        xlab="Trial", ylab="partial effect (log RT)",
        shade.col="steelblue2", col="indianred", lwd=2)
mtext("big, diagonal", 3, 1.0)
plot(kkl.gamD, select=10, rug=F, ylim=ylimit, scheme=1,
        xlab="Trial", ylab="partial effect (log RT)",
        shade.col="steelblue2", col="indianred", lwd=2)
mtext("small, diagonal", 3, 1.0)
```

pdf("figs/Figure12.pdf", he=8,wi=7)
$\operatorname{par}(\operatorname{mfrow}=c(2,2), \operatorname{mar}=c(5,5,3,1)$, oma=rep $(2,4))$
ylimit=c(-0.15, 0.35)
plot(kkl.gamD, select=9, rug=F, ylim=ylimit, scheme=1,
xlab="Trial", ylab="partial effect (log RT)",
shade.col="steelblue2", col="indianred", lwd=2)
mtext("big, diagonal", 3, 1.0)
plot(kkl.gamD, select=10, rug=F, ylim=ylimit, scheme=1,
xlab="Trial", ylab="partial effect (log RT)",
shade.col="steelblue2", col="indianred", lwd=2)
mtext("small, diagonal", 3, 1.0)
plot(kkl.gamD, select=7, rug=F, ylim=ylimit, scheme=1,
xlab="Trial", ylab="partial effect (log RT)",
shade.col="steelblue2", col="indianred", lwd=2)
mtext("big, cardinal", 3, 1.0)
plot(kkl.gamD, select=8, rug=F, ylim=ylimit, scheme=1,
xlab="Trial", ylab="partial effect (log RT)",
shade.col="steelblue2", col="indianred", lwd=2)
mtext("small, cardinal", 3, 1.0)
dev.off()

Figure 12.

big, cardinal

3.7 Figure 13

```
x = acfs(kkl.gamD, selectedSubjects, KKL)
print(x[[2]])
```


3.8 Table 2

Table 2 is based on the following models:

```
# reference model
kkl.ref.gam <- bam(lrt ~ sze * (spt + obj + grv) * orn +
    s(subj, bs="re") +
    s(subj, spt, bs="re") +
    s(subj, grv, bs="re") +
    s(subj, obj, bs="re") +
    s(subj, orn, bs="re") +
    s(subj, spt_orn, bs="re") +
    poly(Soa,2,raw=TRUE),
        data=KKL, method="fREML", discrete=TRUE)
# 'linear' model
kkl.lin.gam <- bam(lrt ~ sze * (spt + obj + grv) * orn +
    s(subj, bs="re") +
    s(subj, Trial, bs="re") +
    s(subj, spt, bs="re") +
    s(subj, grv, bs="re") +
    s(subj, obj, bs="re") +
    s(subj, orn, bs="re") +
    s(subj, spt_orn, bs="re") +
    Trial*(sze+orn)+
    TrialQ*(sze+orn)+
    poly(Soa,2,raw=TRUE),
    data=KKL, method="fREML", discrete=TRUE)
# model with factor smooths
kkl.fs.gam = bam(lrt ~ sze * (spt + obj + grv) * orn +
    s(Trial, subj, bs="fs", m=1)+
    s(subj, spt, bs="re") +
    s(subj, grv, bs="re") +
    s(subj, obj, bs="re") +
    s(subj, orn, bs="re") +
    s(subj, spt_orn, bs="re") +
    Trial*(sze+orn)+
    TrialQ*(sze+orn)+
    s(Soa),
    data=KKL, method="fREML", discrete=TRUE)
# model with smooths for the interactions with trial
kkl.trial.gam = bam(lrt ~ sze * (spt + obj + grv) * orn +
    s(Trial, subj, bs="fs", m=1)+
    s(subj, spt, bs="re") +
    s(subj, grv, bs="re") +
    s(subj, obj, bs="re") +
    s(subj, orn, bs="re") +
    s(subj, spt_orn, bs="re") +
    s(Trial, by=Int)+
    s(Soa),
    data=KKL, method="fREML", discrete=TRUE)
```

Model comparison was carried out with compareML from the itsadug package.

```
compareML(kkl.ref.gam, kkl.lin.gam)$table
    Model Score Edf Chisq Df p.value Sig.
1 kkl.ref.gam -12495.77 27
2 kkl.lin.gam -13422.25 34 926.484 7.000 < 2e-16 ***
compareML(kkl.lin.gam, kkl.fs.gam)$table
    Model Score Edf Difference Df p.value Sign.
1 kkl.lin.gam -13422.25 34
2 kkl.fs.gam -14500.08 31 -1077.822 3.000 <NA>
compareML(kkl.fs.gam, kkl.trial.gam)$table
    Model Score Edf Chisq Df p.value Sig.
1 kkl.fs.gam -14500.08 31
2 kkl.trial.gam -14582.64 33 82.565 2.000 < 2e-16 ***
AIC(kkl.ref.gam)
[1] -26009.55
AIC(kkl.lin.gam)
[1] -28047.29
AIC(kkl.fs.gam)
[1] -30876.72
AIC(kkl.trial.gam)
[1] -31040.29
```

These stats are brought together in Table 2.

4 The baldey dataset

4.1 Model and code for Table 5

For the baldey dataset, we restricted ourselves to correct responses to words.

```
baldey = droplevels(baldey[baldey$response=="correct" &
    baldey$word_status=="word",])
```

A transform $-1000 / R T$ for the reaction times brings a distribution with a strong rightward skew closer to normality. Outlier reaction times (less than 600 ms) are removed.

```
baldey = baldey[baldey$RT > 600,] # 0.4% data loss
baldey$RTinv = -1000/baldey$RT
```

We add information about the initial trials for the subjects, and then scale trial.

```
mintrials = tapply(baldey$trial, baldey$subject, min)
baldey$MinTrial = mintrials[as.character(baldey$subject)]
baldey$AR.start = baldey$MinTrial==baldey$trial
```

We log-transform lemma frequency to avoid outlier effects of high-frequency 'outliers'.

```
baldey$LemmaFreq = log(baldey$CELEX_lemma_freq+1)
```

After scaling predictors,

```
baldey$LemmaFreq = log(baldey$CELEX_lemma_freq+1)
baldey$LemmaFreqSc = as.numeric(scale(baldey$LemmaFreq))
baldey$WordDurSc = as.numeric(scale(baldey$word_duration))
baldey$TrialSc = as.numeric(scale(baldey$trial))
```

we fit a GAMM to the data.

```
baldey.gam <- bam(RTinv ~ gender +
    s(LemmaFreqSc, by=gender, bs="cr") +
    te(WordDurSc, TrialSc) +
    s(word, bs="re") +
    s(word, gender, bs="re") +
    s(subject, WordDurSc, bs="re") +
    s(session, subject, bs="fs", m=1),
    AR.start=AR.start, rho=0.2,
    data=baldey, discrete=TRUE)
```

The subtable of the parametric part of the model (see Table 5):

```
summary(baldey.gam)$p.table
```


The subtable of the smooths of the model (also in Table 5):

```
summary(baldey.gam)$s.table
```

	edf	Ref.df	F	p-value
s (LemmaFreq): genderfemale	3.012133	3.430126	$5.511694 \mathrm{e}+01$	$1.612847 \mathrm{e}-38$
s (LemmaFreq): gendermale	1.014891	1.021960	$1.247278 \mathrm{e}+02$	$3.398336 \mathrm{e}-29$
te(word_duration,Trial)	8.705616	10.406449	$2.271702 \mathrm{e}+01$	$4.892898 \mathrm{e}-44$
s (word)	1735.807042	2777.000000	$2.015884 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$
s (gender, word)	495.787366	5544.000000	$1.108202 \mathrm{e}-01$	$1.967590 \mathrm{e}-07$
s(word_duration, subject)	18.744049	19.000000	$7.988325 \mathrm{e}+01$	$1.592307 \mathrm{e}-293$
s (session, subject)	154.417238	178.000000	$1.263994 \mathrm{e}+05$	$0.000000 \mathrm{e}+00$

The fREML score,
baldey.gam\$gcv.ubre
fREML
-14903.7
and the AIC:

AIC(baldey.gam)
[1] -31728.01

4.2 Table 6: the model with linear effects only

The gamm with linear effects only (Table 6).

```
baldey.lin <- bam(RTinv ~ gender +
    LemmaFreqSc*gender+
    WordDurSc*TrialSc +
    s(word, bs="re") +
    s(word, gender, bs="re") +
    s(subject, bs="re")+
    s(subject, WordDurSc, bs="re") +
    s(subject, session, bs="re"),
    data=baldey, discrete=TRUE)
```

The subtable of the parametric part of the model (Table 6).

```
summary(baldey.lin.gam)$p.table
\begin{tabular}{lrrrr} 
& Estimate & Std. Error & t value & Pr \((>|\mathrm{t}|)\) \\
(Intercept) & -0.942629376 & 0.0406017546 & -23.216469 & \(1.485951 \mathrm{e}-118\) \\
gendermale & 0.237397743 & 0.0574021321 & 4.135696 & \(3.545059 \mathrm{e}-05\) \\
LemmaFreqSc & -0.020886829 & 0.0016662431 & -12.535283 & \(5.478266 \mathrm{e}-36\) \\
WordDurSc & 0.061461226 & 0.0070232829 & 8.751068 & \(2.183294 \mathrm{e}-18\) \\
TrialSc & 0.006232360 & 0.0008371858 & 7.444417 & \(9.906287 \mathrm{e}-14\) \\
gendermale:LemmaFreqSc & 0.002426149 & 0.0017620096 & 1.376922 & \(1.685431 \mathrm{e}-01\) \\
WordDurSc:TrialSc & -0.005362875 & 0.0008329795 & -6.438183 & \(1.220947 \mathrm{e}-10\)
\end{tabular}
```

The subtable of the smooths of the model (Table 6).

```
summary(baldey.lin.gam)$s.table
```

	edf	Ref.df	F	p-value
s (word)	1668.12107	2777	$2.790862 \mathrm{e}+00$	$2.023020 \mathrm{e}-214$
s (gender, word)	451.76914	5544	$1.021730 \mathrm{e}-01$	$4.817559 \mathrm{e}-09$
s (subject)	17.93030	18	$9.009013 \mathrm{e}+05$	$0.000000 \mathrm{e}+00$
s (WordDurSc, subject)	18.73591	19	$1.213828 \mathrm{e}+02$	$6.843180 \mathrm{e}-178$
s (session, subject)	19.89525	20	$7.170278 \mathrm{e}+05$	$0.000000 \mathrm{e}+00$

The fREML and AIC scores:
baldey.lin.gam\$gcv.ubre
fREML
-13027. 88

AIC(baldey.lin.gam)
[1] -27582.51
Very similar results are obtained with the LMm:

```
baldey.lmer <- lmer(RTinv ~ gender +
                        LemmaFreqSc*gender+
                        WordDurSc*TrialSc +
                        (1+gender|word) +
                        (1+WordDurSc+session|subject),
                        data=baldey)
```

```
print(summary(baldey.lmer), corr=F)
```

print(summary(baldey.lmer), corr=F)
Linear mixed model fit by REML ['lmerMod']
Linear mixed model fit by REML ['lmerMod']
Formula: RTinv ~ gender + LemmaFreqSc * gender + WordDurSc * TrialSc +
Formula: RTinv ~ gender + LemmaFreqSc * gender + WordDurSc * TrialSc +
(1 + gender | word) + (1 + WordDurSc + session | subject)
(1 + gender | word) + (1 + WordDurSc + session | subject)
Data: baldey
Data: baldey
REML criterion at convergence: -26072.5
Scaled residuals:
Min 1Q Median 3Q Max
-5.3489 -0.5975 -0.0130 0.6110 4.3265
Random effects:
Groups Name Variance Std.Dev. Corr
word (Intercept) 0.0034549 0.05878
gendermale 0.0009739 0.03121 -0.13
subject (Intercept) 0.0254792 0.15962
WordDurSc 0.0009483 0.03079 -0.82
session 0.0003140 0.01772 -0.22 0.06
Residual 0.0316786 0.17798
Number of obs: 48385, groups: word, 2780; subject, 20
Fixed effects:
e Std. Error t value
gendermale 0.0479604 0.0401551 1.194
LemmaFreqSc -0.0208485 0.0016369 -12.737
WordDurSc 0.0619134 0.0070152 8.826
TrialSc 0.0062278 0.0008371 7.440
gendermale:LemmaFreqSc 0.0023540 0.0017618 1.336
WordDurSc:TrialSc -0.0053851 0.0008328 -6.466
compareML(baldey.gam, baldey.lin)

Model	Score Edf	Chisq	Df	p.value Sig.		
1	baldey.lin	-13027.88	12			
2	baldey.gam	-14911.48	16	1883.594	4.000	$<2 e-16$

```

\subsection*{4.3 Figure 14}
```

par(mfrow=c (1,3),mar=c (4,4,3,4))
plot(baldey.gam, select=1, scheme=1, ylim=c(-0.12, 0.08), rug=FALSE,
shade.col="steelblue2", col="indianred", lwd=2, xlab="lemma frequency",
ylab="partial effect (-1000/RT)")
mtext("female", 3, 1)
plot(baldey.gam, select=2, scheme=1, ylim=c(-0.12, 0.08), rug=FALSE,
shade.col="steelblue2", col="indianred", lwd=2, xlab="lemma frequency",
ylab="partial effect (-1000/RT)")
mtext("male", 3, 1)
pvisgam(baldey.gam, select=3, view=c("WordDurSc", "TrialSc"),
xlab="word duration (scaled)", ylab="trial (scaled)", main = " ")

```




Coefficient of variation for RTs and error rate.
```

library(RePsychLing)
data(baldey)

analysis 1: error proportions and cv calculated for RTs exceeding 600 ms

baldey = baldey[baldey$RT > 600,]
baldey$RTinv=-1000/baldey$RT
incor = tapply(baldey$response=="incorrect", baldey$subject, sum)
corr = tapply(baldey$response=="correct", baldey$subject, sum)
pincor = incor/(incor+corr)
sds = tapply(baldey$RTinv, baldey$subject, sd)
means = tapply(baldey$RTinv, baldey\$subject, mean)
cvs = sds/means
cor.test(pincor, cvs)
Pearson's product-moment correlation
data: pincor and cvs
t = -2.2054, df = 18, p-value = 0.04067
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.75055279 -0.02349328
sample estimates:
cor
-0.4612191

```
```


analysis 2: error proportions calculated across all observations,

whereas cv is calculated over data points with RTs exceeding 600 ms

data(baldey)
incor = tapply(baldey$response=="incorrect", baldey$subject, sum)
corr = tapply(baldey$response=="correct", baldey$subject, sum)
pincor = incor/(incor+corr)
baldey = baldey[baldey$RT > 600,]
baldey$RTinv=-1000/baldey$RT
sds = tapply(baldey$RTinv, baldey$subject, sd)
means = tapply(baldey$RTinv, baldey\$subject, mean)
cvs = sds/means
cor.test(pincor, cvs)
Pearson's product-moment correlation
data: pincor and cvs
t = -3.5808, df = 18, p-value = 0.002136
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.8460326 -0.2833349
sample estimates:
cor
-0.6449863

```

\section*{5 The poems dataset}

\subsection*{5.1 The full GAMM}
```

data(poems) \# available in RePsychLing, which was required above

log-transform and scale frequency

poems$Fre = scale(log(poems$WordFormFrequency+1))

log-transform reading time

poems$Lrt = log(poems$ReadingTime)

scale frequency

poems$FreSc = as.numeric(scale(poems$Fre))

scale trial

poems$TrialSc = as.numeric(scale(poems$Trial))

order by subject and trial, and mark initial trial as the start

of a new time series; this is necessary for

poems = poems[order(poems$Subject, poems$Trial),]
pos = tapply(poems$Trial, poems$Subject, min)
poems$MinTrial = pos[as.character(poems$Subject)]
poems$Start = poems$MinTrial==poems\$Trial

```

A model with a tensor product smooth of frequency by trial. (Fitting this model takes about 30 minutes, and producing the summary takes another 30 minutes.) This model is summarized in Table 7.
```

poems.gam = bam(Lrt ~ te(Fre, TrialSc) +
s(Poem, bs="re") +
s(TrialSc, Subject, bs="fs", m=1) +
s(Subject, Fre, bs="re"),
AR.start = poems\$Start, rho = 0.30,
data = poems, discrete=TRUE)
summary(poems.gam)
Family: gaussian
Link function: identity
Formula:
Lrt ~ te(Fre, TrialSc) + s(Poem, bs = "re") + s(TrialSc, Subject,
bs = "fs", m = 1) + s(Subject, Fre, bs = "re")
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.04636 0.01739 347.7 <2e-16
Approximate significance of smooth terms:
edf Ref.df F p-value
te(Fre,TrialSc) 10.29 11.4 80.59 <2e-16
s(Poem) 81.19 87.0 19.45 <2e-16
s(TrialSc,Subject) 2163.53 2934.0 329.42 <2e-16
s(Fre,Subject) 304.11 326.0 14.88 <2e-16
R-sq.(adj) = 0.498 Deviance explained = 50.3%
fREML = 49642 Scale est. = 0.08918 n = 275996

```

\subsection*{5.2 A decompositional GAMM}

A decompositional model with main effects for frequency and trial and a 'tinsor' product smooth for the interaction of frequency by trial (summarized in Table 8).
```

poems.gam2 = bam(Lrt ~ ti(Fre) + ti(TrialSc) + ti(Fre, TrialSc) +
s(Poem, bs="re") +
s(TrialSc, Subject, bs="fs", m=1) +
s(Subject, Fre, bs="re"),
AR.start = poems\$Start, rho = 0.30,
data = poems, discrete=TRUE)
summary(poems.gam2)
Family: gaussian
Link function: identity
Formula:
Lrt ~ ti(Fre) + ti(TrialSc) + ti(Fre, TrialSc) + s(Poem, bs = "re") +
s(TrialSc, Subject, bs = "fs", m = 1) + s(Subject, Fre, bs = "re")
Parametric coefficients:
Estimate Std. Error t value Pr (>|t|)
(Intercept) 6.0461 0.0174 347.4 <2e-16
Approximate significance of smooth terms:
edf Ref.df F p-value
ti(Fre) 1.566 1.880 247.865 <2e-16
ti(TrialSc) 3.899 3.915 90.924 <2e-16
ti(Fre,TrialSc) 8.051 10.187 9.931 <2e-16
s(Poem) 81.180 87.000 19.405 <2e-16
s(TrialSc,Subject) 2163.630 2934.000 323.821 <2e-16
s(Fre,Subject) 304.082 326.000 14.874 <2e-16
R-sq.(adj) = 0.498 Deviance explained = 50.3%
fREML = 49636 Scale est. = 0.089175 n = 275996

```

\subsection*{5.3 A model with linear effects only}

Table 9 summarizes a LMM for the poems data.
```

poems.lmer = lmer(Lrt ~ FreSc * TrialSc +
(1|Poem) +
(1+FreSc+TrialSclSubject),
data = poems, REML=TRUE)
print(summary(poems.lmer), corr=FALSE)
Linear mixed model fit by REML ['lmerMod']
Formula: Lrt ~ FreSc * TrialSc + (1 | Poem) + (1 + FreSc + TrialSc | Subject)
Data: poems
REML criterion at convergence: 150493.3
Scaled residuals:
Min 1Q Median 3Q Max
-5.9258 -0.6089 -0.1266 0.4605 5.6861
Random effects:
Groups Name Variance Std.Dev. Corr
Subject (Intercept) 0.059568 0.24407
FreSc 0.001176 0.03430 -0.61
TrialSc 0.009619 0.09808 0.01 0.04
Poem (Intercept) 0.002534 0.05034
Residual 0.099396 0.31527
Number of obs: 275996, groups: Subject, 326; Poem, 87
Fixed effects:
Estimate Std. Error t value
(Intercept) 6.0389852 0.0145774 414.3
FreSc -0.0525598 0.0019991 -26.3
TrialSc -0.0782900 0.0054865 -14.3
FreSc:TrialSc 0.0038955 0.0006195 6.3

```

Informal comparison of poems.gam and poems.lmer:
```


AIC scores

```

AIC (poems.gam)
[1] 92688.55

AIC(poems.lmer)
[1] 150517.3
\# REML scores
poems.gam\$gcv.ubre
fREML
49642.31
\# 150493.3 for lmer, see summary above cor(fitted(poems.gam), poems\$Lrt)^2
[1] 0.5030827
cor(fitted(poems.lmer), poems\$Lrt) ^2
[1] 0.4292628

\subsection*{5.4 Figure 15}
```


an ancillary function for acfs with lattice

acfs = function(dat=poems, model = poems.gam) {
dat$Resid = resid_gam(model,AR_start=poems$Start,incl_na=TRUE)
res=list()
for (i in 1:nlevels(dat$Subject)) {
 tmp = dat[dat$Subject==levels(dat$Subject)[i],]
 acfmod = acf(tmp$Resid, na.action=na.pass, plot=F)
acfobs = acf(tmp$Lrt, plot=F)
 res[[i]] = data.frame(lag = acfmod$lag,
acf = acfmod$acf,
 acfObs = acfobs$acf)
res[[i]]$subj = levels(dat$Subject)[i]
res[[i]]$n.used.mod = acfmod$n.used
res[[i]]$n.used.obs = acfobs$n.used
res[[i]]$ci95obs = qnorm((1+0.95)/2)/sqrt(acfobs$n.used)
res[[i]]$ci95mod = qnorm((1+0.95)/2)/sqrt(acfmod$n.used)
}
res = do.call(rbind, res)
return(res)
}
acfdat = acfs()

```
load("models/acfdat.poems.rda")

The top panel of Figure 15 is produced by the following code snippet.
```

selectedSubjects = c("Subj265", "Subj176", "Subj19","Subj183")
tmp = acfdat[acfdat$subj %in% selectedSubjects,]
tmp$subj = ordered(tmp$subj, selectedSubjects)
ci = unname(tapply(tmp$ci95obs, tmp$subj, mean))
theplotObs = xyplot(acfObs ~ lag | subj, type = "h", dat = tmp, ylim=c(0,1),
 panel = function(x, y, subscripts, ...) {
 panel.abline(h = ci[panel.number()], col.line = "grey")
 panel.abline(h = -ci[panel.number()], col.line = "grey")
 panel.abline(h = 0, col.line = "black")
 d=tmp[subscripts,]
 panel.xyplot(dlag, dacfObs,
 col=ifelse(abs(d$acfObs)> ci[panel.number()] \& d\$lag > 0,
"indianred", "steelblue2"),
...)
},
xlab="lag", ylab="autocorrelation",
layout=c(4,1,1))
print(theplotObs) \# show plot

```

The center panel of Figure 15 has a smooth based on a simple GAM with only a factor smooth:
```

Lrt ~ s(Trial, Subject, bs="fs", m=1)

```

The following code produces the center panel:
```

selectedSubjects = c("Subj265", "Subj176", "Subj19","Subj183")
dfr = droplevels(poems[poems$Subject %in% selectedSubjects,])
dfr$Subject = ordered(dfr$Subject, selectedSubjects)
dfr.gam = bam(Lrt~1+s(Trial, Subject, bs="fs", m=1), data=dfr, method="fREML")
dfr$Gam = predict(dfr.gam)
keys = list(space="top", text=list(c("loess", "GAM")), columns=2,
lines=list(lty=c(1,1), col=c("steelblue2", "indianred"), lwd=3))
xyplot(Lrt ~ Trial | Subject, data = dfr,
panel = function(x, y, subscripts, ...) {
panel.xyplot(x, y, pch=19, col="gray", cex=0.4, ...)
panel.loess(x, y, lwd=3, span=0.3, col="steelblue2", ...)
d = dfr[subscripts,]
panel.lines(d$Trial, d$Gam, col="indianred", lwd=3)
},
xlab="Trial", ylab="log RT",
layout=c(4,1,1),
key=keys)

```

The bottom panel of Figure 15 is obtained in a similar way, but now using the model predictions.
```

tmp = acfdat[acfdat$subj %in% selectedSubjects,]
tmp$subj = ordered(tmp$subj, selectedSubjects)
ci = unname(tapply(tmp$ci95mod, tmp$subj, mean))
theplot = xyplot(acf ~ lag | subj, type = "h", dat = tmp,
 panel = function(x, y, subscripts, ...) {
 panel.abline(h = ci[panel.number()], col.line = "grey")
 panel.abline(h = -ci[panel.number()], col.line = "grey")
 panel.abline(h = 0, col.line = "black")
 d=tmp[subscripts,]
 panel.xyplot(dlag, dacf,
 col=ifelse(abs(d$acf)> ci[panel.number()] \& d\$lag > 0,
"indianred", "steelblue2"),
...)
},
xlab="lag", ylab="autocorrelation",
layout=c(4,1,1))
print(theplot)

```

Figure 15.




\subsection*{5.5 Figure 16}

This takes about 10 minutes to complete.
```

par(mfrow=c(1,3),oma=rep (0,4))
plot(poems.gam2, select=1, rug=FALSE,
scheme=1, shade.col="steelblue2",
ylab="partial effect", xlab="Frequency")
plot(poems.gam2, select=2, rug=FALSE,
scheme=1, shade.col="steelblue2",
ylab="partial effect", xlab="Trial")
pvisgam(poems.gam2, select=3, view=c("Fre", "TrialSc"),
xlab="Frequency", ylab="Trial", main=" ")

```


\subsection*{5.6 Figure 17 and corresponding LMMs}

First, we fit a sequence of models with more complex by-subject random effects structure, and show that by-subject random slopes for frequency receive good support.
```


by-subject random intercepts

poems.lmer1 = lmer(Lrt ~ FreSc * TrialSc +
(1|Poem) +
(1|Subject),
data = poems, REML=FALSE)

by-subject random intercepts and by-subject random slopes for trial

poems.lmer2 = lmer(Lrt ~ FreSc * TrialSc +
(1|Poem) +
(1+TrialSc|Subject),
data = poems, REML=FALSE)

by-subject random intercepts and by-subject random slopes for trial

and in addition by-subject random slopes for frequency

poems.lmer3 = lmer(Lrt ~ FreSc * TrialSc +
(1|Poem) +
(1+FreSc+TrialSc|Subject),
data = poems, REML=FALSE)

a simpler model without correlation parameters for frequency

poems.lmer4 = lmer(Lrt ~ FreSc * TrialSc +
(1|Poem) +
(1+TrialSc|Subject) +
(0+FreSclSubject),
data = poems, REML=FALSE)

compare the first three models

anova(poems.lmer1, poems.lmer2, poems.lmer3)
Data: poems
Models:
poems.lmer1: Lrt ~ FreSc * TrialSc + (1 | Poem) + (1 | Subject)
poems.lmer2: Lrt ~ FreSc * TrialSc + (1 | Poem) + (1 + TrialSc | Subject)
poems.lmer3: Lrt ~ FreSc * TrialSc + (1 | Poem) + (1 + FreSc + TrialSc | Subject)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
poems.lmer1 7 172200 172274-86093 172186
poems.lmer2 9 152934 153029-76458 152916 19270.2 2 < 2.2e-16
poems.lmer3 12 150478 150605 -75227 150454 2461.7 3 < 2.2e-16

```
```


and test for the correlation parameters for frequency

anova(poems.lmer4, poems.lmer3)
Data: poems
Models:
poems.lmer4: Lrt ~ FreSc * TrialSc + (1 | Poem) + (1 + TrialSc | Subject) +
poems.lmer4: (0 + FreSc | Subject)
poems.lmer3: Lrt ~ FreSc * TrialSc + (1 | Poem) + (1 + FreSc + TrialSc | Subject)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
poems.lmer4 10 150608 150713 -75294 150588
poems.lmer3 12 150478 150605 -75227 150454 133.66 2 < 2.2e-16

note that the summary of poems.lmer3 indicates the frequency

correlational structure is carried almost exclusively by

the frequency by intercept correlation

print(summary(poems.lmer3),corr=FALSE)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: Lrt ~ FreSc * TrialSc + (1 | Poem) + (1 + FreSc + TrialSc | Subject)
Data: poems
AIC BIC logLik deviance df.resid
150478.3 150604.6 -75227.1 150454.3 275984
Scaled residuals:
Min 1Q Median 3Q Max
-5.9261 -0.6089 -0.1266 0.4605 5.6860
Random effects:
Groups Name Variance Std.Dev. Corr
Subject (Intercept) 0.059408 0.24374
FreSc 0.001172 0.03424 -0.61
TrialSc 0.009589 0.09792 0.01 0.04
Poem (Intercept) 0.002528 0.05028
Residual 0.099396 0.31527
Number of obs: 275996, groups: Subject, 326; Poem, }8
Fixed effects:
Estimate Std. Error t value
(Intercept) 6.0389850 0.0145582 414.8
FreSc -0.0525595 0.0019960 -26.3
TrialSc -0.0782901 0.0054780 -14.3
FreSc:TrialSc 0.0038961 0.0006195 6.3

```

Figure 17 is obtained with the following code, extracting the coefficients from poems.1mer3:
```

coefs = coef(poems.lmer3)[[1]]
plot(coefs[,1], coefs[,2],
xlab="coefficients intercept", ylab="coefficients frequency",
pch=19, cex=0.5, col="steelblue2")
abline(h=0, col="gray80")

```


\subsection*{5.7 Figure 18}
```

par(mfrow=c (1,2))
plot(poems.gam, select=1, rug=FALSE,
xlab="Frequency", ylab="Trial", main=" ")
pvisgam(poems.gam, select=1, view=c("Fre", "TrialSc"),
xlab="Frequency", ylab="Trial", main=" ")

```
```

