Identifying Linguistic Structure in a Quantitative Analysis of Bulgarian Dialect Pronunciation

Jelena Prokic j.prokic@rug.nl

03.11.2006. Sofia

Outline

- The goal of the thesis
 - Aggregate analysis
 - Identification of linguistic structure in the aggregate analysis
- Previous work
- Aggregate analysis
 - New data set
 - □ L04
- Regular sound correspondences
 - Extraction
 - Quantification
 - Results

The Goal of the Thesis

- To do an aggregate analysis of the Bulgarian dialects using
 - new data set
 - □ L04
- To identify the underlying linguistic structure in the aggregate analysis
 - regular sound correspondences were extracted from the aligned pairs of words
 - for the 10 most frequent sound correspondences a separate analysis of each site was made

Previous Work

- Aggregate analysis of dialect divisions
 - successfully applied to various languages
 - on Bulgarian applied by Osenova et all. (2006)
- Identification of linguistic structure in the aggregate analysis
 - aggregating over a subset of data (Nerbonne, 2005)
 - □ factor analysis (Nerbonne, 2006)
- Extraction of sound correspondences
 - Kondrak (Kondrak, 2002) applied it in the task of cognate identification

Osenova et al. 2006

- Aggregate analysis of dialect divisions in Bulgaria
 - □ data set: 36 words collected from 490 sites
 - suprasegmentals and diacritics were removed
 - □ L04 toolkit
- Cluster analysis
- Multidimensional scaling

Map of Bulgarian dialect divisions taken from Stoykov (2002)

Classification map from Osenova et al. (2006)

Continuum map from Osenova et al. (2006)

- Both maps give a reliable picture of the dialect divisions
 - the most important division is between East and West
 - Rodopi area is the most incoherent
 - area around Varna and Schumen is distinct from the neighbouring areas
 - area around Teteven is also distinct
- Dialectometrical methods were successfully applied to a Slavic language for the first time

Extraction of Linguistic Structure

- Nerbonne (2005)
 - aggregates over a subset of the data, namely vowels
 - the differences between the sites are calculated using both complete phonetic transcriptions and also using only vowels
 - results: vowels are probably responsible for a great deal of aggregate differences (r = 0.936)
- Nerbonne (2006)
 - applies factor analysis to the results of the dialectometrical analysis
 - only vowels are investigated
 - results: 3 factors are most important, explaining 35% of the total amount of variance

Sound Correspondences

- Kondrak (2002) extracts regular sound correspondences and uses them to identify cognates in a bilingual word list
- Melamed's parameter estimation models were adopted and used to determine sound correspondences
- The more regular sound correspondences two words contain the more likely it is that they are cognates and not borrowings
- This method has outperformed other methods for cognate identification

New Data Set

- Data from the project Buldialect Measuring linguistic unity and diversity in Europe
- □ 117 words collected from 84 sites
- Words include nouns, verbs, pronouns, and prepositions in different word forms
- □ All phonetic transcriptions were in X-SAMPA format

Distribution of 84 Sites

Distribution of 84 sites from the new data set

Part I: Aggregate Analysis

- L04 toolkit
 - alignment of word transcriptions
 - Levensthein algorithm
 - cluster analysis
 - multidimensional scaling

- Preprocessing of the data
 - suprasegmentals and diacritics were removed
 - □ s' s\ "s *s *"s *all represented as s
 - palatalized/non-palatalized opposition preserved

Aggregate Analysis Cont.

□ Alignments were based on the following principles:

- vowel can match only with the vowel
- consonant can match only with the consonant
- [i] and [u] can match both with vowels and sonorants
- [j] can match both with vowels and consonants

Aggregate Analysis Cont.

- Insertions, deletions, and substitutions have the same cost 1
- The distance between two strings was normalized by the length of the longest alignment that gives the minimal cost
- The distance between two aligned strings in Example 1 would be 0.5
- Distances between the aligned pairs of transcriptions are used to calculate the distance between each pair of sites
- The results were analyzed using cluster and multidimensional scaling (MDS) analyses

Dendograms

Cluster Maps

MDS Maps

Results

- Clear division between East and West ('yat' realization border)
- **Rodopi area is the most incoherent**
- Both cluster and MDS map conforms with the maps presented in Osenova et al. (2006) and the map presented in Stoykov (2002)
- New data set gave a faithful picture of the dialect divisons in Bulgaria

Part II: Regular Sound Correspondences

- Problem: How to extract linguistic structure from aggregate comparison?
- Suprasegmentals and diacritcs were removed
- Word pronunciation transcriptions were aligned using L04
- For each pair of sites one best alignment for every word is taken into account (1.18 alignments per word pronunciation pair)

Example 2:

Regular Sound Correspondences Cont.

- Phonetic distance between 2 segments is not taken into account, they are either identical or not
- Segments that do not match were extracted from all aligned pairs and sorted according to their frequency

Regular Sound Correspondences Cont.

Example 3:

Babjak	j	а			Beglezh	а	S
Golica	l		а	S	S. Dol	j	а
	1	1	1		1		1

phon1	j	а	
phon2		а	S
No.	2	1	2

Table 1: Sound correspondences extracted from the alignments in Example 3

Regular Correspondences Cont.

- For each pair of sites and every word correspondences were summed
- Results:

е	0		а	а	Ð	е	а	V	j
i	u	X	е	X	γ	γ	Ð		
52246	40981	39414	33391	33184	32753	32177	28976	22462	21475

Table 2: 10 most frequent correspondences from the whole data set

 Eight out of ten most frequent correspondences involve substitution or insertion/deletion of vowels

Correspondence Index

- Correspondence index is obtained by comparing every site to all other sites with respect to the first ten correspondences
- Goal:
 - to see if the site belongs to the group where 1 or the other sound is present
 - to see if there is a geographical cohesion in the sites that use 1 or the other sound in the correspondence
- Method:
 - only one best alignment for each word pronunciation pair was taken into account
 - all sound correspondences were extracted, both matching and nonmatching

r	а	е	0	е	S	k	d	I	V
r	а	i	u	е	S	k	d	I	V
35	35	29	27	27	26	25	24	24	24

Table 3: 10 most frequent correspondences for the pair Aldomirovci-Borisovo

 For each pair of the most frequent correspondences (Table 2) a correspondence index is calculated for each site using the following formula:

$$\frac{1}{n-1}\sum_{j=1,j\neq i}^{n}S_{i}\rightarrow S_{j}, i=1,\dots,n$$

n – number of sites

 $S_i \rightarrow S_j$ - comparison of each 2 sites with respect to certain sound correspondence

 $S_i \rightarrow S_j$ is calculated applying the following formula:

- /S,S/ the number of times sound s seen in the word pronunciation collected at site1, was aligned with s' in the word pronunciation collected at site2
- /S,S/ the number of times sound s seen in the word pronunciation collected at site1 stayed unchanged

Correspondence index for the pair [e]-[i] for Aldomirovci and Borisovo:

S	е	i	е
S'	i	е	е
No.	29	0	27

Table 4: Number of times [e] correspondes to [e] and [i] for the site pair Aldomirovci-Borisovo

$$\frac{|e,i|}{|e,i|+|e,e|} = \frac{29}{29+27} = 0.517$$

Index for
$$\frac{|e,i|}{|e,i|+|e,e|} = \frac{0}{0+27} = 0.0$$

Index for

Index for site1 (Aldomirovci)

Index for site2 (Borisovo)

- Every site was compared to all other sites resulting in 83 indexes per site
- The general correspondence index for each site represents the mean of all 83 indexes
 - Aldomirovci 0.2328
 - Borisovo 0.1538
- Sites with the higher values of the general index represent the sites where sound [e] tends to be present
- Sites with the lower values of the general index represent the sites where sound [i] tends to be present

- General correspondence index was calculated for every site with the respect to the 10 most frequent correspondences found in the data set
- General indexes were analyzed using composite clustering and MDS-cophenetic method resulting in 2 types of maps:
 - composite cluster maps
 - MDS-cophenetic maps

[e]-[i] correspondence

[o]-[u] correspondence

Composite cluster map

[**γ**]-[**ø**] correspondence

Composite cluster map

[**a**]-[e] correspondence

[**α**]-[**γ**] correspondence

Composite cluster map

[**∂**]-[**γ**] correspondence

Composite cluster map

٦

[e]-[**y**] correspondence

Composite cluster map

[**a**]-[**ə**] correspondence

Composite cluster map

٦

[v]-[ø] correspondence

Composite cluster map

[j]-[ø] correspondence

Composite cluster map

Results

- Maps show that there is a geographical cohesion in the distribution of sites
- Maps show similarity with the traditional maps
- West-East division is based on the following correspondences:
 [e]-[i] [o]-[u] [a]-[e] [a]-[γ] [e]-[γ] [a]-[ə] [v]-[ø]
- Area around Kozichino and Golica is characterized by the presence of [e], [a], and [v] sounds

Drawbacks of the Method

- Analyzes only one sound alternation at a time
- In the analysis of the sound alternations no context is taken into account

Future Work

- More sites should be included
- Instead of a simple phone representation of segments, feature representation of segments should be used
- Stress should be included
- MDS-cophenetic maps should include scale

References

- [Kondrak 2002] G. Kondrak. Algorithms for Language Reconstruction. PhD Thesis, University of Toronto.
- [Nerbonne 2005] John Nerbonne. <u>Various Variation Aggregates in the LAMSAS</u> <u>South.</u> Accepted to appear in (10/2005) Catherine Davis and Michael Picone (eds.) *Language Variety in the South III.* Tuscaloosa: University of Alabama Press.
- [Nerbonne 2006] John Nerbonne. Identifying Linguistic Structure in Aggregate Comparison. Accepted (5/2006) to appear in Literary and Linguistic Computing 21(4), 2006. (J.Nerbonne & W.Kretzschmar, Jr. (eds.) Progress in Dialectometry: Toward Explanation)
- [Osenova et al. 2006] Petya Osenova, Wilbert Heeringa and John Nerbonne
 <u>A Quantitative Analysis of Bulgarian Dialect Pronunciation</u>. To appear.
- [Stoykov 2002] S. Stoykov. Bulgarska dialektologiya. Sofia, 4th ed.