
Declarative Knowledge Representation

(Logical Approach)

Summer School

in

Computational Linguistics and Represented Knowledge

Sozopol, Bulgaria

August 25 - September 8, 2000

Kiril Iv. Simov

Atanas K. Kiryakov

Linguistic Modelling Laboratory

Bulgarian Academy of Sciences

Acad. G. Bonchev Str. 25A, 1113 So�a, Bulgaria

kivs@bgcict.acad.bg

naso@sirma.bg400.bg

Handouts

August 25, 2000

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 2

1 Knowledge. Reasoning. Knowledge Representation. Knowl-

edge Representation Systems.

Here we try to give answers to the following questions:

� What is knowledge?

� What is reasoning?

� What is the connection between knowledge and reasoning?

� What kinds of knowledge and reasoning there are?

� What is knowledge representation?

� What does a knowledge representation system look like?

Material in this section is partially based on [Poole et. al. 1998] and [Davis, et. al 1996].

1.1 Knowledge. Reasoning. Knowledge Representation.

As most fundamental notions, the concept knowledge can not be de�ned rigorously. We usually associate

knowledge with human beings and their abilities for intellectual behaviour with respect to the world and to

themselves. Our lack of suÆcient understanding of the nature and mechanisms of human knowledge makes

the borders of the concept unclear. Most people have no doubt that the achievements of contemporary

science are part of human knowledge, but quite often we can hear a child say proudly "I know how to ride

a bicycle!". On the other hand, a professor of mathematics could say: "Solving quadratic equations is not

knowledge." Because of this vagueness of our intuition about knowledge, the de�nitions of this concept

in the literature range from "Everything is knowledge" to "Knowledge is what could be represented in

my (formal) system." Here we start with the �rst de�nition and we hope to become more speci�c as the

course progresses.

De�nition 1 (Knowledge) Knowledge is such a state of an agent which allows the agent to act in a

real or imaginary world. We call this state a knowledge state of the agent.

In order to support the action of agents, knowledge has to correspond in some way to the world. Knowl-

edge has to re
ect the entities in the world and the relations between them. Thus knowledge constitutes

a model of the world and agents use their knowledge as a model of the world. In this way knowledge

allows an agent to determine the consequences of some action by changing its knowledge state rather

than acting in the world. In this way we consider reasoning as a change of the knowledge state of an

agent.

De�nition 2 (Reasoning) Reasoning is an internally driven change in the knowledge state of an agent.

One consequence of regarding knowledge as a model and reasoning as changes in the model is that

knowledge is, usually, not perfect with respect to the world. In most cases, knowledge is, at its best,

perfect with respect to an abstraction of the world. Thus a given piece of knowledge is good in solving

only a class of problems that are coherent with an abstraction of the world. This doesn't mean that no

knowledge could be true with respect to a world, rather this means that knowledge couldn't be true with

respect to all the characteristics of a world.

Another important point is that knowledge is not necessarily homogeneous. It could be modularised

in di�erent chunks so that any chunk represents an aspect of the world. This allows us to speak of

knowledge about some phenomena or domains. Also this modularisation supports reasoning by using

only the relevant chunks of knowledge and changes only in some parts of the knowledge state.

On the base of the two de�nitions we de�ne knowledge representation as:

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 3

De�nition 3 (Knowledge Representation) Knowledge representation is the study of nature of know-

ledge and reasoning with the goal to simulate them on a computer.

Knowledge representation has to answer questions like: \What constitutes a model?"; \How does a model

respect the world?"; \How does a model change to re
ect the changes in the world?"; \How is a model

built?"; \How is a model used to predict the changes in the world?". Having in mind that agents are

situated in the world similar questions could be asked about knowledge of agents: \How is knowledge

about agent's knowledge and reasoning represented?", \How is knowledge about knowledge and reasoning

of other agents represented?".

In knowledge representation, we are not interested in the knowledge of arbitrary agents, but a special

class of agents called intelligent agents such that they:

� solve complex1 tasks in some domain according to some goals and situations;

� acquire new knowledge on the base of their experience;

� are
exible to changing environments and goals;

� act appropriately under perceptual limitation and �nite resources;

� use their knowledge to predict the world changes caused by some acting before they actually do it.

Let us consider in what way do human beings behave as intelligent agents. The following are some

examples of the ways in which human beings are using their knowledge to achieve some goals:

� Deduction. A student is proving a theorem in geometry.

The student selects the premises that are known to be true in geometry (axioms and already proved

theorems), de�nes the theorem that has to be shown to be true, constructs a chains of claims starting

with the premises and using rules in such a way that if the premises are true then the resulting

claim is also true. The theorem is true if one such chain of true claims contains the theorem. One

interesting thing here is that the claims in a chain have the same formal status. All they are true

and if they are not axioms then they are theorems. The di�erence between the theorem that the

student wants to prove and the other theorems in the chain is that the chosen theorem is important

in some way for the student.

� Induction. A scientist is building a theory about a set of observations.

The scientist determines a set of characteristics that are important for the observations, after this

she/he sorts the observations according to their characteristics. At the end she/he creates a theory

that predicts the existence of the observations with appropriate characteristics. A problem arises

when more that one theory predicting the observation are possible. Then knowledge outside the

observation is used to judge which one is appropriate.

� Abduction. A doctor is explaining a new symptom to another doctor.

A new symptom which doesn't follow from the \theory of human health" and previously known

symptoms has been observed. The doctor changes the theory in a \minimal" way so as to produce

a new theory which predicts the new symptom and does not reject any of the previous known ones,

or the doctor assumes the truth of some other fact that wasn't known before the observation of the

new symptom. Again, a problem is the existence of more than one explanation of the symptom

and usually the choice is made on the base of other knowledge.

� Commonsense reasoning. I am driving on the highway with 140 km/h when the restriction is

120 km/h.

I don't worry about the police because I have an anti-radar device. Of course I am not 100% sure

that the police doesn't have a new radar which can not be detected by my anti-radar device. I

1Criteria for complexity could be de�ned by comparison with human being.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 4

assume that the existence of such a new radar is so important that if it exist then I have to know

about it.

� Learning. A child becomes skilled in using natural language.

What kind of mechanisms is used by a child in order to recognize what constitutes the language,

what kind of innate information there is in the mind of the child, how it is combined with the

information received by the child.

� Planning. A thief is going to rob a bank.

The thief determines several conditions which are important for the success: which time is appro-

priate, from where to enter the bank, how to switch o� the alarm, where the money is, how to take

it out, how to escape. For each step di�erent tools will be necessary, some of these tools could be

used for several tasks. The thief has to foresee that some of the steps may not be successful.

� Instructions carrying out. A computer scientist is installing a new printer following a list of

instructions.

The user manual lists a sequence of elementary instructions describing the installation process.

Each instruction presupposes a certain state of the world and determines an action to change the

state in an appropriate way. If one understands the instructions and is able to carry out the action

speci�ed by the instruction sheet, then she/he could install the printer even if they don't know

exactly how it works.

� Communication. Two friends are talking to each other.

How does one decide what to say to the other? Which words to use? How do these words map to

concepts and notions about the world? How do they understand each other?

On the basis of the above examples, we can identify di�erent kinds of knowledge and reasoning along

di�erent axes. We could di�erentiate between Deduction and the carrying out of instructions. In the

�rst case we use some basic de�nitions and facts about what is true in the world and with the help of a

general reasoning mechanism we decide what else must be true in the same world. In the second case we

must know what the instructions mean and how to carry them out in the world. We call the �rst kind

of knowledge declarative and the second kind procedural. In our course we will be concerned with the

presentation of declarative knowledge. There is another opposition between Deduction and Abduction.

In the case of deduction if our premises are true we can conclude with certainty that the result of the

deduction is also true. In the case of abduction there is no such certainty about the explanation because

it is possible that several explanations exist. Another dimension is the di�erence between represented

knowledge and derived knowledge. Represented knowledge can be used without any additional processing

because it is stored explicitly in the model. Derived knowledge, on the other hand, needs some reasoning

in order to be used. We think of derived knowledge as represented implicitly in the model. Usually,

knowledge is taken to have intension and extension. Intension is considered as the internal structure

of a chunk of knowledge and its relationship to other knowledge. Extension is the part of a world the

knowledge is about. One example is given: \Evening star" and \Morning star" are two concepts with

di�erent intensions, but with the same extension | the planet Venus. Very often chunks of knowledge

are compared on the base of their extensions and two chunks with di�erent intensions but with the same

extensions are considered as equivalent.

As one can notice the main reasoning methods (deduction, induction and abduction) presuppose some

degree of uncertainty about which derived knowledge is of use in some situation. These usually can not

be decided on the characteristics of the derived knowledge alone. Some additional knowledge about the

context, the aims of the agent or agent's knowledge about the use of the derived knowledge is necessary.

This is why knowledge representation is considered as \a (fragmentary) theory of intelligent reasoning".

There are several paradigms of knowledge representation today. The main division is between symbolic

and non-symbolic approaches. Supporters of non-symbolic knowledge representation consider knowl-

edge and reasoning to be features of an evolutionary developed organ and claim that the simulation of

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 5

the architecture of this organ will give us the possibility to represent knowledge. On the other hand, sup-

porters of symbolic knowledge representation accept the hypothesis that on a certain level of abstraction

knowledge is represented as symbols and reasoning is a manipulation of these symbols. Let us remind you

of the Church-Turing thesis:Any symbol manipulation can be carried out on a Turing machine; thus,

we could hope that knowledge could be represented symbolically on a computer and reasoning could be

done as symbol manipulation over this representation. In the following lectures we will take the term

knowledge representation to mean both represented knowledge itself and the appropriate reasoning.

Now we can formulate:

De�nition 4 (Symbol Knowledge Representation Hypotheses) Relevant knowledge can be rep-

resented in a symbolic way and relevant reasoning can be carried out over this representation as symbol

manipulation.

1.2 Knowledge Representation Systems. Architecture and Requirements.

A knowledge representation and reasoning system (KRRS) comprises the following elements:

� Formal Language. Relevant knowledge is represented as a structured set of expressions in a

(formal) language, called knowledge base. The knowledge base could be modularised in order

di�erent kinds of knowledge to be represented in di�erent modules and to support di�erent kinds

of reasoning.

� Reasoning Services. Reasoning is done through rules for manipulating the formal language ex-

pressions in the system, called inference methods. Inferences de�ne the ways in which knowledge

is used. In a modularised knowledge base di�erent inferences could be applied to the di�erent

modules.

� Maintenance Services. Mechanisms for adding, deleting and updating of the knowledge. Also,

tools for structuring of the knowledge base. These are in strong connection with the reasoning

services.

The actual formal languages and inferences of a KRRS are de�ned with respect to a set of tasks the

system has to deal with.

The formal language is de�ned by a syntax: gives the basic categories of symbols (vocabulary, signa-

ture) and the rules (grammar) of combining the basic symbols in complex expressions; and semantics:

de�nes the meaning of the basic symbols and the complex expressions.

The syntax is important because it allows writing distinct types of expressions for the distinct categories

of things (objects, relations, functions) in the world we want to speak about. For example, if we want to

speak about sets of objects we will need some expressions for sets. The semantics allows us to describe the

connection between the expressions and the things these expressions represent. In other words, semantics

gives us the similarity between the model (knowledge state) and the world we are trying to represent. This

similarity is captured by the notion of \truth" which makes it possible to decide whether an expression is

a true proposition about the world. One important point about the semantics is that it doesn't depend

on the way the expressions of the language are processed (declarative semantics).

A KRRS is called balanced if the following conditions hold:

� The modules are connected in precise way.

� There is a common theory of knowledge representation. This theory explains which kinds of knowl-

edge should be represented in which modules.

� There is a common semantics for all modules. This common semantics de�nes the meaning of the

expressions in the di�erent modules and the meaning of the connections between the modules.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 6

� The inferences have to respect the syntax and the semantics.

If in KRRS the di�erent modules are using di�erent languages such a system is called hybrid. A

typical example is Kl-One-based system where in the terminological part a restricted language for concept

de�nition is used and in the assertional part more powerful language can be used.

The expressions in the modules of a knowledge base represent the explicit knowledge represented in the

knowledge base. The implicit knowledge represented by these expressions needs some inferences in order

to be applied. It is possible to have more than one inference de�ned. There are several requirements

which an inference method ideally should meet:

� Syntax and semantics awareness. An inference method has to respect the syntax and the

semantics of the formal language.

Each kind of expressions allowed by the syntax has to be treated by a inference method. The result

of an inference method has to be clearly de�ned. The result has to be interpreted according to the

semantics of the language in an rigorous manner. Two syntactically di�erent expressions with the

same semantics interpretations have to lead to the same result under an inference method.

� Soundness. The results of an inference method have to be right.

We expect a system to give to us only true propositions that follow from a knowledge base. If some

inference method violates this condition, we would like to be able to recognise the situations in

which it could produce a wrong answer.

� Completeness. An inference method has to be able to explicate all correct implicit knowledge.

We expect a system to be able to �nd any implicit proposition in a knowledge base. Again, if an

inference method doesn't meet this condition we would like to have an characterisation of this gap

in the inference.

� Decidability. There exists an algorithm that implements the rules of the inference method pre-

serving all characteristics of the method like completeness and soundness.

We would like to use the inference method in a real computer system and we want the implemen-

tation to keep all properties of the method. There are inference methods that are complete and

sound but for which there is no an algorithm to implement them.

� Complexity and Tractability. If an inference method is decidable, then the question is how

much resources are necessary to do the inference. Usually, two measures are used: worst case

complexity - the most diÆcult inferences; average case - the usual inferences.

An inference method is tractable if a polynomial algorithm exists for the worst case. Such algo-

rithms exist only for a very limited number of formal languages. Usually we would like to have

more expressive languages. This causes usage of algorithms with worse complexity for the worst

cases hoping that they behave well in the usual cases. Another way to overcome this problem is to

weaken the semantics. In this case the semantics will qualify less propositions as true.

An KRRS can be characterised on several levels of abstractions [Guarino 1994], [Brachman 1979]:

� Implementational level. Here the system is described in terms of memory units (cells, pointers)

and procedures.

There is no semantics prescribed to this level. The same data structures and procedures (graph

uni�cation, for example) could be used for di�erent KRRSs.

� Logical level. Here the system is described in logical terms like propositions, predicates, functions,

logical operators and inference rules.

A general, uniform and neutral formal semantics is given in terms of relations between objects in

the world, but these relations are not distinguished by other characteristics apart from their arities.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 7

� Epistemological level. Concept types, structuring relations.

Generic notions of concept and concept forming operations are de�ned regardless of any represented

knowledge. On this level one de�nes what constitutes a concept, what kinds of operations are

allowed on concept structure and etc.

� Ontological level. Categories of predicates classi�ed on the basis of formal ontology primitives.

Here knowledge primitives are interpreted satisfying the restrictions of a formal ontology which dis-

tinguishes: (1) among the entities of the world (physical objects, events, processes...); and (2) among

the meta-level categories used to model the world (concepts, properties, states, roles, attributes,

various kinds of part-of relations...).

� Conceptual level. Conceptual relations, primitive objects and actions.

At the conceptual level, primitives have a de�nite cognitive interpretation, corresponding to langua-

ge-independent concepts like elementary actions or thematic roles.

� Linguistic level. Linguistic terms.

Knowledge is associated directly to nouns and verbs and is managed by linguistic mechanisms.

Keep in mind than by far not every KRRS supports all of these levels of representations.

2 Kl-One Family

Kl-One2 originated from the idea of structured inheritance networks developed in the dissertation of

Ronald Brachman as a reply to the criticism of William Woods to the informal in those days knowledge

representation systems. Kl-One presents a theory of concept structure description. Here, we �rst give an

introduction to Kl-One based on [BS 1985], and then we present a formal description of ACLNR language

([BH 1991]) which is one of the descendants of Kl-One and a method for inference in this language

2.1 Introduction

Let us consider the following hypothetical scenario for the process of concept forming by humans:

1. A group of objects in the world are recognised as belonging to a concept, called generic concept.

We give a name to it. We depict the concept as an ellipse. The concept's name is written inside:

�
�

�
�C

2. In the next step, we determine the properties that characterise the concept: these properties are

called roles. There are two kinds of properties: generic roles for properties that have di�erent

values for di�erent representatives of the concept; and individual roles for properties that have

the same values for all representatives of a concept. Generic roles are called also RoleSets. We

depict a generic role as square surrounded by a circle and individual role by a �lled square:

�
�

�
�

@
@
@

((((
�
�
��

aa
aa

aa

C
R1

R2

R3

R0

Æ

��

Æ

��

Æ

��

2This name stands for a system developed at Bolt Beranek and Newman Inc., the language of this system and a whole

family of languages that follow the same knowledge representation philosophy.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 8

3. The next step in the de�nition of a concept is to state some constraints on the roles of the concept.

These constraints are of two kinds: Value Restriction (V/R) which describes the potential �llers

for a generic role and Number Restriction which expresses the cardinality information for a

generic role. Value restriction is stated by a generic concept and numeric restriction is given as a

pair of numbers, a lower and upper bound, de�ning the range of cardinalities for the set of values.

\NIL" is used for in�nity. The value for an individual role is given by an individual concept (�lled

ellipse). These restrictions are depicted in the following way:

�
�

�
�

@
@
@

((((
�
�

��

aa
aa

aa

-

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
Æ
�

�
Æ
�

�

�
	

�
�
�
��� ���� ��

C
C1

C2

C3

R1

R2

R3

R0 I0

V=R

V=R

V=R

(1; 3)

V

Æ

��

Æ

��

Æ

��

XXXXXz

4. Besides constraints on the �llers of a given role, we need to impose some constraints on the �llers of

di�erent roles in a concept or on con�gurations of roles. These general constraints are given by the

so called structural descriptions, depicted as diamonds. Each structural description connects

some parts of a concept de�nition with the roles of another concept. The meaning is that the

corresponding parts of the concept have to meet the conditions imposed by the other concept. A

special case of structural description is Role Value Map. In this case the equality of the �llers

of some roles is stated. Correspondences between the elements of the de�nition of the current

concept and the roles of the constraining concept is given by so called Parametric Individual

Concept Structural descriptions are also a convenient way to impose constraints de�ned by external

procedures.

�
�

�
�

@
@
@

((((
�
�

��

#
#
#
#
##

aa
aa

aa

B
B
BB

�
�
��

��HH��HH

��HH��HH

6

-

�

�

Z
Z
Z
Z~

A
AA

QQ

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
Æ
�

�
Æ
�

�

�
	

�
�
�
��� ���� ��

�
�

�
�

#
#
##

,
,
,,""

"
""

>

�
Æ
�

�
Æ
�

@
@
@@

PPPPPPPP

�������

Z
Z
ZZ~

-
�
�

�
�

�

A
AAK

A
A
AA

�
�

�
�

C
C1

C2

C3

C4

C5

C6

SD1

SD2

PIC2

PIC1

R1

R2

R3

R4

R5

R0

I0

P3P4

P1

P2

V=R

V=R

V=R

(1; 3); O

?
�
��C
CC

V

P3

-
�
�

�
�C7R6

���� �
�
�
�
�
�
�
�
�
�
�

�
�
��>
-

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��
Æ

��

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 9

This picture demonstrates all Kl-One epistemological constructs which de�nes a concept locally.

5. Additionally, we would like to compare the concept with the other concepts we have already de�ned.

We want to �nd similar concepts, concepts that are more general and concepts that are more speci�c.

Also we would like some common characteristics for several concepts to be represented only once and

to be inherited by the appropriate concepts. Kl-One provides means for solving all this problems

by arranging the concept in concept hierarchy called taxonomy. Concepts in this hierarchy are

ordered with respect to subsumption relation. A generic concept subsumes another generic concept,

if any instance of the second is necessarily an instance of the �rst. A concept subsuming another

concept is called superconcept and the subsumed concept is called subconcept. The connection

of a superconcept to a subconcept is called specialization. A concept can have more that one

superconcept (multiple inheritance). When a concept inherits de�nitions of generic roles from a

superconcept these de�nitions may be modi�ed in two ways: restriction | \If Concept A with

RoleSet Ra subsumes Concept B, and if RoleSet Rb of B restricts Ra, then every set of �llers of

Rb satis�es all restrictions on both Ra and Rb. Moreover, Ra and Rb designate the same two-

place relation"; di�erentiation | \A RoleSet di�erentiates another when the former denotes a

subrelation of the relation denoted by the later." More formally: \ If RoleSet Rb di�erentiates
RoleSet Ra, then any pair of individuals that satisfy the relation denotes by Rb also satis�es the

relation denoted by Ra. Furthermore, all individuals in the range of the relation denoted by Rb
satisfy the Value Restrictions of both Ra and Rb. The maximum (cardinality of the image of the

relation for any individual in the domain) speci�ed in the Number Restriction of Ra is also the

maximum for Rb, unless a smaller maximum is speci�ed directly at Rb. The minimum for RB is

1, unless a larger minimum is speci�ed directly at Rb."

�
�

�
�
((((

�
�
��

aa
aa

aa

-

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

-
�
�

�
�

�
�

�
�

Csub

C1

C2

C3

Csup

C4

C5

R1

R2

R3

R4

R5

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�666

C
C
C
C
C
C
C
C
C
C
C
C
CCO

A
A
A
A
A
A
AK

�
�
�
�
�
�
�
��

Z
Z
Z
ZZ

 �

D

R

D

-
�
�

�
�C6R6

aaaa

The generic concepts in a taxonomy de�ne the terms in which we can speak for the world. The

local and the inherited information impose the constraints on the instances of these concepts. There

are two kinds of concepts: Primitive Concept | the de�nition of such a concept impose only

necessary conditions that the instances of the concept must satisfy, but not all individuals that

satisfy this conditions are instances of the concept (these are not suÆcient conditions). Primitive

concepts are used to represent of natural kinds like dog or lemon for which one can not provide

suÆcient conditions, but can specify a rich set of necessary conditions. For example, to completely

de�ne the concept person it is not suÆcient to state that a person is an animal with two legs and

two hands, and that is why that concept is declared as primitive. With such a primitive concept we

do not say what distinguishes a person from an animal; we just say that there is some specialization

which makes person a subclass of animal, and we give it a name. Some times primitive concepts

are represented only by their names (atomic concepts). De�ned Concept | the de�nition of

such a concept impose necessary and suÆcient conditions on the instances of the concept. Every

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 10

individual that satis�es the conditions is an instance of the concept. A concept has also the name

of its superconcepts as a part of its de�nition, thus one could de�ne a concept only by specifying

the exact place of the concept in the taxonomy. Quoting [BS 1985]:

The components of a concept are

� its subsuming concepts (its superconcepts).

� and its local internal structure (its component restrictions) expressed in

{ roles, which describe potential relationships between instances of the concept and

those of other closely associated concepts (i.e., its properties, parts, etc.), and

{ structural descriptions which express the interrelations among the roles.

and

A Kl-One concept is well-formed if

� it has more than one superconcept (if there are no local restrictions, a concept is

de�ned as conjunction of its superconcepts).

� di�ers from its superconcept in at least one restriction.

� it is primitive.

The taxonomy is usually called terminology or T-Box and states universal propositions about

the world, i.e. if in the world there is at least one instance of a concept C then it has to meet all the

conditions stated in the de�nition of the concept, but the de�nition itself doesn't imply existence

of any instances of the concept.

6. When we have a de�nition of a concept we could use it to recognize instances of the concept. We

depict an instance of a concept by an �lled ellipse which is connected with individual roles, where

each role corresponds to a generic or individual role in the de�nition of the generic concept. Every

individual role is connected with individual concepts that represent the values of this role. Also it is

connected with instances of its superconcepts. This fact is depicted by a thick arrow. An individual

is an instance of a generic concept either if it is stated as such or if it satis�es all necessary and

suÆcient conditions. All represented individual concepts in the system make some assertions about

the world. This part of the knowledge base in Kl-One is called assertional component orA-Box.

�
�

�
�

@
@
@

((((
�
�

��

aa
aa

aa

-

�

�

Z
Z
Z
Z~

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
Æ
�

�
Æ
�

�

�
	

�
�
�
��� ���� ��

IC

R1

R2

R3

R0

I0

�
Æ
�

�
Æ
�

�

�
	

�
�
�
��� ���� ���

Æ
�

�
Æ
�

�

�
	

�
�
�
��� ���� ��

�
Æ
�

�
Æ
�

�

�
	

�
�
�
��� ���� ��

�
Æ
�

�
Æ
�

�

�
	

�
�
�
��� ���� ���

�
�
�7

�
�

�
�

�
Æ
�

�
Æ
�

�

�
	

�
�
�
��� ���� ��

V

V

V

V

V

I2

I1

I3

I4

�
�

�
�

�
Æ
�

�
Æ
�

�

�
	

�
�
�
��� ���� ��

I5

�
�

�
�

�
Æ
�

�
Æ
�

�

�
	

�
�
�
��� ���� ��

I6

C
C
C
C
C
CO

�
�
�
�
��7

As it was mentioned above the de�nition of a primitive concept imposes only necessary conditions

on the instances of this concept. Thus, the name of a primitive concept stands for the missing

suÆcient conditions. Two primitive concepts with the same de�nitions but with di�erent names

are taken to be di�erent. Therefore in order to recognize an individual as an instance of a primitive

concept, it is not enough the instance to satisfy the conditions stated by the de�nition of the

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 11

primitive concept, it is necessary the individual to be recognized as an instance of a subconcept of

the primitive one or it to be stated explicitly as an instance of the primitive concept. Also it is

possible to use some default reasoning based on prototypical information in order to recognize one

individual as a typical instance of a primitive concept (see [Franconi, et. al 1992]).

7. Finally, we would like to show how we reason with these representation. The main inference

method is classi�cation. A generic concept is de�ned by its local properties: roles, restrictions

on the roles and structural descriptions; and some of its superconcepts (not necessary the most

speci�c ones), and the task is to �nd the right place of this concept in the taxonomy. i.e. the

set of its immediate superconcepts and the set of its immediate subconcepts have to be found.

The classi�cational procedure is known as classi�er. On the base of classi�er one can answer

several questions about the represented knowledge such as: "Does this de�nition of a concept make

sense?", "Which generic concepts in the T-Box are possible descriptions of an partial individual

concept?". For example, individuals in ABox are related with the terms representing their partial

descriptions. The set of all the most speci�c concepts, from the terminology, which describes an

individual gives the type of the individual; it is obtained by classifying in the terminology the

complete \abstraction" of the individual, i.e., a concept describing only that individual. Types for

individuals are maintained by a procedure called recognizer. The recognizer identi�es the individual

with respect to the known concepts by classi�cation of the abstraction of the individual in the

concept hierarchy. A comprehensive list of inferences is given below.

The scenario we have just described is not the only possible, but it demonstrates a possible motivation

for developing a language similar to Kl-One. Also, it introduced most of the important ideas in Kl-One.

Notice that the above introduction is on epistemological level. It describes concept forming operations

and relations between concepts without pointing to any logical language and/or to some particular con-

ceptualization of the world. Additionally to these there is an attempt to build corresponding primitives

on linguistics level by William Woods. In the paper [BS 1985] each �gure with a concept de�nition

is accompanied by a text in restricted English which conveys the same formal meaning as the concept

de�nition itself. For example the following is the text associated with the concept de�nition in �gure 2

on page 183: \A MESSAGE is, among other things, a THING with at least one Sender, all of which are

PERSONs, at lease one Recipient, all of which are PERSONs, a Body, which is a TEXT, a SendDate,

which is a DATE, and a ReceivedDate, which is a DATE." In the original system there is nothing done

on ontological level. One could represent a concept RED in the same way in which represents the concept

PERSON. The subsequent developments of the descendants of Kl-One are mainly on logical level. We

now turn to one of this descendants - the concept language ACLNR.

2.2 Terminological logics

In this section we describe a common subset of the formal languages, the inferential capabilities, and

the common architecture of the descendants of the Kl-One knowledge representation language. These

descendants are known under several names as: description logics (DLs), concept languages, term de-

scription languages, terminological logics, taxonomic logics. There are several Knowledge Representation

Systems built around these languages: KRIPTON [BPL 1985], NIKL [KBR 1986], BACK [QK 1990],

LOOM [MB 1987], CLASSIC [BBM+ 1989], YAK [Franconi 1990], KRIS [BH 1991], and some others.

The presentation will follow the syntax and the model-theoretic semantics of the language ALCNR (see

[SSS 1988], [HN 90], and [BDS 1993]).

2.2.1 Description Logics Language ALCNR

Description logics deal with three categories of syntactic primitives: concepts, roles and individuals.

Concepts denote classes of objects in the domain under examination, roles denote binary relation on

the domain, and individuals stand for the objects in the domain. The following de�nitions concern the

ALCNR concept language, but they are true for almost all concept languages.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 12

De�nition 5 (Signature)

� =< CN;RN; IM > is a ALCNR signature if and only if

CN is a set of concept names,

RN is a set of role names, and

IN is a set of individual names.

The three sets are pairwise disjoint.

De�nition 6 (Concept Terms) C and D are concept terms if and only if they are formed by means

of the following syntax:

C,D �! CN j (concept name)

> j (top)

? j (bottom)

(C uD) j (conjunction)

(C tD) j (disjunction)

:C j (complement)

8R:C j (universal quanti�cation)

9R:C j (existential quanti�cation)

(� nR) j (� nR) (number restrictions)

where CN is a concept name, C and D are concept terms, and R is a role term (see below). > and ?

are two special concept names denote the universal concept and the absurd concept respectively.

De�nition 7 (Role Terms) R is a role term if and only if it is formed by means of the following syntax:

R �! P1 u : : : u Pk (role conjunction)

where k � 1.

Concept and role terms are the expression which are used to de�ne the necessary concepts and roles.

Concept names are used to designate concepts in simple manner. The conjunction states that a concept or

a role is a specialization of the conjuncts. For instance, a woman is a human and a female. Thus a woman

has the properties of a human and properties of a female. The disjunction states that a concept has as

subconcepts the disjunct concepts. For instance, a human is a man or a woman. The complement states

that a concept is everything that is not something else. Usually, the complement is used in conjunction

with some other concepts that restrict the scope of the negation. For instance, a bachelor is a man and

is not married. The universal and existential quanti�cation states the value restriction for a role. In the

�rst case, every �ller of a role has to be an instance of a given concept, in the second case at least one

�ller has to satisfy the appropriate concept. For instance, a father is a man who has a child that is a

human; a father of sons is a father all children of whom are men. Number restriction state the lower and

upper bounds of the numbers of the �llers for a role. For instance, a happy mother is a mother with at

least two children and at most three children. This language allows only the specialization operation for

roles.

De�nition 8 (Interpretation)

I =< D; [[:]] > is an interpretation if and only if

D is a non-empty set of objects,

[[:]] is a total function

from CN to the powerset of D,

from RN to the powerset of the Cartesian product D�D, and

from IN to D

(any two distinct individual names are mapped to two di�erent objects |

Unique Names Assumption (UNA)) ,

such that the following equations are satis�ed:

For concept terms:

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 13

[[>]] = D

[[?]] = ;

[[C uD]] = [[C]] \ [[D]]

[[C tD]] = [[C]] [[[D]]

[[:C]] = D n [[C]]
[[8R:C]] = fd1 2 D j 8d2 : (d1; d2) 2 [[R]]! d2 2 [[C]]g
[[9R:C]] = fd1 2 D j 9d2 : (d1; d2) 2 [[R]] ^ d2 2 [[C]]g
[[� nR]] = fd1 2 D j kfd2 j (d1; d2) 2 [[R]]gk � ng
[[� nR]] = fd1 2 D j kfd2 j (d1; d2) 2 [[R]]gk � ng

For role terms:

[[P1 u : : : u Pk]] = [[P1]] \ : : : \ [[Pk]]

An interpretation connects the concept and role terms with an abstraction of the world. These abstraction

is given by a set of objects (called domain) and the sets of unary and binary relations over the set of

objects. The interpretation connects the individual names with objects in the domain. the concept

names with some of the unary relations over the domain and the role names with some of the binary

relations over the domain. The connection established by the interpretation must satisfy the conditions

for the complex terms. For instance, conjunction is the relation which is an intersection of the relations

designated by the conjuncts.

De�nition 9 (Terminological Statement)

Let CN be a concept name, and C is a concept term. Any terminological statement has one of the

following forms:
CN

:
= C (concept de�nition)

CN _� C (primitive concept de�nition)

De�nition 10 (Terminological Statement Satis�ability) An interpretation I =< D; [[:]] > satis�es

a concept de�nition CN
:
= C if and only if [[CN]] = [[C]], and

a primitive concept de�nition CN _�C if and only if [[CN]] � [[C]].

A concept de�nition CN
:
= C states that the concept term C contains the necessary and suÆcient

conditions one object to be an instance of the concept CN . A primitive concept de�nition CN _�C states

only necessary conditions. These two facts are captured by the de�nition of satis�ability of terminological

statements. All terminological statements in a knowledge base form the TBox. They de�ne the terms in

which one can speak about the world. They state only universal propositions in sense that they don't

presuppose existence of any objects in the world. But if the world contains instances of some concept

these instances must obey the concept de�nition. The existence of particular objects and their properties

are stated in the assertional part by so called assertional statements.

De�nition 11 (Assertional Statement) Let C be a concept term, R is a role term, and a, b are

individual names. Any assertional statement has one of the following two forms:

C(a); R(a; b)

De�nition 12 (Assertional Statement Satis�ability)

An interpretation I =< D; [[:]] > satis�es

the assertional statement C(a) if and only if [[a]] 2 [[C]],
the assertional statement R(a; b) if and only if ([[a]]; [[b]]) 2 [[R]].

The assertional statement C(a) expresses that the individual denoted by a satis�es the conditions of the

concept term C and the assertional statement R(a; b) expresses that between the individual a and the

individual b the relation denoted by R holds. All assertional statements in the knowledge base form the

ABox.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 14

2.2.2 Knowledge Base in ALCNR

De�nition 13 (Knowledge Base)
 is an ALCNR knowledge base if and only if
=<TBOX ;ABOX >,
where TBOX is a set of terminological statements, called TBox, and ABOX is a set of assertional state-

ments, called ABox. Any concept name CN may appear at most once as left hand side of a terminological

statement.

De�nition 14 (Knowledge Base Model)

An interpretation I =< D; [[:]] > is a model for a knowledge base
 =<T BOX ;ABOX > if and only if the

interpretation satis�es all terminological statements in TBOX and all assertional statements in ABOX .

2.2.3 Inferential Problems

Any system, supporting ALCNR language, has to provide inferences to solve at least the following

problems ([BBH+ 1990],[BDS 1993]):

1. KB-satis�ability:
 is satis�able if and only if it has a model.

2. Concept Satis�ability: C is satis�able with respect to
 if and only if there exists a model I =<
D; [[:]] > of
 such that [[C]] 6= ;.

3. Concept Subsumption: C is subsumed by D, written D v C with respect to
 if and only if for

every model I =< D; [[:]] > of
 it holds that [[C]] � [[D]].

4. Concept Equivalence: C is equivalence to D with respect to
, written C �
 D if and only if for

every model I =< D; [[:]] > of
 it holds that [[C]] = [[D]].

5. Classi�cation in TBOX : �nd all most speci�c concepts D with respect to the subsumption relation

such that D v C with respect to
 and all more general concepts E with respect to the subsumption

relation such that C v E with respect to
.

6. Taxonomy construction: �nd the smallest relation on the concepts in TBOX such that its transitive

closure is the subsumption relation (modulo Concept Equivalence, see above).

7. Deduction: what facts are deducible from
.

8. Instance Checking: a is an instance of C, written
 j= C(a), if and only if the assertion statement

C(a) is satis�ed in every model of
.

9. Realization: �nd the most speci�c concepts with respect to TBOXand the subsumption relation such

that some individual from the ABOX is instance of them.

10. Retrieval: which individuals occurring in the ABOX are instances of C.

2.2.4 Sub-Languages

Di�erent sub-languages are obtained when some restriction on the forming operators are imposed. Some

of more popular ones are ([HN 90]):

ALCN consists of concepts containing no intersections of roles.

ALCR consists of concepts containing no number restrictions.

ALC consists of concepts containing no number restrictions and no intersections of roles.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 15

2.2.5 Example

We use typewriter font for concepts, slanted fonts for roles and Bold with initial capital for indi-

viduals.

male _� : female

Female and male are disjoint. Female and male are primitive concepts.

woman
:
= human u female

Every woman is a human and a female. Human is primitive concept.

man
:
= human u male

Every man is a human and a male. Man and woman are disjoint because male and female are disjoint.

mother
:
= woman u 9 has-child.human

Every mother is a woman with at least one child who is a human.

father
:
= man u 9 has-child.human

Every father is a man with at least one child who is a human.

parent
:
= father t mother

Every parent is either a father or a mother. No parent could be a father and a mother.

grandparent
:
= (father t mother) u 9 has-child.parent

Every grandparent is a parent with at least one child that is a parent.

grandmother
:
= woman u grandparent

Every grandmother is a mother with at least one child that is a parent.

grandfather
:
= grandparent u : grandmother

Every grandfather is a father with at least one child that is a parent.

mother-without-daughter
:
= mother u 8 has-child.male

Every mother whose children are male is a mother without daughter.

mother-of-many-children
:
= mother u (� 3 has-child)

Every mother with more than 2 children is a mother of many children.

father-of-a-son-and-a-daughter
:
= father u (�2 has-child) u 9 has-child.male u 9 has-child.female

Every father with no more than 2 children and at least one male child and at least one female child is a

father of a son and a daughter.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 16

male human female

man woman
A
A
AAK

�
�
�
�
�
��>

Z
Z
Z
Z

Z
ZZ}6

�
�
���

parent

grandparent

motherfather

grandmother

grandfather
mother-without-d.

mother-of-many-ch.
father-of-1s.-1d.

6

6

�
�
�
�
�
�
�
���

C
C
C
C
C
C
C
CCO

�
�
��3

J
J
J
JJ]

�
�
�
�
��Æ

�
�
�
�
�
��

?

>

PP
PP

PP
PPPi

S
S
S
So

��
��

���1

���
���

���
���

�:

S
S
S
So

�
�
�
�
�
��Æ�

�
�
�
�
�
�>

Z
Z
Z
Z

Z
Z
Z}

Z
Z

Z
Z
ZZ}

�
�
�
��>

Z
Z
Z
ZZ}

�
�
�
�
�
��

2.3 Deduction

Here, we present some algorithms for deduction in Description logics. We are concerned especially with

the following problems: concept satis�ability, concept subsumption and taxonomy construction. First we

show how to reduced concept satis�ability to concept subsumption and vice versa. Then we present an

algorithm for testing of concept satis�ability. Afterwards several algorithms for taxonomy construction

are given. We assume that we are working with respect to acyclic knowledge base. This means that a

concept name CN doesn't appear in the de�nition of CN directly or indirectly. This allows us to assume

that the knowledge base is empty in a sense that we could expand the de�nition of each concept by the

de�nitions of other concepts in order to have only roles and primitive concepts in the de�nitions. Thus

we could work only with concept terms without consulting the knowledge base. One another restriction

is that we work with terminological statements of the kind C
:
= CT.

For example:

In the de�nition of concept grandparent we substitute concepts father, mother and parent with their

de�nitions and we received the following de�nition for grandparent:

grandparent
:
= ((man u 9 has-child.human) t (womanu 9 has-child.human))

u 9 has-child.(father t mother)

Here we have to make the substitution again for concepts man, woman, father and mother. Afterwards,

we will have to make new substitution and so on up to the moment when no more substitutions are

possible. We give here the expanded de�nition. Notice that it contains only primitive concepts (human,

male and female):

grandparent
:
= (((human u male) u 9 has-child.human) t ((human u female) u 9 has-child.human))

u 9 has-child.(((human u male) u 9 has-child.human)

t ((human u female) u 9 has-child.human)).

Of course this de�nition looks awful, but keep in mind that it is only internally used for inference purposes

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 17

and is invisible to the user.

Let C and D be two concepts. Concept C subsumes concept D if and only if the concept :C u D is

unsatis�able.

Let C be a concept. Concept C is satis�able if and only if ? doesn't subsume C.

The reduction of the two problem to each other can be done in linear time.

For example, if one wants to check whether a mother with at least three children is subsumed by a mother

with at least two children

mother u (� 3 has-child) v mother u (� 2 has-child) ?

is equivalent to one to check satis�ability of the following concept:

mother u (� 3 has-child) u : (mother u (� 2 has-child))

which is equivalent to

mother u (� 3 has-child) u (� 2 has-child)

and which is obviously unsatis�able. Thus, the initial problem has a positive answer.

Another preprocessing which can be done in linear time and simpli�es the presentation of the algorithm

is to convert the concept to its negative normal form. The following rewriting rules can be used to

convert each ACLNR in negative normal form:

:> �! ?

:? �! >

:(C uD) �! :C t :D
:(C tD) �! :C u :D

::C �! C
:(8R:C) �! 9R::C
:(9R:C) �! 8R::C
:(� nR) �! (� n+ 1R)

:(� nR) �!

�
? if n = 0

(� n� 1R) if n > 0

Let us consider an example:

: ((man t woman) u 9 has-child.human)

+

: (man t woman) t : 9 has-child.human

+

(: man u : woman) t 8 has-child.(: human).

The last step in the deduction process is done by satis�ability check for a concept term expanded and

converted to negative normal form. The algorithm works on a construction called a constraint system.

First, a countable set of variables is assumed. We use x, y and z for variables.

There are two kinds of constraints: x : C, xPy. Where C is a concept term expanded and converted

to negative normal form and P is a role name. A constraint system S is a �nite, nonempty set of

constraints. In an interpretation I, variables are mapped to objects in the domain of I by a function �
called I-assignment. An I-assignment � satis�es the constraint x : C if and only if �(x) 2 [[C]] and it

satis�es a constraint xPy if and only if (�(x); �(y)) 2 [[P]]. A constraint is satis�able if there exists an

interpretation I and an I-assignment such that the I-assignment satis�es the constraint. A constraint

system is satis�ed by an I-assignment if and only if it satis�es all constraints in the system. At the end,

a constraint system is satis�able if and only if there exists an interpretation I and an I-assignment such

that the I-assignment satis�es the system.

Let S be a constraints system and R = P1 u : : : u Pk be a role. We say that xRy holds in S if and only

if the constraints xP1y; : : : ; xPky are in S. For a role R, a constraint system S and variable x we de�ne

a function which returns the number of the variables y such that xRy holds in S:

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 18

nR;S(x) = kfy j xRy holds in Sgk
3

The satis�ability algorithm is given as a system of rewriting rules.

1. S �!u fx : C1; x : C2g [S

if x : C1 u C2 is in S, and x : C1 and x : C2 are not both in S

2. S �!t fx : Dg [S

if x : C1 t C2 is in S, neither x : C1 nor x : C2 is in S, and D = C1 or D = C2

3. S �!9 fxP1y; : : : ; xPky; y : Cg [S

if x : 9R:C is in S, R = P1 u : : : u Pk , there is no z such that

xRz holds in S and z : C is in S, and y is a new variable

4. S �!8 fy : Cg [S

if x : 8R:C is in S, xRy holds in S and y : C is not in S

5. S �!� fxP1y; : : : ; xPkyg [S

if x : (� nR) is in S, R = P1 u : : : u Pk, nR;S(x) < n, and y is a new variable

6. S �!� [y=z]S

if x : (� nR) is in S, xRy and xRz holds in S, nR;S(x) > n,

and the replacement of y by z is safe in S

Here [y=z]S is the constraint system obtained from S by replacing each occurrence of y with z and this

replacement is safe in S if and only if for each variable x and for each role R such that x : (� nR) 2 S
and xRy and xRz hold in S then nR;S(x) > n.

The above rules are of two kinds: deterministic: �!u, �!9, �!8, �!�; nondeterministic: �!u, ,

�!�.

A clash is a constraint system having one of the following forms:

� fx : ?g

� fx : CN; x : :CNg

� fx : (� 0R); xP1y; : : : ; xPkyg, where R = P1 u : : : u Pk

� fx : (� mQ); x : (� nR)g where m > n and Q < R.

A constraint system is complete if and only if no rule is applicable to it and it doesn't contain a clash. Any

complete constraint system is satis�able. All rules above preserve the satis�ability, i.e. if S is satis�able

and S0 is obtained from S by application of one of the rules the S0 is also satis�able and if S is not

satis�able then S0 is also not satis�able.

Let C be an expanded concept term converted in negative normal form then the system fx : Cg is

satis�able if and only if C is satis�able.

Example:

Let us check whether man is subsumed by father:

man v father ?

First, reduction to satis�ability problem:

man u : father.

3For set X, kXk is the number of the elements of X.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 19

Next, expansion of the de�nitions (we give the end result):

human u male u : ((human u male) u 9 has-child.human).

Afterwards, conversion to negative normal form (the end result):

human u male u ((: human t : male) t 8 has-child.(: human)).

We convert this to a constraint system and apply the rules:

fx : ((human u male) u ((: human t : male) t 8 has-child.(: human))) g.

+ by rule �!u

fx : (human u male), x : ((: human t : male) t 8 has-child.(: human)) g.

+ by rule �!u

fx : human, x : male, x : ((: human t : male) t 8 has-child.(: human)) g. Choice point 1

+ by rule �!t and we choose the left disjunct

fx : human, x : male, x : (: human t : male) g. Choice point 2

+ by rule �!t and we choose the left disjunct

fx : human, x : male, x : : human g. Clash.

+ return to point 2, by rule �!t and we choose the right disjunct

fx : human, x : male, x : : male g. Clash.

+ return to point 1, by rule �!t and we choose the right disjunct

fx : human, x : male, x : 8 has-child.(: human) g.

This constraint system is complete. The rule �!8 is not applicable because the condition xRy to hold

for some y is not met. Man is not a subconcept of father because there are men without children.

The algorithm de�ned on the base of the system of rules is PSPACE-hard and requires nondeterministic

exponential time. The hard part is the choice in the case of nondeterministic rules. If equality is included

in the language then the satis�ability problem is undecidable.

2.4 Taxonomy construction. Classi�cation.

The goal of taxonomy construction is to build the minimal relation between the concepts in the terminol-

ogy (in TBox) such that its transitive and re
exive closure to be the subsumption relation between the

concepts in TBox. For example, in the TBox given on page 15, grandmother is immediate subconcept

of mother but it is de�ned by the superconcept woman. In the Tbox only the subsumption between

grandmother and mother is stored. The relation between grandmother and woman will be in the transi-

tive closure of the relations between grandmother and mother and mother and woman. The material in

this section is based on [BHN+ 1993]. Some of the ideas originated from [Lipkis 1982], [Levinson 1984],

[Levinson 1992], [MacGregor 1988] and [Ellis 1991].

Classi�cation is closely related to the problem of taxonomy construction. Let us suppose that we have

already built a taxonomy and we have a new concept C which we want to classify with respect to the

taxonomy. This is equivalent one to construct a new taxonomy which contains also the new concept and

then to extract the immediate superconcept and the immediate subconcepts of C. Thus, one can construct
a taxonomy starting with an empty one (only universal and absurd concepts) and then classifying the

concepts in the TBox one by one. In this classi�cational approach one will need to compare every new

concept with (some) concepts already in the taxonomy with respect to subsumption relation. As we

saw in the previous section for reasonable description languages, subsumption check is a very expensive

operation. Thus, in order the taxonomy construction and the classi�cation to be eÆcient, one would like

to do as less subsumption check as possible. The di�erent methods given below improve on this criterion.

On general level the problem is de�ned as follow: if a partial order � over the set X is given a relation

of precedence � over X to be found such that its transitive and re
exive closure to be equivalent to the

partial order. In the case of total order the construction of the relation � is called sorting. In the case

of partial order it is called identi�cation problem. In the case of description logics, the partial order is

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 20

de�ned by the subsumption relation between concepts.

Some technical notions: �rst, x � y if and only if x � y and there is no z di�erent from x and y such that
x � z � y. If x � y, we say that x succeeds y or that y precedes x. If x � y we say that x immediately

succeeds y or that y immediately precedes x.

All presented methods are working incrementally along the lines described above. On a given step, there

is a precedence relation �i built for some subset Xi � X , on the next step for an element c 2 X nXi the

relation �i+1 is built over the set Xi+1 = Xi [fcg. The most important procedure in this step in the

construction of two set of elements of Xi. The set of the elements that immediately follows c and the set

of the elements that immediately precedes c:

Xi # c := fx 2 X j c � xg | (top search)

Xi " c := fx 2 X j x � cg | (bottom search)

The construction of these sets is equivalent to classi�cation in description logics. The main di�erence is

that subsumption relation on concepts is only a quasi-order because of the equivalence of concepts.

2.4.1 Method of \Brute Force"

In this case the \top search" is accomplished in the following way:

1. For each x 2 Xi, c � x is checked.

2. Xi # c is the set of all x 2 Xi such that the check succeeds and 8y 2 Xi(y �i x) the check fails.

For the \bottom search" the dual schemata is used. This method uses 2� j Xi j comparisons on each

step and thus n� (n� 1) comparisons for the whole set of n elements.

2.4.2 Methods of Simple and Enhanced Traverse

Obviously, in the method of brute force, most of the comparisons between elements are unnecessary. The

already constructed part of the hierarchy could be used when the two sets are built for a new element.

Here, we present the top search algorithm. Let us suppose we have built already the taxonomy for a set

Xi and c is a new concept. Let x 2 Xi be such that c 6� x then for each other concept y 2 Xi such

that y � x we can conclude without any checks that y 6� c. That is, if a concept c is not a subconcept

of another concept x then c is not a subconcept of any subconcept of x. The top search algorithm

starts at the top of the already built taxonomy (>). Then the algorithm follows down the paths in the

taxonomy. It stops to follow some paths if their common pre�x contains a concept that doesn't precede

the new concept c. In this way, some subsumption checks for which is known that will fail are avoided.

This method is called simple traversal method. The algorithm is given as two functions { one for the

top-search itself and one for the subsumption check:

top-search(c; x) =
mark(x,\visited")
Pos-Succ ;

for all y with y �i x do

if simple-top-subs?(y; c)
then Pos-Succ Pos-Succ [fyg

fi

od

if Pos-Succ is empty

then return fxg
else Result ;

for all y 2 Pos-Succ do

if not marked?(y,\visited")
then Result Result [top-search(c; y)

fi

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 21

od

return Result

fi

The nodes in the taxonomy for Xi are marked by three markers: \visited" if the subsumption check is

already done for the node, \positive" if the subsumption check was successful for the node and \negative"

if the subsumption check failed for the node. The mark \visited" helps us to avoid the multiple checks

for a node. The marks \positive" and \negative" help us to avoid calls to the subsumption checker

subs?(a; b):
simple-top-subs?(y; c) =

if marked?(y,\positive")
then return true
elsif marked?(y,\negative")

then return false
elsif subs?(y; c)

then mark(y,\positive")
return true

else mark(y,\negative")
return false

fi

fi

fi

In the simple traversal method we explore the taxonomy in depth �rst manner. In this, way some

unnecessary checks can not be avoid. For example, if the concept c is subconcept of the concept x then

it is subconcept of all superconcepts of x. Thus, it makes sense we to check �rst the superconcepts of

x and if these checks succeeded the to check c against x. This can be achieved by modi�cation of the

second function given above in such a way that for a given node to check �rst its immediate predecessors

and then if these checks are successful then to call the subsumption checker for the current node. This

function is called enhanced-top-subs? and is given below. Just described procedure is using negative

information on subsumption check (if one of the predecessors doesn't subsume the new concept, then the

current node also doesn't subsume the new concept). It is possible we to use also positive information. If

one of the successors of the current node subsumes the new concept then the current node also subsumes

the new concept. As it is shown in [BHN+ 1993], the two methods can be combined by a new change in

simple-top-subs? which also propagates the negative information down in the taxonomy. The method

using these optimizations is called enhanced traversal method.

So far, the top and the bottom search don't interact with each other. If we do, �rstly, the top search

and then the bottom search we can use the results from subsumption checks already done during the

top search. Let Xi # c be already constructed then the immediate successors of c are successors of the
elements of Xi # c. Something more, an immediate successor of c is a successor of all element of Xi # c.

enhanced-top-subs?(y; c) =
if marked?(y,\positive")

then return true
elsif marked?(y,\negative")

then return false
elsif for all z with y �i z

enhanced-top-subs?(z; c)
and subs?(y; c)

then mark(y,\positive")
return true

else mark(y,\negative")
return false

fi

fi

fi

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 22

2.5 Non-standard Semantics

In the following we show that if one changes the semantics of the language, it will lead to an easier

algorithm. The material in this section is based on [Patel-Schneider 198?].

Let us take the following language. The signature this time comprises two disjoint sets of symbols:

concept names | CN and role names | RN .

The concept terms are formed according to the following syntax:

C;D �! CN j (concept name)

> j (top)

(C uD) j (conjunction)

8R:C j (universal quanti�cation)

9R:> j (existential quanti�cation)

(rvm R S) (role value map)

where CN is a concept name, C and D are concept terms, and R is a role term. And role terms are

formed by means of the following syntax:

R �! P1 u : : : u Pk where k � 1 j (role conjunction)

(restr R C) (role restriction)

where Pi are role names.

This language is undecidable with respect to the standard semantics (see above). The concept forming

operator (rvm R S) and the role forming operator (restr R C) have the following standard semantics:

Let I =< D; [[:]] > be an interpretation then

[[(rvm R S)]] = fd 2 D j fdr 2 D j (d; dr) 2 [[R]]g = fds 2 D j (d; ds) 2 [[S]]gg
[[(restr R C)]] = fhd; ei 2 D �D j hd; ei 2 [[R]] ^ e 2 [[C]]g

Here, we present a new four-valued semantics which allows design of an algorithm which runs in time

proportional to the squared the sum of the sizes of the two concept terms. In the standard semantics

a given concept divides the domain of each interpretation in two complementary subsets of objects: the

set of objects that belong to the concept and the set of objects that don't belong to the concept. These

subsets are necessary disjoint. In the new four-valued semantics the interpretation again maps the concept

to two sets: one containing the positive representatives of the concept and one containing the negative

representatives of the concept. But this time these two sets are not complements to each other and they

are not necessarily disjoint. The following picture shows the di�erence between the standard two-valued

semantics and the four-valued semantics:

Standard semantics:

'

&

$

%

'

&

$

%
C

not-C

Non-standard semantics:

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 23

'

&

$

%

'

&

$

%

'

&

$

%
C and not-CC

not-C
neither C nor not-C

Similarly, roles are mapped to two sets of ordered pairs of objects. Of course there are new restrictions

on the mapping of the complex concepts. For instance, for the concept C u D the set of the positive

examples is the intersection of the sets of the positive examples of C and D and the set of the negative

examples is the union of sets of their negative examples.

Here is the de�nition of these semantics:

A interpretation is a triple I = hD; [[:]]t; [[:]]f i, where D is a set of objects. [[:]]t is a total function from

concepts to subsets of D and from roles to subsets of D � D, mapping concepts and roles to the set of

their positive examples. Similarly, [[:]]f is a total function from concepts to subsets of D and from roles to

subsets of D�D, but it maps concepts and roles to the set of their negative examples. The two functions

have to satisfy the following equations:

For concept terms:

[[>]]t = D

[[>]]f = ;

[[C uD]]t = [[C]]t \ [[D]]t

[[C uD]]f = [[C]]f [[[D]]f

[[8R:C]]t = fd1 2 D j 8d2 : (d1; d2) 2 [[R]]
f
_ d2 2 [[C]]

t
g

[[8R:C]]f = fd1 2 D j 9d2 : (d1; d2) 2 [[R]]
t
^ d2 2 [[C]]

f
g

[[9R:>]]t = fd1 2 D j 9d2 : (d1; d2) 2 [[R]]
t
g

[[9R:>]]f = fd1 2 D j 9d2 : (d1; d2) 2 [[R]]
f
g

[[(rvm R S)]]t = fd1 2 D j 8d2 : (d1; d2) 2 [[R]]
f
_ (d1; d2) 2 [[S]]

t
g

[[(rvm R S)]]f = fd1 2 D j 9d2 : (d1; d2) 2 [[R]]
t
^ (d1; d2) 2 [[S]]

f
g

For role terms:

[[P1 u : : : u Pk]]
t = [[P1]]

t
\ : : : \ [[Pk]]

t

[[P1 u : : : u Pk]]
f = [[P1]]

f
[: : : [[[Pk]]

f

[[(restr R C)]]t = fhd; ei 2 D �D j hd; ei 2 [[R]]t ^ e 2 [[C]]tg

[[(restr R C)]]f = fhd; ei 2 D �D j hd; ei 2 [[R]]f _ e 2 [[C]]fg

The subsumption algorithm is working in two phases. First, a concept is transformed into its canonical

form where conjuncts of a concept are not themselves conjuncts, the concept C in 8R:C is not a conjunct,

the second argument S in (rvmRS) is an atomic role and conjuncts of a role are not themselves conjuncts.
Here are the rules for transforming roles and concepts in canonical form:

1. commutativity and associativity of u

2. 8R:(C uD) �! (8R:C) u (8R:D)

3. (rvm R (S1 u S2) �! (rvm R S1) u (rvm R S2)

4. (rvm R (restr S C)) �! (rvm R S) u (8RC)

5. (restr (restr R C1) C2) �! (restr R(C1 u C2))

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 24

6. ((restr R1 C) uR2) �! (restr (R1 u R2) C)

The second phase is the actual subsumption check. The concept C1 u : : :uCn subsumes C 01 u : : :uC
0
m
if

and only if for each i, 1 � i � n, there is a j, 1 � j � m, such that one of the following holds:

1. Ci is a concept name and C 0
j
= Ci,

2. Ci = (9R:>) and C 0
j
= (9R0:>) and R subsumes R0,

3. Ci = (8R:D) and C 0
j
= (8R0:D0) and D subsumes D0 and R subsumes R0,

4. Ci = (rvm R S) and C 0
j
= (rvmR0S) and R subsumes R0 (S is a role name).

A role S1 u : : : u Sn subsumes S01 u : : :u S
0
m
if and only if for each Si, 0 � i � n there is a S0

j
, 0 � j � m

such that Si = S0
j
. Also (restr (S1 u : : : u Sm) C) is subsumed by (restr (S01 u : : : u S

0
n
) C) if and only if

for each i there exists j such that Sj = S0
i
and C is subsumed by C 0.

According to this semantics, the law of the excluded middle and modus ponens are not valid (see,

[Patel-Schneider 1985]). Thus any reasoning requiring them in the standard two-valued semantics will

fail here.

Example:

The soncept:

human u 8 friend.doctor u 8 (restr friend doctor).(9 speciality.>)

is not subsumed by

human u 8 friend.(9 speciality.>)

because it is possible that some friend is a doctor and is not a doctor in this semantics, but with-

out a speciality and thus 8 friend.(9 speciality.>) is false, but friend.doctor and 8 (restr friend

doctor).(9 speciality.>) are not false.

The algorithm presented above is sound and complete with respect to four-valued semantics and it runs

in time proportional to the square of the sum of the sizes of the two expressions. Thus, subsumption in

this semantics is easily computable. With respect to the standard semantics this language is undecidable

(see [Scmidt-Schau� 1989]).

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 25

3 Knowledge Interchange Format

Construction of a knowledge base is a time-consuming, full of errors and hard to reuse business. In most

of the cases, knowledge represented in one system is impossible to be used in another system without

a considerable e�ort of restructuring and redesigning. This e�ort is, sometimes, comparable with the

e�ort of the construction of the original knowledge base itself. Thus, any facilities supporting (even

partial) transfer of knowledge between di�erent system and languages would be of great help. In the

early 1990s the Knowledge Sharing E�ort (KSE) was started in USA. The aim of the KSE was to be

developed mechanisms and means to assist the sharing of knowledge bases among di�erent research groups

using di�erent knowledge representation systems. Several developments were undertaken, including: (1)

invention of a medium for knowledge transfer; (2) establishing of a methodology for knowledge transfer;

(3) creation of basic ontological theory in di�erent �elds.

Some of the main ideas about the transfer of knowledge were borrowed from the area of machine trans-

lation. The central role is played by a knowledge representation language used as an interlingua between

di�erent knowledge representation languages and systems. This language is very powerful in order to be

able to accommodate di�erent kinds of knowledge and to incorporate di�erent kinds of reasoning. This

language is Knowledge Interchange Format (KIF). The language developed signi�cantly with respect to

its early versions. The currently actual version is presented in the draft proposed American National

Standard (dpANS) NCITS.T2/98-004 | [Genesereth 1998]. This material is also based on [GF 1992]

and [Perlis 1986].

KIF has the following essential features (from [Genesereth 1998]):

� The language has declarative semantics. It is possible to understand the meaning of expressions in

the language without appeal to an interpreter for manipulating those expressions. In this way, KIF

di�ers from other languages that are based on speci�c interpreters, such as Emycin and Prolog.

� The language is logically comprehensive | at its most general, it provides means of expression of

arbitrary logical sentences. In this way, it di�ers from relational database languages (like SQL) and

logic programming languages (like Prolog).

� The language provides means of representation of knowledge about knowledge. This allows the user

to make knowledge representation decisions explicit and introduce new knowledge representation

constructs without modifying the language.

There are two additional features taken into consideration when KIF was designed (to the extent possible

while preserving the preceding):

� Implementability. Although KIF is not intended for use within programs as a representation or

communication language, it should be usable for that purpose if desired.

� Readability. Although KIF is not intended primarily as a language for interaction with humans,

human readability facilitates its use in describing representation language semantics, its use as a

publication language for example knowledge bases, its use to assist humans when dealing with

knowledge base translation problems, etc.

In order to meet the former requirements KIF was designed to be an extension of �rst order logic. First,

we give some motivation for the di�erent extensions and afterwards we present the language itself.

Self-reference and truth

The knowledge itself is a part of the world the knowledge is about. The expressions of the language used

to represent the knowledge are also objects in world. In everyday life we very often use our language to

make propositions about our knowledge or about the language itself. In many cases, we need to refer

to the expressions of the language we use for knowledge representation and to explicate their properties.

The main property of an expression we are interested in is its semantic relation with the other objects

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 26

in the world, that is its truth. In order we to be able to do this we need a naming convention for the

expressions of the language and a predicate determining the truth of an expression. Again, it is very easy

to represent paradoxes if the language allows an unrestricted version of self-reference.

Concrete domains

There are some domains in which there is an agreement about the relevant theories that described them.

Some of these domains are very often needed for the representation of knowledge about other domains.

Such a domain is number theory, for instance. Although most of the knowledge representation languages

are capable to represent the necessary part of the number theory it is much more convenient to have it

builtin the language than to represent it. There are several advantages of such a builtin theory. The

most important is that the semantic interpretation of the theory is the same in every knowledge base. A

minor one is that in an implementation more e�ective reasoning procedures for the concrete domain can

be implemented than the general inference mechanism of the main language is.

KIF can be considered a �rst-order language in which all relations and functions are themselves objects

in the domain of the interpretation, all the expressions of the language are objects in the domain of any

KIF interpretation. KIF provides means to represent quoted and unquoted expressions of the language

and it is possible to state properties of the expressions and especially their truth. In the last speci�cation

of KIF ([Genesereth 1998]) there are just two builtin theories about numbers, lists and strings.

3.1 Syntax

The syntax of KIF is computer-oriented and could be divided into three parts: characters, lexemes and

expressions.

KIF uses ASCII characters classi�ed as upper case letters (A | B | : : : | X | Y | Z), lower case let-

ters (a | b | : : : | x | y | z), digits (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9), alpha characters

(non-alphabetic characters that are used in the same way that letters are used) (! | $ | % | & |

* | + | - | . | / | < | = | > | ? | @ | _ | ~), special characters (" | # | ' | (|) | ,

| | ^ | `), white space (space | tab | return | linefeed | page), and other characters (every

ASCII character that is not a member of one of the other categories). A normal character is either an

upper case character, a lower case character, a digit, or an alpha character.

There are �ve types of lexemes in KIF { special lexemes, words, character references, character strings,

and character blocks.

Each special character forms its own lexeme. It cannot be combined with other characters to form more

complex lexemes (see [Genesereth 1998] for more on this).

A word is a contiguous sequence of (1) normal characters or (2) other characters preceded by the escape

character _(Escape characters are not discussed here.)

For the purpose of grammatical analysis, it is useful to categorize the class of words a little further, viz.

as variables, operators, and constants. This categorization is disjoint and exhaustive. Every word is

a member of one and only one category.

A variable is a word in which the �rst character is ? or @. A variable beginning with ? is called

an individual variable. A variable beginning with an @ is called a sequence variable. Individual

variables are used when quantifying over individual objects. Sequence variables are used when quantifying

over sequences of objects.

Operators are used to form complex expressions of various sorts. There are three types of operators in

KIF { term operators, sentence operators, and de�nition operators. Term operators are used

when forming complex terms. There are �ve term operators: value | listof | quote | if | cond.

Sentence operators are used when forming complex sentences. The following are the sentence oper-

ators: holds | = | /= | not | and | or | => | <= | <=> | forall | exists. De�nition opera-

tors are used in forming de�nitions. Here are the de�nition operators: defobject | defunction |

defrelation | deflogical | := | :-> | :<= | :=>.

All other words are called constants. There are four categories of constants in KIF { object constants,

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 27

function constants, relation constants, and logical constants. Object constants are used to denote

individual objects. Function constants denote functions on those objects. Relation constants denote

relations. Logical constants express statements about the world and are either true or false. KIF is

unusual among logical languages in that there is no syntactic distinction among these four types of

constants; any constant can be used where any other constant can be used. The di�erences between

these categories of constants is entirely semantic. Constants are also divided in basic constants and

non-basic constants. The basic constants have �xed meaning in each KIF knowledge base.

There are three disjoint types of expressions in the language { terms, sentences, and de�nitions.

Terms are used to denote objects in the world being described; sentences are used to express facts about

the world; and de�nitions are used to de�ne constants. De�nitions and sentences are called forms. A

knowledge base is a �nite set of forms. The order of forms within the knowledge base is unimportant.

The following are the types of terms in KIF { individual variables, constants, functional terms,

list terms, quotations, and logical terms.

<funterm> ::= (<constant> <term>* [<seqvar>]) |

(value <constant> <term>* [<seqvar>])

<listterm> ::= (listof <term>* [<seqvar>])

<quoterm> ::= (quote <expression>)

<logterm> ::= (if <sentence> <term> [<term>])|

(cond (<sentence> <term>) ... (<sentence> <term>))

In KIF the arity of function and relation constants are not syntactic features. They are treated semanti-

cally.

Forms in KIF are de�ned according to the following syntax:

Sentences in KIF:

<sentence> ::=

<logconst>|<equation>|<inequality>|<relsent>|<logsent>|<quantsent>

<equation> ::= (= <term> <term>)

<inequality> ::= (/= <term> <term>)

<relsent> ::= (<relconst> <term>* [<seqvar>])|

(holds <relconst> <term>* [<seqvar>])

<logsent> ::= (not <sentence>)|

(and <sentence>*)|

(or <sentence>*)|

(=> <sentence>* <sentence>)|

(<= <sentence> <sentence>*)|

(<=> <sentence> <sentence>)

<quantsent> ::= (forall (<varspec>+) <sentence>) |

(exists (<varspec>+) <sentence>)

<varspec> ::= <variable> | (<variable> <constant>)

De�nitions in KIF:

<definition> ::= <unrestricted> | <complete> | <partial>

<unrestricted> ::=

(defobject <constant> [<string>] <sentence>*) |

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 28

(deffunction <constant> [<string>] <sentence>*) |

(defrelation <constant> [<string>] <sentence>*) |

(deflogical <constant> [<string>] <sentence>*)

<complete> ::=

(defobject <constant> [<string>] := <term>) |

(deffunction <constant> (<indvar>* [<seqvar>]) [<string>] := <term>) |

(defrelation <constant> (<indvar>* [<seqvar>]) [<string>] := <sentence>) |

(deflogical <constant> [<string>] := <sentence>)

<partial> ::=

(defobject <constant> [<string>] :-> <indvar> :<= <sentence>) |

(defobject <constant> [<string>] :-> <indvar> :=> <sentence>) |

(deffunction <constant> (<indvar>* [<seqvar>]) [<string>]

:-> <indvar> :<= <sentence>) |

(deffunction <constant> (<indvar>* [<seqvar>]) [<string>]

:-> <indvar> :=> <sentence>) |

(defrelation <constant> (<indvar>* [<seqvar>]) [<string>]

:<= <sentence>) |

(defrelation <constant> (<indvar>* [<seqvar>]) [<string>]

:=> <sentence>) |

(deflogical <constant> [<string>] :<= <sentence>)

(deflogical <constant> [<string>] :=> <sentence>)

KIF de�nitions can be complete: they specify an expression de�ning a concept completely, or partial.

The The unrestricted partial de�nitions are constraining a concept without necessarily giving a complete

equivalence. On the other hand the "conservative" partial de�nitions are restricted in that their addition

to a knowledge base does not result in the logical entailment of any additional sentences not containing

the <constant> being de�ned.

3.2 Semantics

Similarly to the logic, the semantics of KIF is de�ned in terms of a conceptualization of the world and

an interpretation connecting the syntax primitives of KIF with the elements of this conceptualization.

3.2.1 Conceptualization

The conceptualization determines the kinds of objects, functions and relations that exist in the world.

A universe of discourse is the set of all objects presumed or hypothesized to exist in the world. KIF

is conceptually promiscuous in that it does not require every user to share the same universe of

discourse. On the other hand, KIF is conceptually grounded: every universe of discourse is required

to include certain basic objects.

The following basic objects must occur in every universe of discourse.

� All ASCII Characters.

� Words.

� All complex numbers.

� All �nite lists of objects in the universe of discourse.

� ? (pronounced \bottom") { a distinguished object that occurs as the value of various functions

when applied to arguments for which the functions make no sense.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 29

Of course, any universe of discourse could contain whatever non-basic objects in addition.

Functions and relations are sets of �nite lists. Every function is a relation, but not every relation is a

function. In a function, there cannot be two lists that disagree on only the last element. For every �nite

sequence of objects (called the arguments), a function associates a unique object (called the value). KIF

allows functions and relations with variable arity, i.e. it is perfectly acceptable for a function or a relation

to contain lists of di�erent lengths. For example, the + function contains the lists h1; 1; 2i and h1; 1; 1; 3i,
re
ecting the fact that the sum of 1 and 1 is 2 and the fact that the sum of 1 and 1 and 1 is 3. Similarly,

the relation < contains the lists h1; 2i and h1; 2; 3i, re
ecting the fact that 1 is less than 2 and the fact

that 1 is less than 2 and 2 is less than 3.

3.2.2 Interpretation

An interpretation is a function i that associates the constants of KIF with the elements of a conceptu-

alization. In order to be an interpretation, a function must satisfy the following two requirements.

First, the function must map constants to concepts of the appropriate type. O is a universe of discourse.

� 1. If � is an object constant, then i(�) 2 O.

� 2. If � is a function constant, then i(�) : O� �! O.

� 3. If � is a relation constant, then i(�) � O�.

� 4. If � is a logical constant, then i(�) 2 ftrue; falseg.

Second, i must \satisfy" the axioms given in the document de�ning KIF ([Genesereth 1998]). Note that,

even with these restrictions, KIF is only a \partially interpreted" language. Although the interpretations

of some constants are constrained in the de�nition of the language, the meanings of other constants are

left open.

The following are some of the axioms \built-in" KIF:

Every interpretation must map every numerical constant � into the corresponding number n (assuming

base 10).

i(�) = n

Every interpretation must map the object constant bottom to ?.

i(bottom) = ?

Every interpretation must map the logical constant true into true and the logical constant false into

false.

i(true) = true and i(false) = false

3.2.3 Variable Assignment

A variable assignment v is a function that (1) maps individual variables V into objects in a universe of

discourse O and (2) maps sequence variables W into �nite sequences of objects. The notion of a variable

assignment is important in de�ning the meaning of quanti�ed terms and sentences.

3.2.4 Semantic Value

Given an interpretation and a variable assignment, we can assign a semantic value to every term in the

language. We formalize this as a function siv from the set T of terms into the set O of objects in the

universe of discourse.

siv : T �! O such that

siv(�) = v(�) � is an individual variable

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 30

siv(�) = i(�) � is a constant

In the case of functional or relational constant, the semantic value is the corresponding set of lists. The

semantic value of a functional term is obtained by applying the function denoted by the function constant

in the term to the objects denoted by the arguments.

siv((� �1...�n)) = i(�)[siv(�1); :::; siv(�n)] without a terminating sequence variable

siv((� �1...�n !)) = i(�)[siv(�1); :::; siv(�n)jsiv(!)] with a terminating sequence variable

siv((listof �1 ... �k)) = hsiv(�1); :::; siv(�k)i

siv((listof �1 ... �k !)) = hsiv(�1); :::; siv(�k)jsiv(!)i

siv((quote �)) = �

siv((quote (�1 ... �n))) = siv((listof (quote �1) ... (quote �n)))

siv((if � �1)) =
n
siv(�1) tiv(�) = true
? otherwise

siv((cond (�1 �1) ... (�n �n))) =

8><
>:
siv(�1) tiv(�1) = true
::: ...

siv(�2) tiv(�n) = true
? otherwise

3.2.5 Truth Value

The truth value for sentences in the language is de�ned as a function tiv that maps sentences S into the

truth values true or false.

tiv : S �! ftrue; falseg

tiv(�) = i(�) � is a logical constant

tiv((= �1 �2)) =

�
true siv(�1) = siv(�2)
false otherwise

tiv((/= �1 �2)) =
n
false siv(�1) = siv(�2)
true otherwise

tiv((� �1 ... �n)) =

�
true hsiv(�1); :::; siv(�n)i 2 i(�)
false otherwise

tiv((� �1 ... �n !)) =

�
true hsiv(�1); :::; siv(�n)jsiv(!)i 2 i(�)
false otherwise

tiv((not �)) =

�
true tiv(�) = false
false otherwise

tiv((and �1 ... �n)) =

�
true tiv(�j) = true for all j 1 � j � n
false otherwise

tiv((or �1 ... �n)) =

�
true tiv(�j) = true for some j 1 � j � n
false otherwise

tiv((=> �1 ... �n �)) =

�
true for some j tiv(�j) = false or tiv(�) = true
false otherwise

tiv((<= � �1 ... �n)) =

�
true tiv(�) = true or for some j tiv(�j) = false
false otherwise

tiv((<=> �1 �2)) =

�
true tiv(�1) = tiv(�2)
false otherwise

A variable assignment v0 is a version of variable assignment v with respect to variables �1,, �n if and

only if v0 agrees with v on all variables except for �1,, �n. The assignments for �1,, �n can be the

same as those in v or can be completely di�erent. In the next two equations, v0 is a version of v with

respect to variables in the �rst argument.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 31

tiv((exists (�1 ... �k !) �)) =

�
true 9v0 tiv0 (�) = true
false otherwise

tiv((forall (�1 ... �k !) �)) =

�
true 8v0 tiv0 (�) = true
false otherwise

3.2.6 Logical Entailment

An interpretation i logically satis�es a sentence � if and only if the truth value of the sentence is true
for all variable assignments. Whenever this is the case, we say that i is a model of �. Extending this

notion to sets of sentences, we say that an interpretation is a model of a set of sentences if and only if it

is a model of every sentence in the set of sentences.

If � is a set of sentences, we say that � logically entails a sentence � if and only every model of � is also

a model of �.

3.2.7 De�nitions

The de�nitional operators in KIF allow us to state sentences that are true \by de�nition" in a way that

distinguishes them from sentences that express contingent properties of the world. De�nitions have no

truth values in the sense described above. They are so because we say that they are so.

On the other hand, de�nitions have content { sentences that allow us to derive other sentences as conclu-

sions. In KIF, every de�nition has a corresponding set of sentences, called the content of the de�nition.

The rules for determining the content of a de�nition are slightly complicated and unfortunately are not

described anywhere for the current version of the language. The following is a brief outline, suÆcient to

enable the reader to understand the use of de�nitional constructs in the intervening chapters.

The defobject operator is used to de�ne objects. The two simplest forms are shown below, together

with their content. In the �rst case, the content is the equation involving the object constant in the

de�nition with the de�ning term. In the second case, the content is the conjunction of the constituent

sentences.
De�nition De�ning Axiom

(defobject � := �) (= � �)

(defobject � �1 ... �n) (and �1 ... �n)

The deffunction operator is used to de�ne functions. Again, the two simplest forms are shown below,

together with their de�ning axioms. In the �rst case, the content is the equation involving (1) the

term formed from the function constant in the de�nition and the variables in its argument list and (2)

the de�ning term. In the second case, as with object de�nitions, the content is the conjunction of the

constituent sentences.
De�nition De�ning Axiom

(deffunction � (�1 ...�n) := �) (= (� �1 ...�n) �)

(deffunction � �1 ... �n) (and �1 ... �n)

The defrelation operator is used to de�ne relations. The two simplest forms are shown below, together

with their de�ning axioms. In the �rst case, the content is the equivalence relating (1) the relational

sentence formed from the relation constant in the de�nition and the variables in its argument list and

(2) the de�ning sentence. In the second case, as with object and function de�nitions, the content is the

conjunction of the constituent sentences.
De�nition De�ning Axiom

(defrelation � (�1 ...�n) := �) (<=> (� �1 ...�n) �)

(defrelation � �1 ... �n) (and �1 ... �n)

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 32

3.3 Lists

A list is a �nite sequence of objects in a universe of discourse. The term (listof �1 ... �k) is used

to denote the list of objects denoted by �1, ..., �k. For example, the following expression denotes the list

of an object named mary, a list of objects named tom, dick, and harry, and an object named sally.

(listof mary (listof tom dick harry) sally)

In the original document ([Genesereth 1998]) an comprehensive list of objects, functions and relations

de�ning the theory of lists is given. Here we present only a few of them.

The relation list is the type predicate for lists. An object is a list if and only if there is a corresponding

expression involving the listof operator.

(defrelation list (?x) :=

(exists (@l) (= ?x (listof @l)))

The object constant nil denotes the empty list. null tests whether or not an object is the empty list.

(defobject nil := (listof))

(defrelation null (?l) := (= ?l (listof)))

The value of subst is the object or list obtained by substituting the object supplied as �rst argument for

all occurrences of the object supplied as second argument in the object or list supplied as third argument.

(deffunction subst (?x ?y ?z) :=

(cond ((= ?y ?z) ?x)

((null ?z) nil)

((list ?z) (cons (subst ?x ?y (first ?z))

(subst ?x ?y (rest ?z))))

(true ?z)))|

where the function cons adds the object speci�ed as its �rst argument to the beginning of the list speci�ed

as its second argument:

(deffunction cons (?x ?l) :=

(if (= ?l (listof @l)) (listof ?x @l)))

3.4 Metaknowledge

3.4.1 Naming Expressions

To formalize knowledge about knowledge, KIF uses a conceptualization in which expressions are treated

as objects in the universe of discourse and in which there are functions and relations appropriate to

these objects. In KIF conceptualization, words are treated as primitive objects (i.e. having no subparts).

Complex expressions are conceptualized as lists of sub-expressions. Every complex expression is regarded

as a list of its immediate sub-expressions. For example, the sentence (not (p (+ a b c) d)) is a list

consisting of the operator not and the sentence (p (+ a b c) d). This sentence is treated as a list

consisting of the relation constant p and the terms (+ a b c) and d. The �rst of these terms is a list

consisting of the function constant + and the object constants a, b, and c.

In order to assert properties of expressions in the language, one needs a way of referring to those expres-

sions. There are two ways of doing this in KIF.

One way is to use the quote operator in front of an expression. For example, the following sentence

ascribes to the individual named john the belief that the moon is made of a particular kind of blue

cheese.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 33

(believes john '(material moon stilton))

Since expressions are �rst-order objects, one can quantify over them, thereby asserting properties of whole

classes of sentences.

(=> (believes john ?p) (believes mary ?p))

The second way of referring to expressions is KIF is to use the listof function. For example, a complex

expression like (p a b) can be denoted by a term of the form (listof 'p 'a 'b), as well as '(p a b).

The advantage of the listof representation over the quote representation is that it allows us to quantify

over parts of expressions.

(=> (believes john (listof 'material ?x ?y))

(believes lisa (listof 'material ?x ?y)))

While the use of listof allows us to describe the structure of expressions in arbitrary detail, it is

somewhat awkward. Rather than using the listof function constant as described above, one writes

the expression preceded by the up-arrow character ^ and add a comma character , in front of any

sub-expression that is not to be taken literally.

(=> (believes john ^(material ,?x ,?y))

(believes lisa ^(material ,?x ,?y)))

3.4.2 Formalizing Syntax

In order to facilitate the encoding of knowledge about KIF, the language includes type relations for the

various syntactic categories de�ned in the syntax of the language. We give here only a few of these

relations.

For every individual variable �, there is an axiom asserting that it is indeed an individual variable. Each

such axiom is a de�ning axiom for the indvar relation.

(indvar (quote �))

For every sequence variable !, there is an axiom asserting that it is a sequence variable. Each such axiom

is a de�ning axiom for the seqvar relation.

(seqvar (quote !))

The relations word and sentence are de�ned as follow:

(defrelation word (?x) :=

(or (variable ?x) (operator ?x) (constant ?x)))

(defrelation sentence (?x) :=

(or (logconst ?x) (relsent ?x) (equation ?x)

(inequality ?x) (logsent ?x) (quantsent ?x)))

3.4.3 Changing Levels of Denotation

This section presents some vocabulary that allows one to change levels of denotation, i.e. to relate

expressions about expressions with the expressions they denote.

The term (denotation �) denotes the object denoted by the object denoted by � . A quotation denotes

the quoted expression; the denotation of any other object is ?.

The term (name �) denotes the standard name for the object denoted by the term � . The standard

name for an expression � is (quote �); the standard name for a non-expression is at the discretion of

the user.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 34

The �nal level-crossing vocabulary item is the relation constant wtr (\weakly true"). For example, one

can say that a sentence of the form (=> (p ?x) (q ?x)) is true by writing the following sentence.

(wtr '(=> (p ?x) (q ?x)))

The advantage of this meta notation becomes clear when one needs to quantify over sentences, as in the

encoding of axiom schemata. For example, one can say that every sentence of the form (=> � �) is true

with the following sentence.

(=> (sentence ?p) (wtr `(=> ,?p ,?p)))

Semantically, one would like to say that a sentence of the form (wtr '�) is true if and only if the sentence
� is true. In other words, for any interpretation and variable assignment, the truth value tiv((wtr '�))
is the same as the truth value tiv(�). Unfortunately, this causes serious problems. Equating a truth

function with the meaning it ascribes to wtr quickly leads to paradoxes. The English sentence \This

sentence is false." illustrates the paradox. In KIF this sentence can be written as shown below. The

sentence, in e�ect, asserts its own negation.

(wtr (subst (name ^(subst (name x) ^x ^(wtr ,x)))

^x

^(not (wtr (subst (name x) ^x ^(not (wtr ,x)))))))

Fortunately, we can circumvent such paradoxes by slightly modifying the proposed de�nition of wtr. In

particular, we have the following axiom schema for all p that do not contain any occurrences of wtr. For

all p that do contain occurrences, wtr is false.

(<=> (wtr 'p) p)

With this modi�ed de�nition, the paradox described above disappears, yet we retain the ability to write

virtually all useful axiom schemata as metalevel axioms.

Levels of representation

Standard logic considers the propositions about the world to be ordered in levels: on the basic level only

atomic propositions can be expressed about individuals in the world; the next level allows representation

of functions and predicates over individuals to be expressed (�rst-order logic), the next level adds functions

and predicates over functions and predicate over objects (second-order logics) and so on. In this layered

world one can speak on a given level about the elements of the lower levels. This approach insures some

very important features of the corresponding logics (especially for �rst-order logic) and avoids some of

well known paradoxes such as Russel paradox about the barber who gives a shave to everybody who

doesn't shave himself and the question is whether this barber shaves himself or not. In any case there is

a contradiction.

Unfortunately, when one wants to represent knowledge about the knowledge of an agent or agent's

knowledge about the knowledge of some other agents there is a problem with the levels. Let us consider

the following situation: Kiril is believing everything that Paul is saying. On which level we have to

represent this proposition. If Paul expresses propositions only in �rst order logic, then we have to use

second-order logic, but sometimes Paul is making claims in second-order logic then we have to use third-

order logic in order to express that Kiril believes these propositions also. Thus, we have to use an in�nite

chain of propositions in order to express such a simple fact. One solution is to use a logic that considers

entities in the world on one level. In such a logic we can do propositions about and quantify over objects,

functions and predicates in uniform way regardless of their order. In order to de�ne such a logic one has

to include a mechanism that prevent the de�nitions of paradoxes similar to the paradox described above.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 35

3.5 Conformance

3.5.1 Introduction

KIF is a highly expressive language. For many, this is a desirable feature; but there are disadvantages. One

disadvantage is that it complicates the job of building fully conforming systems. Another disadvantage is

that the resulting systems tend to be "heavyweight" (i.e. they are larger and in some cases less eÆcient

than systems that employ more restricted languages).

In order to deal with these problems, the KIF committee in the Fall of 1997 voted to augment the basic

language speci�cation with a set of "conformance dimensions". These dimensions are not the same as

the "conformance levels" of other languages. Rather, each conformance dimension has a variety of levels

within that dimension.

A "conformance pro�le" is a selection of alternatives from each conformance dimension. System builders

are expected to make choices for each dimension and and then ensure that their systems adhere to

the resulting comformance pro�le. Systems are expected to use the terminology de�ned here to share

information about their conformance pro�le with other systems (in a protocol-speci�c manner).

Although this conformance pro�le scheme is more complex than one based on conformance levels, it

accommodates varying capabilities and/or computational constraints while providing a migration path

from more restrictive to more expressive.

3.5.2 Conformance Dimensions

Introduction

A conformance dimension is a classi�cation of KIF sentences into conformance categories on the basis of a

single syntactic criterion. (For example, the quanti�cation dimension provides two categories, quanti�ed

KIF and unquanti�ed KIF, based on whether or not a conforming knowledge base contains quanti�ers.)

Logical Form

The �rst conformance dimension concerns logical form. There are �ve basic categories: atomic, con-

junctive, positive, logical, and rule-like. Rule-like knowledge bases are further categorized as Horn or

non-Horn and recursive or non-recursive.

A knowledge base is atomic if and only if it contains no logical operators.

A knowledge base is conjunctive if and only if it contains no logical operators except for conjunction.

A knowledge base is positive if and only if it contains no logical operators except for conjunction and

disjunction.

A knowledge base is logical if and only if it contains no logical operators except for conjunction, disjunc-

tion, and negation.

A knowledge base is rule-like if and only if every sentence is either atomic or an implication or reverse

implication in which all sub-expressions are atomic sentences or negations of atomic sentences. A rule

system is a rule-like knowledge base.

A rule system is Horn if and only if every constituent of every rule is atomic (i.e. no negations allowed).

Otherwise, the rule system is said to be non-Horn.

The dependency graph for a rule system is a graph whose nodes are the constants in relational position.

There is an edge from the node for a given relation constant p to the node of relation constant q if and

only if p appears in the body of a rule whose head predicate is p.

A rule system is recursive if there is a cycle in its dependency graph. Otherwise, the rule system is said

to be non-recursive.

Term Complexity

The nature of terms de�nes a second conformance dimension. There are two categories: simple and

complex.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 36

A knowledge base is simple if and only if the only terms occurring the knowledge base are constants and

variables.

A knowledge base is complex if and only if it contains terms other than constants or variables, e.g.

functional terms or logical terms.

Order

The third conformance dimension concerns the presence or absence of variables.

A knowledge base is ground, or zeroth-order, if and only if it contains no variables. Otherwise, a

knowledge base in nonground.

A knowledge base is �rst-order if and only if there are no variables in the �rst argument of any explicit

functional term or explicit relational sentence.

A knowledge base is higher-order otherwise.

Quanti�cation

For nonground knowledge bases, there are two alternatives { quanti�ed and unquanti�ed.

A nonground knowledge base is quanti�ed if and only if it contains at least one explicit quanti�er.

A nonground knowledge base is unquanti�ed if and only if it contains no explicit quanti�ers.

Metaknowledge

The �nal conformance dimension concerns the ability to express metaknowledge, e.g. to write sentences

about sentences.

A knowledge base is baselevel if and only if it contains no occurrences of the quote operator or the wtr

relation.

Otherwise, the knowledge base is metalevel.

3.5.3 Common Conformance Pro�les

A conformance pro�le is a selection of alternatives for each conformance dimension. Given the dimensions

and categories de�ned in the preceding section, it is possible to de�ne a large number of pro�les. A single

system may use di�erent pro�les in di�erent types of communication. In particular, it is common to use

one pro�le for assertions and another for queries. The following paragraphs de�ne a few common types

of systems with their corresponding pro�les.

A database system is one in which (1) all assertions are atomic, simple, ground, and baselevel and (2) all

queries are positive, simple, unquanti�ed, and baselevel.

A Horn system (e.g. pure Datalog) is one in which (1) all assertions are rules that are Horn, unquanti�ed,

and baselevel and (2) all queries are positive, non-recursive, unquanti�ed, and baselevel.

A relational system is one in which (1) all assertions are rules that are simple, unquanti�ed (but may be

non-Horn and non-recursive), and baselevel and (2) all queries are logical, non-recursive, unquanti�ed,

and baselevel.

A �rst-order system is one that allows the broadest categories within each conformance dimension except

that only �rst-order expressions are accommodated.

A full KIF system is one that accepts the broadest categories within each conformance dimension, i.e.

any KIF knowledge base is acceptable in any context.

3.5.4 Dealing with Di�erences in Conformance Pro�les

The existence of multiple conformance pro�les raises the question of what happens when systems with

di�erent pro�les must communicate.

Whenever the conformance pro�le of a receiver is known, a sender should avoid sending expressions that

fall outside the receiver's conformance pro�le.

Unfortunately, this rule cannot be enforced in all situations. In some cases, conformance information

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 37

about receivers is unavailable; and, even when conformance information is available, it may be desirable

to send a message that falls outside a receiver's pro�le, e.g. it may be most eÆcient for a sender to

broadcast a single knowledge base to a large number of receivers with di�ering conformance pro�les

rather than sending di�erent knowledge bases to each receiver.

Whenever a receiver receives a non-conforming expression, it is free to ignore the expression, even though

it may be able to make sense of portions of that expression. If the receiver ignores a non-conforming

expression and the sender requests a reply, the receiver should report a failure.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 38

4 Knowledge Query and Manipulation Language.

Multi-agent systems

The way to deal with an impossible task is to chop it down into a number of merely very diÆcult tasks,

and break each one of them into a group of horribly hard tasks, and each one of them into tricky jobs,

and each one of them... (Terry Pratchet, Truckers)

There are many tasks that can be better resolved employing the resources of multiple computers. This

is just the point for using more "computational" resources in paralell. In the same time, there is another

reason for trying to distribute the computation into multiple, somehow independent processes: just

to make the complex things simpler and manageable by separation into multiple modules that can be

developed, tested, managed and maintained separately. That is why it is quite popular to have a number

of virtual (or real) processes even running on a single machine.

In the area of distributed computation there are many overlaping and ambiguous terms. However, one

simple view is that any process (a program running on a computer) can be considered like an agent.

These agents are being frequently characterized as "computational", "arti�cial", "intelligent", etc. The

part of the AI that studies this point of view is refered like Distributed AI (DAI).

Once having the thinks simpli�ed by distributing the tasks between multiple objects, we should take care

for the coordination between them. Following the analogy with the human agents, multy-agent systems

can be seen like some kind of society. Here we are presenting KQML like one of the possible means to

organize the communication between the agents in the scociety.

4.1 Communication between agents

The interaction between the agents can be studied like a combination of:

� interaction protocol | the strategy of the agent about its relations with the society. For exam-

ple: negotiation strategies, playing strategies, "each time when you do not know something, �nd

somebody else and ask him";

� communication language| the expressive mean (or mediator) for message exchange between the

agents. It should provide possibilities for characterising the messages according to their pragmatics

(or intention). Sample pragmatics: assertion, query, advertisement.

� transport protocol | the media of the communication. It can be TCP, SMTP, RMI, etc.

The communication language should provide means for negotiation (or alignment) of:

� the syntax of the message content;

� the semantics of the message content;

� the pragmatics of the message;

Pragmatics negotiation should care for the following aspects:

� Who to talk to?

� How to �nd him?

� How to get his attention?

� How to start and maintain the conversation?

� What to do with the messages of the others?

� How to answer adequately?

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 39

Communication language is also responsible for the negotiation of:

� the structure of the society, i.e. the architecture of the distributed system;

� the structure of the conversation.

There can be many di�erent approaches and variations related with the organization of the communica-

tion. The most general determiner is the compromise between how "open" will be the convention (the

communication language) and how complex (and/or slow) will be to support it. Bellow we just present the

approach accepted by the creators of KQML that is pretty "open" textual notation for communication.

4.2 KQML history and philosophy

4.2.1 Short history

KQML agent communication language being developed by the external interfaces working group of

the DARPA Knowledge Sharing E�ort. KQML is intended to be a high-level language to be used by

knowledge-based system to share knowledge at run time.

Its speci�cation have been �rst published in 1993. The last proposal for new speci�cation of the language

([Labrou and Finin,97]) was published in 1997-th. More informa about the language and related materials

can be found on the following address: http://http://www.cs.umbc.edu/kqml/

4.2.2 Philosophy

KQML is a high-level communication language, as well, as a protocol for information exchange that is

independent from the syntax and ontology of the messages. It implements the approach to envision

the information exchange like uni�ed access to a KB. The third important point is that KQML gives

an extendable set of pragmatics for classi�cation of the believes and intentions related with a chunk of

information.

The communication language steps on the transport protocol. Here are the assertions of KQML for the

underlying protocol:

� the agents are related with one-way communication links that can transfer discrete messages

(package- rather than stream-oriented);

� the communication can introduce delays;

� the receiver knows the delivery connection for each message;

� First-Sent-First-Received | the messages sent in one and the same direction are being received in

the order of sending;

� message delivery is reliable.

KQML primitives are called performatives. These are speech acts of some types that determine the

actions that the agents can use to communicate. The type of the performative borrows the message

pragmatics, that determines the intention and the protocol of the communication. Sample pragmatics:

ask, tell, achieve, reply, deny, monitor, forward, subscribe, evaluate, etc. Further on, each message is

characterised by attribute-value pairs. Such attributes are: content, language, topic, ontology, sender,

reply-with.

It is considered that each KQML agent has a virtual KBwith two constituents:

� an information array | these are the agents believes;

� a goal array | the agents intentions.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 40

So, the most important performatives give basic access two this arrays:

� tell | addition to the information array;

� untell | removal from the information array;

� achieve | goal addition;

� unachieve | goal removal.

There are there kinds of performatives: core, standard and extended. The core performatives are small

set of mandatory performatives. The standard (or reserved) performative are those that are de�ned in

the KQML speci�cation, but they are not mandatory. Finally, the extended performatives are all other

performatives that can be de�ned and implemented in speci�c scocieties.

4.2.3 Facilitators

In a KQML agent there can be (in fact, there should be) agents who's only or main responsibility is to

support the communication between the others. Such kind of agents are named facilitators and they can

provide one or more of the following services:

� mapping between the physical address and the symbolic names of the agents;

� support of a registry of the services that the other agents are willing to provide or use;

� communication services like routing, connecting, etc.

4.2.4 KQML is quite "open"

One of the central goals of the creators of KQML was to make it as "open" as possible. Here some of the

dimensions of this
exibility:

� the transport protocol is not �xed. Any protocol that ful�lls the requirements is welcome;

� there are no limitation about the formal language used for encoding of the message content. The

only technical requirement is that it should be representable as a plain text with a �nite length.

The default representation is KIF ;

� there are no limitation for the ontology. It should be just declared exactly which ontology is used.

Even there is no default ontology proposed;

� the architecture of the KQML society is not restricted. As well, there are no limitations for the

type and behaviour of the agents. The existence of at least one facilitator is suggested, but not

mandatory;

� new types of performatives can be added;

� new parameters for the existing performatives can be also added

In both cases (for new performatives and parameters) the limitation is that the reserved ones should not

be used for other purposes.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 41

4.3 KQML syntax

The syntax if the performatives (messages) in KQML is a restriction on the

ASCII representation of Common Lisp Polish-pre�x notation. The general structure of the performative

is following:

<performative> ::= (<word> {<whitespace> :<word> <whitespace> <expression>}*)

The full syntax can be found in [Labrou and Finin,97].

There are two important limitations on the syntax of the value of the :content parameter. The content

should be in the syntax of the language which name is the value of the :language parameter. Also

the constant symbols used (the names) should be described in the ontology referred by the :ontology

parameter.

4.4 KQML semantics

The semantics of KQML is de�ned in terms of the changes of the state of the VKB of the agent receiving

the message. However, there is no formal description of this semantic.

Here follows a list of the reserved paramater names and their meanings:

Name Value Explanation

language word the name of the language of representation of the content

ontology word the name of the ontology used in the content

content expression the speci�c information cared by the message

sender word the actual sender

receiver word the actual receiver

from word the starting point of the performative that is a content of a

forward performative

to word the target of the performative that is a content of a

forward performative

in-reply-to expression in response query this the value of this parameter should be the same

like :reply-with of the previous query

reply-with expression the label that will be expected in in-reply-to of the response query

force word if the value is permanent, the agent promises that he will not cancel

this performative. The default is tentative. (with deny)

The list of reserved performatives can be found in [Labrou and Finin,97].

4.5 Open questions

1. Is it acceptable in one VKB to keep expressions in di�erent languages?

2. If the content of the messages is always translated, what happens with their identity?

Imagine that the agent A have telled to agent B that he believes in the fact Fa. Let's have the agent
B translated the fact to FaLb in its own language Lb. What should happen if A stops to support this

believe (by untell). How should B decide to retract FaLb from its VKB?

References

[BBH+ 1990] F. Baader, H.-J. B�urckert, J. Heinsohn, B. Hollunder, J. M�uller, B. Nebel, W. Nutt,

H.-J. Pro�tlich. Terminological Knowledge Representation: A Proposal for a Termi-

nological Logic. Technical Memo RR-90-04, DFKI, Kaiserslautern, Germany, 1990.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 42

[BH 1991] Franz Baader and Bernhard Hollunder. A terminological knowledge representation

system with complete inference algorithm. in Proc. of the Workshop on Processing

Declarative Knowledge, PDK-91, Lecture Notes in Arti�cial Intelligence. Springer

Verlag, 1991.

[BHN+ 1993] F. Baader, B. Hollunder, B. Nebel, H.-J. Pro�tlich, E. Franconi. An Empirical Analy-

sis of Optimization Techniques for Terminological Representation Systems or: 'Making

KRIS get a move on'. Research Report RR-93-03, DFKI, Saarbr�ucken, Germany, 1993.

[Brachman 1979] Ronald J. Brachman. On the Epistemological Status of Semantic Networks. In N.

V. Findler (Ed.), Associative Networks: Representation and Use of Knowledge by

Computers. Academic Press, 1979.

[BPL 1985] Ronald J. Brachman, Victoria Pigman Gilbert, and Hector J. Levesque. An essential

hybrid reasoning system: Knowledge and symbol level accounts in KRYPTON. In

Proc. of the International Joint Conference on Arti�cial Intelligence. pages 532-539,

Los Angeles, California, 1985.

[BS 1985] Ronald J. Brachman and James G. Schmolze. An overview of the Kl-One knowledge

representation system. Cognitive Science, 9(2):171-216, 1985.

[BBM+ 1989] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness, and Lori Alperin

Resnick. CLASSIC: a structural data model for objects. in ACM SIGMOD, 1989.

[BDS 1993] Martin Buchheit, Francesco M. Donini, Andrea Schaerf. Decidable Reasoning in Ter-

minological Knowledge Representation Systems. Technical Report RR-93-10, DFKI,

Kaiserslautern, Germany, 1993.

[Davis, et. al 1996] Randall Davis, Howard Shrobe and Peter Szolovits. What is Knowledge Representa-

tion? AI Magazine, 14(1):17-33, 1993.

[Ellis 1991] Gerard Ellis. Compiled hierarchical retrieval. In proc. of the 6th Annual Conceptual

Graphs Workshop, 1992.

[Franconi 1990] Enrico Franconi. The YAK (Yet Another Karphagen) manual. IRST - Manual 9003-01,

Povo TN, Italy, 1990.

[Franconi, et. al 1992] Enrico Franconi. Bernardo Magnini and Oliviero Stock Prototypes in a Hybrid

Language with Primitive Descriptions. Computers Math. Applic. Vol. 23, No. 6-9, pp

543-555, Pergamon Press, 1992.

[Genesereth 1998] Genesereth, Michael R., and Richard Fikes, eds. Knowledge Interchange For-

mat. draft proposed American National Standard (dpANS). NCITS.T2/98-004,

http://logic.stanford.edu/kif/

[GF 1992] Genesereth, B. and Richard E. Fikes. Knowledge Interchange Format Version 3.0 Ref-

erence manual. Technical Report Logic-92-1, Computer Science Department, Stanford

University, June 1992. "Living document" of the Interlingua Working Group of the

DARPA Knowledge Sharing E�ort.

[Guarino 1994] Nicola Guarino. The Ontological Level. in R. Casati, B. Smith and G. White (eds.),

Philosophy and the Cognitive Sciences, Vienna: H�ulder-Pichler-Tempsky, 1994.

[HN 90] Bernhard Hollunder and Werner Nutt. Subsumption Algorithms for Concept Lan-

guages. Technical Report RR-90-04, DFKI, Kaiserslautern, Germany, 1990.

[KBR 1986] Thomas S. Kaczmarek, Raymond Bates, and Gabriel Robins. Recent developments

in NIKL. in Proc. of the 5th National Conference on Arti�cial Intelligence AAAI-86,

pages 978-985, 1986.

Declarative Knowledge Representation (Logical Approach) - ClaRK 2000. K.Simov & At.Kiryakov 43

[Kramer, Mylopoulos, 1992] Kramer, Bryan and Mylopoulos John, Knowledge Representation. In: En-

cyclopedia of Arti�cial Intelligence, S.C. Shapiro, ed., John Wiles & Sons, New York,

1992, pp.743-759.

[MB 1987] Robert M. MacGregor and Raymond Bates. The Loom knowledge representation lan-

guage. Technical Report ISI/RS-87-188, University of Southern California, Informa-

tion Science Institute, Marina del Rey, California, 1987.

[Labrou and Finin,97] Labrou, Yannis and Finin, Tim. A proposal for a new KQML speci�cation, TR

CS-97-03, Computer Science and Electrical Engineering Department, University of

Maryland Baltimore County, Baltimore, MD 21250, 1997,

http://www.cs.umbc.edu/ jklabrou/publications/tr9703.ps

[Levinson 1984] Robert Levison. A self-organizing retrieval system for graphs. In proc. of the 3rd

National Conference of the American Association for Arti�cial Intelligence, pages

203-206, Austin, Texas, 1984.

[Levinson 1992] Robert Levison. Pattern associativity and the retrieval of semantic networks. Jurnal

of Computers & Mathematics with Applications, 23(6-9), 573-600, 1992.

[Lipkis 1982] Thomas Lipkis. AKl-One classi�er. In J.G.Schmolze and R.J.Brachman, editors, Proc.

of the 1981 Kl-One Workshop, pages 128-145, BBN Report No. 4842. Cambridge, MA,

1982.

[MacGregor 1988] Robert M. MacGregor. A deductive pattern mather. In proc. of the 7th National

Conference of the American Association for Arti�cial Intelligence, pages 403-408, Saint

Paul, MI, August 1988.

[QK 1990] Joachim Quants and Carsten Kindermann. Implementation of the BACK system ver-

sion 4. Technical report KIT-Report 78, FB Informatik, Technische Universit�at Berlin,

Berlin, Germany. 1990.

[Patel-Schneider 198?] Peter F. Patel-Schneider. A Four-Valued Semantics for Frame-Based Description

Languages.

[Patel-Schneider 1985] Peter F. Patel-Schneider. A Decidable Firsat-Order Logic for Knowledge Repre-

sentation. In Proc. IJCAI-85, pages 455-458, 1985.

[Perlis 1986] Donald Perlis. Language with Self-Reference I. Foundations (or | We can have ev-

erything in �rst-order logic!)

[Poole et. al. 1998] David Poole, Alan Mackworth and Randy Goebel. Computational Intelligence - A

Logical Approach. Oxford University Press, New York, USA, 1998.

[SSS 1988] Manfred Scmidt-Schau� and Gert Smolka. Attributive Concept Descriptions with

Unions and Complements. IWBS Report 68, IBM - Deutschland GmbH, Stuttgart,

Germany, 1988.

[Scmidt-Schau� 1989] Manfred Scmidt-Schau�. Subsumption in KL-ONE is undecidable. In proc. of the

First International Cobference on Knowledge Representation and Reasoning. 1989.

[von Luck, et. al 1987] Kai von Luck, Bernhard Nebel, Christof Peltason, and Albrecht Schmiedel. The

Anatomy of the BACK System. Technical report KIT-Report 41, FB Informatik,

Technische Universit�at Berlin, Berlin, Germany. 1987.

