Grammar Formalisms:
Lexical Functional Grammar (LFG)

Laura Kallmeyer, Timm Lichte, Wolfgang Maier
University of Tübingen
Summer term 2007

Overview
1. Principle ideas of LFG
2. F-structures
3. Linking C-structures and F-structures
4. Control and raising
5. Long-distance dependencies
6. Summary

Principle ideas of LFG (1)
Lexical Functional Grammar (Kaplan & Bresnan, 1982):
• One level of constituent structure, c-structure, non-transformational.
 C-structures are represented with trees.
• A separate level of functional structure, f-structure, representing grammatical functions and predicate-argument relations.
 F-structures are represented with feature structures.
• Other levels such as argument structure (encoding thematic roles), semantic structure, morphological structure.
• Syntactic phenomena (including long-distance dependencies) are treated locally.

Principle ideas of LFG (2)
C-structure F-structure

\[
\begin{array}{c}
 NP \\
 Det \\
\hline
 N \\
 V \\
 NP \\
 Det \\
\hline
 Subj \\
 Def + \\
 Num sg \\
 Tense past \\
 Pred 'eat (subj, obj)' \\
 Obj \\
 Pred apple \\
 Def + \\
 Num sg \\
\end{array}
\]
Principle ideas of LFG (3)

Evidence for a functional representational level comes from non-configurational languages.

Example: Warlpiri.

1. The two small children are chasing that dog.

 \[\text{wita-jarra-rlu ka-pala wajuli-pi-nyi yalumpu kurdu-jarr a-rlu maliki}\]

 small-pres chase-NPAST that ABS child- dog ABS dual-erg 3dsSUBJ

 dual-erg

 PRED SUBJ OBJ

 chase \(\langle\text{agent patient}\rangle\)

F-structures (1)

F-structures are attribute-value structures notated with the usual avm-notation.

Linguistic terminology:
- Attributes whose values are f-structures are called *grammatical functions*.
- Attributes whose values are symbols are called *features*.
- Attributes whose values are semantic forms are called *semantic features*.

F-structures (2)

Description of f-structures:

\[
\begin{align*}
(f_1 \text{SUBJ}) &= f_2 \\
(f_2 \text{PRED}) &= \text{`man'} \\
(f_2 \text{DEF}) &= + \\
(f_2 \text{NUM}) &= \text{SG} \\
(f_1 \text{TENSE}) &= \text{PAST} \\
(f_1 \text{PRED}) &= \text{`eat \langle subj, obj \rangle'} \\
(f_1 \text{OBJ}) &= f_5 \\
(f_5 \text{PRED}) &= \text{`apple'} \\
(f_5 \text{DEF}) &= + \\
(f_5 \text{NUM}) &= \text{SG}
\end{align*}
\]

F-structures (3)

More examples

- \((f_1 \text{SUBJ NUM}) = \text{SG}\)

 \[
 f_1 \begin{bmatrix} \text{SUBJ} & \text{NUM} & \text{SG} \end{bmatrix}
 \]

- \((f_1 \text{SUBJ}) = (f_1 \text{XCOMP SUBJ})\)

 \[
 f_1 \begin{bmatrix} \text{SUBJ} \end{bmatrix} \\
 f_1 \begin{bmatrix} \text{XCOMP} & \text{SUBJ} \end{bmatrix}
 \]
Linking C-structures and F-structures (1)

Each node in the c-structure is linked to exactly one f-structure.

```
NP  
|    |
|_Det_|
|    |
|_the_
|    |
|_man_|
V    
|    |
|    |
|ate  |
|    |
|    |
NP    
|    |
|    |
|_Det_|
|    |
|_the_
|    |
|_apple |
```

- **SUBJ** f₁
 - PRED 'man'
 - DEF +
 - NUM sg

- **TENSE** f₂
 - past

- **PRED** f₃
 - 'eat (subj, obj)'

- **OBJ** f₄
 - PRED 'apple'
 - DEF +
 - NUM sg

Linking C-structures and F-structures (2)

C-structures are described with standard phrase structure rules.

- **S** → NP VP, NP → Det N, ...

The phrase structure rules are equipped with information about how the mother f-structure and the daughter f-structures are related.

For a given node, the symbols ↑ and ↓ refer to the f-structures of the mother node and of the node itself.

```
S → NP VP
  (↑ SUBJ) = ↓ ↑ = ↓

NP → Det N
    ↑ = ↓ ↑ = ↓

VP → V NP
    ↑ = ↓ (↑ OBJ) = ↓
```
Control and raising (1)

Control:

(2) John believes to understand f-structures.
(3) John promised Bill to eat the apples.
(4) John persuaded Bill to eat the apples.

An argument of the matrix verb is identical to the non-overt subject of the complement clause.

There is no empty category PRO: the control relation is represented only in the f-structure.

Control and raising (2)

(5) John believes to understand f-structures.

Control and raising (3)

(6) John persuaded Bill to eat the apples.

Control and raising (4)

Raising:

(7) John seems to eat the apples
(8) John believes Bill to like Mary

An athematic argument of the main verb is identical with the non-overt subject of the embedded verb.

Athematic arguments are listed in the pred value (to satisfy coherence) but occur outside the brackets (…).
Control and raising (5)

(9) John seems to eat the apples

\[
\begin{array}{l}
\text{SUBJ} [\text{PRED} 'John'] \\
\text{TENSE} \text{past} \\
\text{PRED} 'seem' \langle \text{xcomp subj} \rangle \\
\text{XCOMP} \langle \text{SUBJ} \rangle \\
\text{OBJ} \langle \text{PREP} 'eat' \langle \text{subj, obj} \rangle \rangle \\
\end{array}
\]

\[
V \rightarrow \text{seems} \\
(\uparrow \text{PRED}) = 'seem' \langle \text{xcomp subj} \rangle \\
(\uparrow \text{SUBJ}) = (\uparrow \text{xcomp subj})
\]

Long-distance dependencies (1)

(10) Which book does Mary think John prefers?

F-structure for a wh-question without a long-distance dependency:

(12) Which book does John prefer?

\[
\begin{array}{l}
\text{SUBJ} [\text{PRED} 'John'] \\
\text{TENSE} \text{pres} \\
\text{PRED} 'believe' \langle \text{subj, xcomp} \rangle \\
\text{OBJ} \langle \text{PREP} 'like' \langle \text{subj, obj} \rangle \rangle \\
\end{array}
\]

Inside-out equation:

\[
\text{which}: \\
((\text{FOCUS} \uparrow) \text{TYPE}) = Q
\]

Control and raising (6)

(10) John believes Bill to like Mary

\[
\begin{array}{l}
\text{SUBJ} [\text{PRED} 'John'] \\
\text{TENSE} \text{pres} \\
\text{PRED} 'believe' \langle \text{subj, xcomp} \rangle \text{obj} \\
\text{OBJ} [\text{PREP} 'Bill'] \\
\text{XCOMP} \langle \text{SUBJ} \rangle \\
\text{OBJ} \langle \text{PREP} 'like' \langle \text{subj, obj} \rangle \rangle \\
\end{array}
\]

\[
V \rightarrow \text{believes} \\
(\uparrow \text{PRED}) = 'believe' \langle \text{subj, xcomp} \rangle \text{obj} \\
(\uparrow \text{OBJ}) = (\uparrow \text{xcomp subj})
\]

Long-distance dependencies (2)

So far, which book is linked to the focus f-structure. Because of completeness, an object f-structure is needed as well.

Therefore, an empty category is introduced and equipped with an inside-out equation ((OBJ \uparrow)FOCUS) = \uparrow.
Long-distance dependencies (3)

![Diagram](image)

(13) Which book does Mary think John prefers?

\[
\begin{array}{c}
\text{TYPE} = q \\
\text{FOCUS} = \begin{cases} \\
\text{PRON} = \text{wh} \\
\text{NUM} = \text{sg} \\
\text{SUBJ} = \text{PRED} = \text{Mary} \\
\text{TENSE} = \text{pres} \\
\text{PRED} = \langle \text{think (subj, comp)} \rangle \\
\text{COMP} = \begin{cases} \\
\text{SUBJ} = \text{RED} = \langle \text{John} \rangle \\
\text{OBJ} = \text{RED} = \langle \text{prefer (subj, obj)} \rangle \\
\end{cases}
\end{cases}
\end{array}
\]

empty category: \((\text{COMP OBJ }) \Rightarrow \text{FOC} = \uparrow\)

Summary

- LFG distinguishes between two levels of representation: a constituent structure (a tree) and a functional structure (an attribute value structure).
- This distinction allows to capture languages where single elements in the f-structure are linked to discontinuous parts in the c-structure.
- C-structure is described with phrase structure rules. The single nodes in the c-structure are equipped with equations defining properties of their own and their mother’s f-structure.
- The description language for the f-structures is very powerful, including in particular functional uncertainty, a device that allows to describe paths of arbitrary length in the f-structure.