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Questions we try to answer:

�What is knowledge?

�What is reasoning?

�What is the connection between knowledge and rea-

soning?

�What kinds of knowledge and reasoning there are?

�What is knowledge representation?

�What does a knowledge representation system look

like?
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Knowledge: Knowledge is such a state of an agent

which allows the agent to act in a real or imaginary

world. We call this state a knowledge state of the

agent.

� Knowledge correspond in some way to the world

� Knowledge constitutes a model of the world

� Thinking rather acting

Reasoning: Reasoning is an internally driven change

in the knowledge state of an agent.

� Knowledge is not perfect.

� One knowledge | one problem

� Modularization of knowledge

� Di�erent reasoning in di�erent modules

Knowledge Representation: Knowledge represen-

tation is the study of nature of knowledge and reasoning

with the goal to simulate them on a computer.
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Intelligent agents such that they:

� solve complex1 tasks in some domain according to

some goals and situations;

� acquire new knowledge on the base of their experi-

ence;

� are exible to changing environments and goals;

� act appropriately under perceptual limitation and

�nite resources;

� use their knowledge to predict the world changes

caused by some acting before they actually do it.

Human beings are using their knowledge to achieve

some goals:

� Deduction. A student is proving a theorem in

geometry.

� Induction. A scientist is building a theory about

a set of observations.

� Abduction. A doctor is explaining a new symp-

tom to another doctor.

� Commonsense reasoning. I am driving on the

highway with 140 km/h when the restriction is 120

km/h.
1Criteria for complexity could be de�ned by comparison with human being.
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� Learning. A child becomes skilled in using natural

language.

� Planning. A thief is going to rob a bank.

� Instructions carrying out. A computer sci-

entist is installing a new printer following a list of

instructions.

� Communication. Two friends are talking to each

other.

Classi�cation of knowledge:

� Declarative vs. Procedural

� Certain vs Uncertain

� Explicit vs Implicit

� Intensional vs Extensional

� Symbolic vs Non-symbolic

Church-Turing thesis:Any symbol manipulation can

be carried out on a Turing machine.

Symbol Knowledge Representation Hypothe-

ses: Relevant knowledge can be represented in a sym-

bolic way and relevant reasoning can be carried out over

this representation as symbol manipulation.
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A knowledge representation and reasoning system (KRRS)

comprises the following elements:

� Formal Language. Relevant knowledge is repre-

sented as a structured set of expressions in a (formal)

language, called knowledge base. The knowledge

base could be modularised in order di�erent kinds

of knowledge to be represented in di�erent modules

and to support di�erent kinds of reasoning.

� Reasoning Services. Reasoning is done through

rules for manipulating the formal language expres-

sions in the system, called inference methods.

Inferences de�ne the ways in which knowledge is

used. In a modularised knowledge base di�erent in-

ferences could be applied to the di�erent modules.

�Maintenance Services. Mechanisms for adding,

deleting and updating of the knowledge. Also, tools

for structuring of the knowledge base. These are in

strong connection with the reasoning services.



Declarative Knowledge Representation. ClaRK 2000.K.Simov & At.Kiryakov. Slide - 7

A KRRS is called balanced if the following conditions

hold:

� The modules are connected in precise way.

� There is a common theory of knowledge representa-

tion. This theory explains which kinds of knowledge

should be represented in which modules.

� There is a common semantics for all modules. This

common semantics de�nes the meaning of the ex-

pressions in the di�erent modules and the meaning

of the connections between the modules.

� The inferences have to respect the syntax and the

semantics.

If in KRRS the di�erent modules are using di�erent

languages such a system is called hybrid.
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Requirements which an inference method ideally should

meet:

� Syntax and semantics awareness. An infer-

ence method has to respect the syntax and the se-

mantics of the formal language.

� Soundness. The results of an inference method

have to be right.

� Completeness. An inference method has to be

able to explicate all correct implicit knowledge.

� Decidability. There exists an algorithm that im-

plements the rules of the inference method preserv-

ing all characteristics of the method like complete-

ness and soundness.

� Complexity and Tractability. If an inference

method is decidable, then the question is how much

resources are necessary to do the inference. Usually,

two measures are used: worst case complexity

- the most diÆcult inferences; average case - the

usual inferences.

An inference method is tractable if a polynomial

algorithm exists for the worst case.
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An KRRS can be characterised on several levels of ab-

stractions:

� Implementational level. Here the system is de-

scribed in terms of memory units (cells, pointers)

and procedures.

� Logical level. Here the system is described in

logical terms like propositions, predicates, functions,

logical operators and inference rules.

� Epistemological level. Concept types, structur-

ing relations.

� Ontological level. Categories of predicates clas-

si�ed on the basis of formal ontology primitives.

� Conceptual level. Conceptual relations, primi-

tive objects and actions.

� Linguistic level. Linguistic terms.
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Kl-One Family

Kl-One presents a theory of concept structure descrip-

tion.

� Generic Concept. A description of a class of

instances.

{ Primitive Concept. A description of neces-

sary conditions for the instances of the concept.

Primitive concepts represent the basic like \nat-

ural kinds".

One instance could be regarded as belonging to

a primitive concept only this is stated explicitly.

{ De�ned Concepts. A description of neces-

sary and suÆcient conditions for the instances of

the concept.

One instance belongs to a de�ned concept if it

satis�es the conditions of the de�nition of the

concept.

� Individual Concept. A (partial) description of

an individual.

An individual concept is regarded as an instance of

a generic concept if (1) it is stated explicitly; or (2)

it satis�es the conditions of a de�nition of a de�ned

concept.
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Concept Structure

A concept is described on two levels:

� Locally. The local structure of a concept is ex-

pressed in

{ Roles. Generalized and instantiated attributes.

� Value Restriction. Description of a poten-

tial instance.

� Number Restriction. Maximum and min-

imum numbers of instances.

{ Structural Description. Description of in-

terrelations between local elements of an instance

of the concept.

� Role Value Map. Equality of sets of in-

stances.

� Parametric Concepts. General relations

over a set of instances.

� Globally. Subsumption relation on concepts.

{ Superconcepts and Subconcepts.

{ Inheritance. Moving of information from Su-

perconcepts to subconcepts.

{ Taxonomy. Connection to the immediate su-

perconcepts and subconcepts is calculated.
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Reasoning in Kl-One

� Classi�cation. Finding the right place of a new

concept in a taxonomy.

� Recognizer. Finding the most speci�c concepts in

a taxonomy which describe a partially described in-

dividual concept. This inference is called sometimes

realization.

� KB-satis�ability.

� Concept Satis�ability.

� Concept Subsumption.

� Concept Equivalence.

� Taxonomy construction.

� Deduction.

� Instance Checking.

� Retrieval.
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ALCNR Syntax

Signature:

CN is a set of concept names,

RN is a set of role names, and

IN is a set of individual names.

Concept Terms:

C,D �! CN j (concept name)

> j (top)

? j (bottom)

(C uD) j (conjunction)

(C tD) j (disjunction)

:C j (complement)

8R:C j (universal quanti�cation)

9R:C j (existential quanti�cation)

(� nR) j (� nR) (number restrictions)

Role Terms:

R �! P1 u : : : u Pk (role conjunction)

where k � 1.
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ALCNR Semantics

Interpretation: I = < D; [[:]] > is an interpretation

if and only if

D is a non-empty set of objects (domain),

[[:]] is a total function

from CN to the powerset of D,

from RN to the powerset of D�D, and

from IN to D. (UNA)

Each interpretation satis�es the following equalities:

[[>]] = D

[[?]] = ;

[[C uD]] = [[C]] \ [[D]]

[[C tD]] = [[C]] [ [[D]]

[[:C]] = D n [[C]]

[[8R:C]] = fd1 2 D j 8d2 : (d1; d2) 2 [[R]]! d2 2 [[C]]g

[[9R:C ]] = fd1 2 D j 9d2 : (d1; d2) 2 [[R]] ^ d2 2 [[C]]g

[[� nR]] = fd1 2 D j kfd2 j (d1; d2) 2 [[R]]gk � ng

[[� nR]] = fd1 2 D j kfd2 j (d1; d2) 2 [[R]]gk � ng

[[P1 u : : : u Pk]] = [[P1]] \ : : : \ [[Pk]]
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ALCNR Statements

Terminological Statement:

CN is a concept name and C is a concept term.
CN := C (concept de�nition)

CN _� C (primitive concept de�nition)

Assertional Statement:

C is a concept term, R is a role term, and a, b are

individual names:

C(a); R(a; b)

Terminological Statement Satis�ability:

I =< D; [[:]] > satis�es

CN := C if and only if [[CN ]] = [[C]], and

CN _�C if and only if [[CN ]] � [[C]].

Assertional Statement Satis�ability:

I =< D; [[:]] > satis�es

C(a) if and only if [[a]] 2 [[C]],

R(a; b) if and only if ([[a]]; [[b]]) 2 [[R]].
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ALCNR Knowledge Base

Knowledge Base:


=<TBOX ;ABOX >

where

TBOX is a set of terminological statements, called TBox,

and

ABOX is a set of assertional statements, called ABox.

Any concept name CN may appear at most once as left

hand side of a terminological statement.

Knowledge Base Model:

An interpretation I = < D; [[:]] > is a model for a

knowledge base 
 =<T BOX ;ABOX > if and only if the

interpretation satis�es all terminological statements in

TBOX and all assertional statements in ABOX .
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Example

male _� :female

Female and male are disjoint. Female and male are primitive concepts.

woman
:= human u female

Every woman is a human and a female. Human is primitive concept.

man
:= human u male

Every man is a human and a male. Man and woman are disjoint because male and female

are disjoint.

mother
:= woman u 9has-child.human

Every mother is a woman with at least one child who is a human.

father
:= man u 9has-child.human

Every father is a man with at least one child who is a human.

parent
:= father t mother

Every parent is either a father or a mother. No parent could be a father and a mother.

grandparent
:= (fathert mother)u 9has-child.parent

Every grandparent is a parent with at least one child that is a parent.

grandmother
:= woman u grandparent

Every grandmother is a mother with at least one child that is a parent.

grandfather
:= grandparent u :grandmother

Every grandfather is a father with at least one child that is a parent.

mother-without-daughter
:= motheru 8has-child.male

Every mother whose children are male is a mother without daughter.
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mother-of-many-children
:= mother u (� 3 has-

child)

Every mother with more than 2 children is a mother of many children.

father-of-a-son-and-a-daughter
:= fatheru (�

2 has-child) u 9has-child.male u 9has-child.female

Every father with no more than 2 children and at least one male child and at least one

female child is a father of a son and a daughter.

Taxonomy
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Deduction in ALCNR

We are interested in two problems:

� Concept subsumption.

� Concept satis�ability.

Reduction of the problems:

C subsumes D if and only if :C uD is unsatis�able.

C is satis�able if and only if ? doesn't subsume C.

Example:

mother u (�3 has-child) v mother u (�2 has-child)

+

mother u (�3 has-child) u

:(motheru (�2 has-child))

+

mother u (�3 has-child) u (�1 has-child)

The reduction can be done in linear time.
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Simple concepts in ALCNR

The algorithm is working with concept de�nitions that

are:

� Acyclic. No concept name appears in its own def-

inition. Directly or indirectly.

No concepts like:

man
:= human u father.man

� De�ned. The TBox contains only terminological

statements of the kind: CN := C.

For primitive concepts:

male
:= :female u male*

� Unfolded. Only primitive concepts participate in

the right side of a concept de�nition.

father
:= man u 9has-child.human

+

father
:= human u male u 9has-child.human

� Negative Normal Form. Negation is only in

front of concept names.
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Negative Normal Form

:> �! ?

:? �! >

:(C uD) �! :C t :D

:(C tD) �! :C u :D

::C �! C

:(8R:C) �! 9R::C

:(9R:C) �! 8R::C

:(� nR) �! (� n + 1R)

:(� nR) �!

8>><
>>:

? if n = 0

(� n� 1R) if n > 0

:((man t woman) u 9has-child.human)

+

:(man t woman) t :9has-child.human

+

(:man u :woman) t 8has-child.(:human).
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Constraint Systems

A countable set of variables is assumed: x, y and z

Two kinds of constraints: x : C, xPy.

A constraint system S is a �nite, nonempty set of

constraints.

� is I-assignment if it is function from variables in the

object of the domain of I

An I-assignment � satis�es

x : C if and only if �(x) 2 [[C]], and

xPy if and only if (�(x); �(y)) 2 [[P ]]

A constraint c is satis�able if 9 I and I-assignment

such that I-assignment satis�es c

A constraint system S is satis�ed by an I-assignment

if and only if it satis�es all constraints in S

S is satis�able if and only if 9 I and I-assignment such

that I-assignment satis�es S
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Technical Notions

For role R = P1 u : : : u Pk,

xRy holds in S if and only if

fxP1y; : : : ; xPkyg � S.

For R, S and x

nR;S(x) = kfy j xRy holds in Sgk

returns the number of the variables y such that xRy

holds in S

[y=z]S is the constraint system obtained from S

by replacing each occurrence of y with z

This replacement is safe in S if and only if

for each variable x and for each role R such that

x : (� nR) 2 S and

xRy and xRz hold in S then

nR;S(x) > n.
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Rewriting Rules

1. S �!u fx : C1; x : C2g [ S

if x : C1uC2 is in S, and x : C1 and x : C2 are not

both in S

2. S �!t fx : Dg [ S

if x : C1 t C2 is in S, neither x : C1 nor x : C2 is

in S, and D = C1 or D = C2

3. S �!9 fxP1y; : : : ; xPky; y : Cg [ S

f x : 9R:C is in S, R = P1 u : : :u Pk, there is no z

such that xRz holds in S and z : C is in S, and y

is a new variable

4. S �!8 fy : Cg [ S

if x : 8R:C is in S, xRy holds in S and y : C is not

in S

5. S �!� fxP1y; : : : ; xPkyg [ S

if x : (� nR) is in S,R = P1u: : :uPk, nR;S(x) < n,

and y is a new variable

6. S �!� [y=z]S

if x : (� nR) is in S, xRy and xRz holds in S,

nR;S(x) > n, and the replacement of y by z is safe

in S
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Rewriting Rules

deterministic rules: �!u, �!9, �!8, �!�

nondeterministic rules: �!u, , �!�

Clash is:

� fx : ?g

� fx : CN; x : :CNg

� fx : (� 0R); xP1y; : : : ; xPkyg, where R = P1 u

: : : u Pk

� fx : (� mQ); x : (� nR)g where m > n and

Q < R.

S is complete constraint system if and only if no rule is

applicable to S and S doesn't contain a clash.

All rules preserve the satis�ability.

Concept C is satis�able if and only if the constraint

system fx : Cg is satis�able.
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Example

Is man subsumed by father?

man v father ?

Reduction:

man u :father

Expansion of the de�nitions:

human u male u

:((human u male) u 9has-child.human)

Negative normal form:

human u male u

((:human t :male) t 8has-child.(:human))

Constraint system:

fx : ((human u male) u

((:human t :male) t 8has-child.(:human))) g

+ by rule �!u

fx : (human u male),

x : ((:human t :male) t 8has-child.(:human)) g.

+ by rule �!u



Declarative Knowledge Representation. ClaRK 2000.K.Simov & At.Kiryakov. Slide - 27

fx :human, x :male,

x : ((:human t :male) t 8has-child.(:human)) g

Choice point 1

+ by rule �!t

we choose the left disjunct

fx :human, x :male, x : (:human t :male) g

Choice point 2

+ by rule �!t

we choose the left disjunct

fx :human, x :male, x ::human g

Clash

+ return to point 2,

by rule �!t

we choose the right disjunct

fx :human, x :male, x ::male g

Clash.

+ return to point 1,

by rule �!t

we choose the right disjunct

fx :human, x :male, x :8has-child.(:human) g

The system is complete. The rule�!8 is not applicable

because the condition xRy to hold for some y is not met.



Declarative Knowledge Representation. ClaRK 2000.K.Simov & At.Kiryakov. Slide - 28

Taxonomy construction. Classi�cation.

General problem:

Let � be a partial order over the set X .

The smallest relation of precedence � over X to be

found such that its transitive and reexive closure to be

equivalent to the partial order.

For concepts:

The subsumption relation on concepts is regarded as

partial order.

Technical notions:

x � y if and only if x � y and 6 9z, z 6= x and z 6= y

such that x � z � y

x � y, x is successor of y and y is predecessor of x

x � y, x is immediately successor y and

y is immediately predecessor of x

�i is built for Xi � X

�i+1 to be built for Xi+1 = Xi [ fcg (c 2 X nXi)

Xi # c := fx 2 X j c � xg | (top search)

Xi " c := fx 2 X j x � cg | (bottom search)
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Method of \Brute Force"

In this case the \top search" is accomplished in the

following way:

1. For each x 2 Xi, c � x is checked.

2. Xi # c is the set of all x 2 Xi such that the check

succeeds and 8y 2 Xi(y �i x) the check fails.

For the \bottom search" the dual schemata is used.

This method uses 2� j Xi j comparisons on each step

and thus n� (n� 1) comparisons for the whole set of

n elements.

Methods of Simple Traverse

During the top search algorithm if c 6� x then 8y 2 Xi

such that y � x then y 6� c.

The nodes in the taxonomy for Xi are marked by three

markers: \visited" if the subsumption check is already

done for the node, \positive" if the subsumption check

was successful for the node and \negative" if the sub-

sumption check failed for the node. The mark \visited"

helps us to avoid the multiple checks for a node. The

marks \positive" and \negative" help us to avoid calls

to the subsumption checker subs?(a; b).
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top-search(c;x) =

mark(x,\visited")

Pos-Succ ;

for all y with y �i x do

if simple-top-subs?(y; c)

then Pos-Succ Pos-Succ [fyg

fi

od

if Pos-Succ is empty

then return fxg

else Result  ;

for all y 2 Pos-Succ do

if not marked?(y,\visited")

then Result  Result [ top-search(c; y)

fi

od

return Result

fi
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simple-top-subs?(y; c) =

if marked?(y,\positive")

then return true

elsif marked?(y,\negative")

then return false

elsif subs?(y; c)

then mark(y,\positive")

return true

else mark(y,\negative")

return false

fi

fi

fi
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Methods of Enhanced Traverse

If the concept c is subconcept of the concept x the it is

subconcept of all superconcepts of x.

First, check the superconcepts of x and if these checks

succeeded then check c against x.

Let Xi # c be already constructed then the immediate

successors of c are successors of the elements of Xi # c.

Something more, an immediate successor of c is a suc-

cessor of all element of Xi # c.

enhanced-top-subs?(y; c) =

if marked?(y,\positive")

then return true

elsif marked?(y,\negative")

then return false

elsif for all z with y �i z

enhanced-top-subs?(z; c)

and subs?(y; c)

then mark(y,\positive")

return true

else mark(y,\negative")

return false

fi

fi

fi
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Non-standard semantics

Concept terms:

C;D �! CN j (concept name)

> j (top)

(C uD) j (conjunction)

8R:C j (universal quanti�cation)

9R:> j (existential quanti�cation)

(rvm R S) (role value map)

Role terms:

R �! P1 u : : : u Pk where k � 1 j (role conjunction)

(restr R C) (role restriction)

where Pi are role names.

Standard semantics for the new operators:

[[(rvm R S)]] =

fd 2 D j

fdr2D j (d; dr) 2 [[R]]g=fds2Dj (d; ds)2 [[S]]gg

[[(restr R C)]] =

fhd; ei 2 D �D j hd; ei 2 [[R]] ^ e 2 [[C]]g
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Four-valued Semantics

Standard semantics:
'

&

$

%

'

&

$

%
C

not-C

Non-standard semantics
'

&

$

%

'

&

$

%

'

&

$

%
C and not-CC

not-C
neither C nor not-C

Interpretation

I = hD; [[:]]t; [[:]]fi, where

D is a set of objects.

[[:]]t - positive interpretation function

[[:]]f - negative interpretation function
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Interpretation

For concept terms:

[[>]]t = D

[[>]]f = ;

[[C uD]]t = [[C]]t \ [[D]]t

[[C uD]]f = [[C]]f [ [[D]]f

[[8R:C]]t=fd12Dj8d2 : (d1; d2)2 [[R]]
f
_ d22 [[C]]

t
g

[[8R:C]]f=fd12Dj9d2 : (d1; d2)2 [[R]]
t
^ d22 [[C]]

f
g

[[9R:>]]t = fd1 2 D j 9d2 : (d1; d2) 2 [[R]]tg

[[9R:>]]f = fd1 2 D j 9d2 : (d1; d2) 2 [[R]]fg

[[(rvm R S)]]t=

fd1 2 D j 8d2 : (d1; d2) 2 [[R]]f _ (d1; d2)2 [[S]]
t
g

[[(rvm R S)]]f=

fd12Dj9d2 : (d1; d2)2 [[R]]
t
^ (d1; d2)2 [[S]]

f
g

For role terms:

[[P1 u : : : u Pk]]
t = [[P1]]

t
\ : : : \ [[Pk]]

t

[[P1 u : : : u Pk]]
f = [[P1]]

f
[ : : : [ [[Pk]]

f

[[(restr R C)]]t=

fhd; ei2D � Djhd; ei2 [[R]]t ^ e 2 [[C]]tg

[[(restr R C)]]f=

fhd; ei2D � Djhd; ei2 [[R]]f _ e 2 [[C]]fg
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Algorithms

Canonical form:

1. commutativity and associativity of u

2. 8R:(C uD) �! (8R:C) u (8R:D)

3. (rvm R (S1 u S2) �! (rvm R S1) u (rvm R S2)

4. (rvm R (restr S C)) �! (rvm R S) u (8RC)

5. (restr (restr R C1) C2) �! (restr R(C1 u C2))

6. ((restr R1 C) u R2) �! (restr (R1 uR2) C)

Subsumption check:

C1u : : :uCn subsumes C 0
1u : : :uC

0
m if and only if 8i,

1 � i � n, 9j, 1 � j � m, such that:

1. Ci is a concept name and C 0
j = Ci,

2. Ci = (9R:>) and C 0
j = (9R0:>) and R subsumes

R0,

3. Ci = (8R:D) and C 0
j = (8R0:D0) and D subsumes

D0 and R subsumes R0,

4. Ci=(rvm R S) and C 0
j=(rvm R0 S) and R0

vR.
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S1 u : : : u Sn subsumes S 01 u : : : u S
0
m if and only if

8Si, 0 � i � n, 9S 0j, 0 � j � m such that Si = S 0j
(restr (S1u : : :uSm) C) is subsumed by (restr (S 01u

: : : u S 0n) C
0) if and only if

8i, 9j such that Sj = S 0i and C v C 0.

Not valid:

� _ :�

((� ^ (�!  ))!  )

Example:

The soncept:

human u 8friend.doctor u

8(restr friend doctor).(9speciality.>)

is not subsumed by

human u 8friend.(9speciality.>)
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Prototypes in Kl-One

The motivation:

� Most of the concepts are primitive.

� In common life we point to these concepts on the

base of their typical features.

� The recognition has to be done on the base of pro-

totypical information.

Tweety ies and has wings.

Is Tweety a bird?

Prototypical reasoning mechanism cooperates with the

recodnizer.

Two steps of inference:

� The recognizer is using the concept hierarchy to de-

termine the most speci�c concepts that describe an

individual.

� The prototype reasoner compares the individual's

description with the prototypical information con-

nected with these concepts.
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Similarity Model

The model comprises three components:

� a prototype representation;

� a procedure for prototype modi�cation;

� a rule for determining the similarity between an ob-

ject and a prototype.

Prototype Representation

Prototype i a collection of attribute/value pairs.

Attributes can only be roles de�ned in the terminology

and values are concepts.

Each attribute/value pair for a given prototype is pro-

vided with two weights:

� diagnosticity of the attribute

� salience of the value

Prototype formation:

A prototype is considered an abstraction over a set of

individuals.

Prototypes refer to primitive concepts in the terminol-

ogy.

How to determine suÆcient typical conditions for a given

primitive concept?
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This mechanism is based on frequencies over the in-

stance set; diagnosticity and salience are de�ned in the

following way:

� attribute diagnosticity: Given a prototype P

derived from a primitive concept C, the diagnos-

ticity of an attribute A associated to P is de�ned

as the probability that A describes an instance X ,

given the fact that X is a member of C.

� value salience: given P as the prototype derived

fromC, the salience of the attribute/value pairA=V

is de�ned as the probability that the A=V pair de-

scribes an instance X , given the fact that X is a

member of C.

Relations to the terminology.

The prototype is non-contradictory to the de�nition of

primitive concept.

Reasoning with Prototypes

Contrast model is used. Instance categorisation in

this model succeeds when a given threshold on the sim-

ilarity function is reached.

Similarity between an instance I and a prototype P is

determined by three feature sets.

� I \ P , the features common to I and P ;
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� P � I , the prototype distinctive features;

� I � P , the instance distinctive features.

The additive version of the contrast model is expressed

by the equation:

SIM(P; I) =� i [afi(I\P )�bfi(P �I)�cfi(I�P )]

Where i indexes the relevant attributes, fi is assumed

to multiply the number of votes (salience) for attribute

i and a, b, c are parameters that determine the relative

contribution of each attribute set.

The contrast model respects the following properties

that inuence human similarity judgements: focus hy-

pothesis (i.e., common features have a greater weight

than distinctive features), asymmetry (i.e., the subject

has a larger import than the referent of the judgment),

context dependency (i.e., context dependent features

are more relevant).

Probability and Similarity

Human behaviour does not strictly follow the probabil-

ity rules.
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Knowledge Interchange Format

Why we need KIF?

� knowledge exchange

� formal description of KR languages

History:

� started as a part of KSE in 1990

� �rst version in 1992

� currently { draft proposed American National Stan-

dard (dpANS) NCITS.T2/98-004

The three directions in KSE:

� medium for knowledge transfer { KIF

� methodology for knowledge transfer { KQML

� ontology framework and basic ontological theories

in di�erent �elds { Ontolingua

Essential features:

� declarative semantics

� logically comprehensive

� meta-knowledge
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Objectives:

� Implementability

� Readability

Few comments:

� Self-reference and truth | especially important for

NLP and intensional logics

� Concrete domains: numbers, lists and strings.

Why are they useful? Why they are just few?

The End of the Beginning

KIF can be considered as:

� First-Order Language

� Functions & Relations are also objects in the domain

� All the Expressions are objects also

Few KIF forms:

(listof mary (listof tom dick harry) sally)

(defobject nil := (listof))

(defrelation null (?l) := (= ?l (listof)))
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(defrelation rational (?x) :=

(exists (?y) (and (integer ?y)

(integer (* ?x ?y)))))

Syntax

Computer-oriented formal syntax: characters, lexemes

and expressions.

KIF characters are the ASCII characters classi�ed as:

� upper case letters

� lower case letters

� digits

� alpha characters (! | $ | % | & | * | + | -

| . | / | < | = | > | ? | @ | _ | ~ )

� special characters (" | # | ' | ( | ) | , | n

| ^ | `)

� white space (space | tab | return | linefeed

| page)

� other characters - the rest ASCII characters

A normal character is each one in the �rst four cate-

gories.
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Lexemes

Five types of lexemes{ special lexemes, words, character

references, character strings, and character blocks.

Word is a sequence of: (1) normal characters or (2)

other characters preceded by the escape character n

Words could be variables, operators, and constants

Variables start with ? or @.

Three types of operators in KIF

� term operators (say (+ 1 2))

� sentence operators (say (= a b))

� de�nition operators

(say (defobject Title := "KIF"))

Five term operators:

value | listof | quote | if | cond.

Sentence operators:

holds | = | /= | not | and |

or | => |<= | <=> | forall | exists.

De�nition operators:

defobject | defunction | defrelation | deflogical |

:= | :-> | :<= | :=>.

All other words are called constants which are split

in four semantic categories.
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Basic constants and Non-basic constants

Expressions

Three disjoint types { terms, sentences, and de�-

nitions.

De�nitions and sentences are called forms.

A knowledge base is a �nite set of forms.

Types of terms in KIF { individual variables, con-

stants, functional terms, list terms, quotations,

and logical terms.

<funterm> ::= (<constant> <term>* [<seqvar>]) |

(value <constant> <term>* [<seqvar>])

<listterm> ::= (listof <term>* [<seqvar>])

<quoterm> ::= (quote <expression>)

<logterm> ::= (if <sentence> <term> [<term>])|

(cond (<sentence> <term>) ...

(<sentence> <term>))

Forms in KIF are de�ned according to the following

syntax:

Sentences in KIF:

<sentence> ::=
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<logconst>|<equation>|<inequality>|

<relsent>|<logsent>|<quantsent>

<equation> ::= (= <term> <term>)

<inequality> ::= (/= <term> <term>)

<relsent> ::= (<relconst> <term>* [<seqvar>])|

(holds <relconst> <term>* [<seqvar>])

<logsent> ::= (not <sentence>)|

(and <sentence>*)|

(or <sentence>*)|

(=> <sentence>* <sentence>)|

(<= <sentence> <sentence>*)|

(<=> <sentence> <sentence>)

<quantsent> ::= (forall (<varspec>+) <sentence>) |

(exists (<varspec>+) <sentence>)

<varspec> ::= <variable> |

(<variable> <constant>)

De�nitions in KIF:

<definition> ::= <unrestricted> | <complete> |

<partial>
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<unrestricted> ::=

(defobject <constant> [<string>] <sentence>*) |

(deffunction <constant> [<string>] <sentence>*) |

(defrelation <constant> [<string>] <sentence>*) |

(deflogical <constant>[<string>] <sentence>*)

<complete> ::=

(defobject <constant> [<string>] := <term>) |

(deffunction <constant> (<indvar>* [<seqvar>])

[<string>] := <term>) |

(defrelation <constant> (<indvar>* [<seqvar>])

[<string>] := <sentence>) |

(deflogical <constant> [<string>] := <sentence>)

<partial> ::=

(defobject <constant> [<string>] :->

<indvar> :<= <sentence>) |

(defobject <constant> [<string>] :->

<indvar> :=> <sentence>) |

(deffunction <constant> (<indvar>* [<seqvar>])

[<string>] :-> <indvar> :<= <sentence>) |

(deffunction <constant> (<indvar>* [<seqvar>])

[<string>] :-> <indvar> :=> <sentence>) |
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(defrelation <constant> (<indvar>* [<seqvar>])

[<string>] :<= <sentence>) |

(defrelation <constant> (<indvar>* [<seqvar>])

[<string>] :=> <sentence>) |

(deflogical <constant> [<string>]

:<= <sentence>)

(deflogical <constant> [<string>]

:=> <sentence>)

Which of the sentences is syntacticaly wrong:

[1] (defrelation rational (?x) :=

(exists (?y integer) (integer (* ?x ?y))))

[2] (/= ?x (and ?x

(not (exists (?y)

(= ?y ?x)))))

Semantics

De�ned in terms of a conceptualization and an in-

terpretation

Conceptualization - determine the objects, functions

and relations

A universe of discourse is the set of all objects.

Every universe of discourse should the basic objects:
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� All ASCII Characters

�Words (constants, operators, and viariables)

� All complex numbers

� All �nite lists of objects

� ?

Of course, any universe of discourse could contain what-

ever non-basic objects in addition.

How to represent functions and relations using lists?

Relations are sets of sequences

'< = {<1,2>, <2,3>, <1,3>, ... , <1,2,3>, ...}

where <1,2> stands for the fact that (< 1 2)

Functions too! What is the di�erence?

Interpretation

An interpretation is a function i that associates the

constants of KIF with the elements of a conceptualiza-

tion.

Let's call O the universe of discourse.

� 1. If � is an object constant, then i(�) 2 O.

� 2. If � is a function constant, then i(�) : O�
�! O.
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� 3. If � is a relation constant, then i(�) � O�.

� 4. If � is a logical constant, then i(�) 2 ftrue; falseg.

Some of the axioms \built-in" KIF:

� For each numerical constant � i(�) = n

� i(bottom) = ?

� i(true) = true and i(false) = false

Variable Assignment v is a function

� individual variables V into objects in O

� sequence variables W into �nite sequences of ob-

jects.

Semantic Value

siv : T �! O such that

� siv(�) = v(�) � is a variable

� siv(�) = i(�) � is a constant

�What about functional and relational constants?

siv((��1...�n)) = i(�)[siv(�1); :::; siv(�n)]

� siv((listof �1 ... �k !)) = hsiv(�1); :::; siv(�k)jsiv(!)i
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� siv((quote �)) = �

� siv((quote (�1 ... �n))) =

siv((listof (quote �1) ... (quote �n)))

� siv((if � �1)) =

8
><
>:
siv(�1) tiv(�) = true

? otherwise

� siv((cond (�1 �1) ... (�n �n))) =8>>>>>>>>><
>>>>>>>>>:

siv(�1) tiv(�1) = true

::: ...

siv(�2) tiv(�n) = true

? otherwise

Truth Value

A function tiv : S �! ftrue; falseg

� tiv(�) = i(�) � is a logical constant

� tiv((= �1 �2)) =

8
><
>:
true siv(�1) = siv(�2)

false otherwise

� tiv((/= �1 �2)) =

8
><
>:
false siv(�1) = siv(�2)

true otherwise

� tiv((� �1 ... �n)) =

8
><
>:
true hsiv(�1); :::; siv(�n)i 2 i(�)

false otherwise

� tiv((not �)) =

8
><
>:
true tiv(�) = false

false otherwise

� similar for and, or, =>, <=, and <=>
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A variable assignment v0 is a version of variable assign-

ment v with respect to variables �1, ...., �n i� ...

Next v0 is a version of v with respect to variables in the

�rst argument.

tiv((exists (�1 ... �k !) �)) =
8
><
>:
true 9v0 tiv0(�) = true

false otherwise
tiv((forall (�1 ... �k !) �)) =
8
><
>:
true 8v0 tiv0(�) = true

false otherwise

Logical Entailment

An interpretation i logically satis�es a sentence �

i� ...

i is a model of �

If � is a set of sentences, we say that � logically entails

a sentence � i� every model of � is also a model of �.

De�nitions

De�nitions have no truth values in the sense described

above.

Every de�nition has a corresponding set of sentences,

called the content
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De�nition De�ning Axiom

(defobject � := �) (= � �)

(defobject � �1 ... �n) (and �1 ... �n)

De�nition De�ning Axiom

(deffunction � (�1 ...�n) := �) (= (� �1 ...�n) �)

(deffunction � �1 ... �n) (and �1 ... �n)

De�nition De�ning Axiom

(defrelation � (�1 ...�n) := �) (<=> (� �1 ...�n) �)

(defrelation � �1 ... �n) (and �1 ... �n)

Lists

(defrelation list (?x) :=

(exists (@l) (= ?x (listof @l)))

(defobject nil := (listof))

(defrelation null (?l) := (= ?l (listof)))

(deffunction subst (?x ?y ?z) :=

(cond ((= ?y ?z) ?x)

((null ?z) nil)

((list ?z)
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(cons (subst ?x ?y (first ?z))

(subst ?x ?y (rest ?z))))

(true ?z)))|

(deffunction cons (?x ?l) :=

(if (= ?l (listof @l)) (listof ?x @l)))

Metaknowledge

Naming Expressions

Words are treated as primitive objects

Complex expressions are lists of sub-expressions

There are two ways to refer to expressions in KIF.

� (believes john '(material moon stilton))

(=> (believes john ?p) (believes mary ?p))

� Complex expression like (p a b) can be denoted by

a term of the form (listof 'p 'a 'b), as well as

'(p a b)

(=> (believes john (listof 'material ?x ?y))

(believes lisa (listof 'material ?x ?y)))

Another possible syntax

(=> (believes john ^(material ,?x ,?y))

(believes isa ^(material ,?x ,?y)))
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Formalizing Syntax

(indvar (quote �))

(seqvar (quote !))

(defrelation word (?x) :=

(or (variable ?x) (operator ?x)

(constant ?x)))

(defrelation sentence (?x) :=

(or (logconst ?x) (relsent ?x)

(equation ?x) (inequality ?x)

(logsent ?x) (quantsent ?x)))

Changing Levels of Denotation

The term (denotation �) denotes the object denoted

by the object denoted by � . A quotation denotes the

quoted expression; the denotation of any other object

is ?.

The term (name �) denotes the standard name for the

object denoted by the term � .

Weekly true

(wtr '(=> (p ?x) (q ?x)))

(=> (sentence ?p) (wtr `(=> ,?p ,?p)))

(wtr (subst

(name ^(subst (name x) ^x ^(wtr ,x)))
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^x

^(not (wtr (subst (name x)

^x ^(not (wtr ,x)))))))

Avoiding the paradox

(<=> (wtr 'p) p)

Conformance

"conformance levels" and "conformance pro�le" vs. "con-

formance level"

Logical Form

A knowledge base is atomic if and only if it contains

no logical operators.

A knowledge base is conjunctive if and only if it con-

tains no logical operators except for conjunction.

A knowledge base is positive if and only if it contains

no logical operators except for conjunction and disjunc-

tion.

A knowledge base is logical if and only if it contains

no logical operators except for conjunction, disjunction,

and negation.

A knowledge base is rule-like if and only if every sen-

tence is either atomic or an implication or reverse impli-

cation in which all sub-expressions are atomic sentences
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or negations of atomic sentences. A rule system is a

rule-like knowledge base.

A rule system is Horn if and only if every constituent

of every rule is atomic (i.e. no negations allowed). Oth-

erwise, the rule system is said to be non-Horn.

Dependency graph for a rule system

A rule system is recursive if there is a cycle in its

dependency graph. Otherwise, the rule system is said

to be non-recursive.

Term Complexity

The nature of terms de�nes a second conformance di-

mension. There are two categories: simple and complex.

A knowledge base is simple if and only if the only

terms occurring the knowledge base are constants and

variables.

A knowledge base is complex if and only if it contains

terms other than constants or variables, e.g. functional

terms or logical terms.

Order

The third conformance dimension concerns the presence

or absence of variables.

A knowledge base is ground, or zeroth-order, if and

only if it contains no variables. Otherwise, a knowledge

base in nonground.
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A knowledge base is �rst-order if and only if there

are no variables in the �rst argument of any explicit

functional term or explicit relational sentence.

A knowledge base is higher-order otherwise.

Quanti�cation

For nonground knowledge bases, there are two alterna-

tives { quanti�ed and unquanti�ed.

A nonground knowledge base is quanti�ed if and only

if it contains at least one explicit quanti�er.

A nonground knowledge base is unquanti�ed if and

only if it contains no explicit quanti�ers.

Metaknowledge

The �nal conformance dimension concerns the ability to

express metaknowledge, e.g. to write sentences about

sentences.

A knowledge base is baselevel if and only if it con-

tains no occurrences of the quote operator or the wtr

relation.

Otherwise, the knowledge base is metalevel.

Common Conformance Pro�les

A database system is one in which (1) all assertions are

atomic, simple, ground, and baselevel and (2) all queries

are positive, simple, unquanti�ed, and baselevel.
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A �rst-order system is one that allows the broadest cat-

egories within each conformance dimension except that

only �rst-order expressions are accommodated.

A full KIF system is one that accepts the broadest cate-

gories within each conformance dimension, i.e. any KIF

knowledge base is acceptable in any context.

Dealing with Di�erences in Conformance Pro�les
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Knowledge Query and Manipulation

Language.

Multi-agent systems

The way to deal with an impossible task is to chop

it down into a number of merely very diÆcult tasks,

and break each one of them into a group of horribly

hard tasks, and each one of them into tricky jobs,

and each one of them...

(Terry Pratchett, Truckers)

What's agent?

Why we need distributed computation?

� to distribute the load

� to manage the complexity

� for distributed tasks

Communication between agents

The interaction is a combination of:

� interaction protocol| the strategy of the agent

� communication language| the expressive mean

� transport protocol | the media of the commu-

nication
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What needs to be negotiated:

� the syntax of the message content;

� the semantics of the message content;

� the pragmatics of the message;

More about the Pragmatics:

�Who to talk to?

� How to �nd him?

� How to get his attention?

� How to start and maintain the conversation?

�What to do with the messages of the others?

� How to answer adequately?

Some administrative functions also:

� the structure of the society

� the structure of the conversation.

How "open" the ACL should be?
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KQML history and philosophy

First published in 1993.

The last proposal for new speci�cation in 1997th.

http://http://www.cs.umbc.edu/kqml/

Philosophy

� KQML is a high-level communication language

� a protocol for information exchange

� an extendable set of pragmatics

KQML Assertions for the transport protocol:

� one-way communication links;

� discrete messages (packages vs. stream);

� the communication can introduce delays;

� the receiver knows the sender;

� First-Sent-First-Received;

� message delivery is reliable.
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Basics

The KQML primitives are called performatives |

determine the intention and the protocol

Sample pragmatics: ask, tell, achieve, reply

Each performative consists of:

� type;

� attribute-value pairs;

Sample attributes: content, language, topic, ontology,

sender, reply-with.

Agents as VKB

A virtual KB with two constituents:

� an information array | the agents believes;

� a goal array | intentions.

She most basic performatives: tell, untell, achieve,

unachieve.

Kinds if Performatives: core, standard and extended.
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Facilitators

To take care for:

� mapping between the physical address and the sym-

bolic names

� support of a registry of the services;

� routing, connecting, etc.

KQML is quite "open"

The dimensions of this exibility:

� the transport protocol is not �xed

� the KR language | not �xed. The defualt repre-

sentation is KIF ;

� no limitations for the ontology

� the society architecture is not restricted

� new types of performatives can be added;

� new parameters for the existing performatives al-

lowed
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KQML syntax

<performative> ::=

(<word> {<white> :<word>

<white> <expression>}*)

An example:

(tell :sender A :receiver B ...

:language PROLOG :content "father(c,d)")

KQML semantics

De�ned in terms of the changes of the state of the VKB

Open questions

1. Is it acceptable in one VKB to keep expressions in

di�erent languages?

2. What about message identity?

The Future | ACL by FIPA

Foundation for Intelligent Physical Agents (FIPA)

http://www.�pa.org


