Application of Phylogenetic Methods on the Dialect Pronunciation Data

Jelena Prokić University of Groningen The Netherlands

Tübingen, 23 June 2007

Overview

- Introduction
- Phylogenetic methods
- Linguistic data
- Results
- Conclusions

Introduction

- Can methods from phylogenetics be applied to linguistic data?
 - What is the similarity between biological and linguistic data?
- What can phylogenetic analyses tell us about language change?

Phylogenetics

- Study of evolutionary relatedness among various groups of organisms
- Molecular phylogeny
 - the use of the structure of molecules to gain information
 - analysis of aligned nucleotide or amino acid sequences
 - closely related organisms have similar molecular structure

A Sequence Alignment

Figure 1: Multiple sequence alignment

Methods

- Distance-based
 - UPGMA (Unweighted Pair Group Method with Arithmetic mean)
 - Neighbor Joining
 - \circ Neighbor Net
- Character-based
 - Maximum Parsimony
 - Maximum Likelihood
 - Bayesian Inference

Distance-based Methods

- Step 1: estimate pairwise distances
- A ATTTGCGGTAB ATCTGCGATAC ATTGCCGTTT
- D TTCGCTGTTT

	А	В	C	D
Α	0.0	0.2	0.4	0.7
В		0.0	0.5	0.6
С			0.0	0.3
D				0.0

• Step 2: apply one of the distance-based methods

Figure 2: Neighbor-joining tree

Figure 3: Neighbor net

Character-based Methods

- Carry out calculations on each of the individual residues of the sequences
- Individual variations between sequences not reduced to a single value
- Infer the phylogeny based on all the individual characters

Figure 4: Maximum parsimony tree

Figure 5: Maximum parsimony tree

Figure 6: Maximum parsimony tree

Similarity with Linguistic Data

- Languages evolve in similar ways to biological species
 - $\circ~$ split into new languages, mutate
- Languages, like molecules, document evolutionary history
- Language family trees
 - from lexical, morphological and phonological data

Multiple Sequence Alignments

• Pairwise sequence alignments using Levensthein

b	е	I	i	b	е		i
b	3	I	i	b ^j	α	I	i

• Extracted multiple sequence alignments

b	е		i
b	3	I	i
b ^j	α		i

Distance-based Methods

- Transcriptions of 113 different words merged into 1 string
- Distance between 2 sites number of different positions divided by the length of the string

Neighbor Joining

H0.01

Figure 7: Neighbor Joining Tree

NJ - **Dialect Divisions**

Figure 8: Four dialect areas

Neighbor Net

Figure 9: Neighbor Net Tree

₩0.01

NN - **Dialect Divisions**

Figure 10: Three dialect areas

Bootstrapping

- Statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample
- Creates a new data set by sampling N characters randomly with replacement
- Resulting data set has the same size as the original
- Statistically bootstrapped data sets contain variation that you would get from collecting new data sets
- Bootstrap values are a measure of support of a given edge

NJ - Bootstrapped Tree

Figure 11: Bootstrapped tree

Character-based Method

- Transcriptions of 20 different words merged into 1 string
- Maximum parsimony method method for phylogenetic inference
- Infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data
- Cladistic method studies the pathways of evolution
- Each character serves as an independent hypothesis of evolution

j	α	g	n	е	b	е		i	V	е	t	γ	r	g	0	V	е	d	0
-	α	g	n	i –	b	е	I	i	vj	α	t	γ	r	g	u	V	е	d	u
j	α	g	n	е	b	3		i	V	3	t	е	r	g	υ	V	е	d	u
j	α	g	n	е	b	3	I	i	V	3	t	е	r	g	u	V	е	d	u
-	α	g	n	е	b ^j	α	I	i	vj	α	t	γ	r	g	u	V	е	d	u
j	α	g	n	е	b	е	Ι	i	V	е	t	γ	r	g	u	V	i.	d	u
j	α	g	n	е	b	е	I	i	V	е	t	е	r	g	u	V	е	d	u

Figure 12: Each colored position reflects unique linguistic phenomenon

Maximum Parsimony I

Figure 13: Three dialect areas

Maximum Parsimony II

Figure 14: Six dialect areas

$\mathbf{v} - \mathbf{v}^j$ opposition

Figure 15: Palatalization of front consonant in word "vjatyr"

Reflexes of 'jat' in Non-Palatal Environment

Figure 16: Reflexes of 'jat' in word 'vjatyr'

Reflexes of the Front Nasalized Vowel

Figure 17: Reflexes of old nasalized vowel in word 'govedo'

Conclusions

- Distance-based methods give nice representation of data
- Networks are more suitable for dialect representation than trees
- Character-based methods give deeper insights into dialect change and variation

Future Work

- Exploration of character-based methods
- Other character-based methods should be included
- Automatic detection of phonetic changes that represent the same phenomenon