Java-API to GermaNet Version 1.0

Uni versity of Tuebi ngen

Depart ment of Conputational Linguistics
Wl hel nstr. 19

72074 Tuebi ngen, GCernany

Java'-API to GermaNet, Version 1.0

Marie Hinrichs

University of Tuebingen

1 This document, as well as the API itself, is based on the Perl-API to GermaNet by Holger
Wunsch: http://www.sfs.uni-tuebingen.de/~wunsch/germanet api.html

Java-API to GermaNet Version 1.0

Manual Version 1.0 (31 July 2008)

Acknowl edgnents go to Pil ku Gupta, Lothar Lemmitzer, Hol ger
Winsch, and Thomas Zastrow for their valuable input on both the
features and usability of this API.

Java-API to GermaNet Version 1.0

What is GermaNet?

GermaNet is a lexical semantic network that partitions the lexical space in a set of concepts that are interlinked
with semantic relations. A semantic concept is modeled by a synset in GermaNet. A synset is a set of words
(called lexical units) where all the words are taken to have (almost) the same meaning. Thus a synset is a set-
representation of the semantic relation of synonymy. The term synset means "set of synonyms".

There are two types of semantic relations in GermaNet: conceptual relations and lexical relations. Conceptual
relations hold between two semantic concepts, or synsets. They include relations such as hyperonymy, part-whole
relations, entailment, or causation. Lexical relations hold between two individual lexical units. Antonymy, a pair
of opposites, is an example of a lexical relation.

Java API to GermaNet

The Java API to GermaNet provides high-level look-up access to GermaNet data for use within Java programs.
When a GermaNet object is constructed, data is loaded from the GermaNet XML sources. This object can then be
used to extract Synsets and LexUnits, which in turn can be used to examine attributes or find semantic relations,
among other things.

This API is intended as a read-only resource: no public methods are provided for changing or adding data.

Java-API to GermaNet Version 1.0

GermaNet Data Organization and Objects

This section describes the various types of objects contained in the GermaNet API.

GermaNet is a collection of German lexical units (LexUnits) organized into sets of synonyms (Synsets). A
GermaNet object provides methods for retrieving Lists of Synsets or LexUnits which can be filtered by word
class, orthographic form, or some combination.

A Synset has a WordClass (adj, nomen, verben) and consists of Lists of LexUnits, Frames, paraphrases
(represented as Strings), and Examples. The List of LexUnits for a Synset is never empty, but any of the others
may be. A Synset object provides methods for retrieving any of its properties as well as methods for retrieving
Lists of other Synsets conceptually related to it.

A LexUnit consists of one or more orthForms (represented as a List of Strings), and has the following attributes:
markedStyle (boolean), sense (int), orthVar (boolean), artificial (boolean), properName (boolean), status (String).
A LexUnit object provides methods for retrieving any of its properties, as well as methods for retrieving Lists of
other LexUnits lexically related to it.

A Frame is simply a container for frame data (String).
An Example consists of text (String) and 0 or more Frames.

A ConRel is a set of possible conceptual relations between Synsets (represented as an enum type). A ConRel
object provides methods for checking if a particular String is a valid conceptual relation, and for determining if a
relation is transitive or not. The set consists of the following transitive and non-transitive relations:

Transitive relations: hyperonymy, hyponymy, meronymy, holonymy
Non-Transitive relations: entailment, entailed, causation, caused, association

A LexRel is a set of possible lexical relations between LexUnits (represented as an enum type). A LexRel object
provides a method for checking if a particular String is a valid lexical relation. Since there is only one transitive
lexical relation (synonymy), and no special processing is required by the API to retrieve synonyms, there is no
distinction made between transitive and non-transitive lexical relations. The set consists of the following relations:

synonymy, antonymy, pertonymy,
argl, argl_pred, arg2, arg2_pred, participleOf

A WordClass is a set of possible word classes (represented as an enum type) and contains the values:

adj, nomen, verben

Java-API to GermaNet Version 1.0

Tutorial

In this tutorial, we will develop a Java program that makes use of the most important part of the GermaNet-API.
Once it is finished, your program will even be useful — it generates a description of a graph that shows a concept
and all its hyperonyms and hypernyms up to a certain distance from the concept, which is specified by the user.
The file HyperonymGraph.java contains the source code for this tutorial, and is included in the GermaNet
distribution.

The final output will look somewhat like the graph on the next page.

Obtaining the GraphViz Tools

In order to turn the graph description into an actual image, you will need the GraphViz Tools, which are freely

available on the web. Now would be a good time to download and install them from the GraphViz website at
www. gr aphvi z. org

http://www.graphviz.org/

Java-API to GermaNet Version 1.0

The output of the tutorial program:

BB age
[-S—— @
e ssBBequuLRS

sBeqnEpf]
R g T

e. ‘ e ‘ N

seddyuspngy
UsfEmEIUSIcRIag
usBemnyy
usBEmspuE o0

e [HE-—_——

usfemiay ssudgnen

Braziyeysusg

modaeapag

¥ Eneziyegeg

"

usBemiense

usbEmszog

Java-API to GermaNet Version 1.0

Before You Start

If you haven't done so already, you will need to obtain:
1. The GermaNet data (unpacked to a directory typically named Vxx_UTF)
2. The GermaNet java library, called GermaNet1.0.jar

All of the classes described previously are defined in the package germanet within the GermaNet1.0.jar file. You
do not need to unpack the jar file.

If you are working from the command line, you will need to add GermaNetl.0.jar to your CLASSPATH
environment variable. See http://faq.javaranch. confj ava/ HowToSet Thed asspat h for help
with setting your classpath on various operating systems.

If you are working within an IDE (such as NetBeans or Eclipse), add GermaNet.jar to the classpath for any project
which uses GermaNet.

Important Note:

Loading GermaNet requires more memory than the JVM allocates by default. Any application that loads
GermaNet will most likely need to be run with JVM options that increase the memory allocated, like this:

java -Xms128m -Xmx128m MyApplication

These options can be added to your IDE's VM options so that they will be used automatically when your
application is run from within the IDE.

Depending on the memory needs of the application itself, the 128's may need to be changed to a higher number.
Be careful not to allocate too much memory for the JVM, though, as this may cause other running programs (like
your windowing environment) to crash.

Step 1: Importing Libraries

Before we can create a GermaNet object, which loads the XML data and provides methods for looking up Synsets
and LexUnits, we need to import the germanet library and several other necessary libraries.

The box below shows the first lines of the program. If you plan to type the program yourself along with the
tutorial, create a file called HyperonymGraph.java.

i mport gernanet.*;
i mport java.io.*;
i mport java.util.*;

public class Hyperonyn& aph {
public static void main(String[] args) {

// to be filled in..

http://faq.javaranch.com/java/HowToSetTheClasspath

Java-API to GermaNet Version 1.0

Step 2: Getting User Input

The program needs some information to do its job that the user must supply:

® The word whose hyperonyms and hyponyms should be displayed (to be accurate, it is not a word whose
relations are to be displayed, but rather the synset that the word is a member of. In fact, a word could be a
member of more than one synset if it is ambiguous, in which case the program will print the hyperonyms
and hyponyms for all of the synsets.

® The maximum distance up to which hyperonyms and hyponyms are to be displayed.

® The name of the file to write the output to.

i mport gernanet. *;
i mport java.io.*;
i mport java.util.*;

public class Hyperonyn& aph {
public static void main(String[] args) {
Scanner keyboard = new Scanner (Systemin);
String dest Nane;
File gnetDr;
String word,
i nt depth;
Witer dest;

System out. println("Hyperonyma aph creates a G aphViz graph " +
"description of hyperonynms and hyponyns of a GernmaNet" +
"concept up to a given depth.");

Systemout. println("Enter <word> <depth> <outputFile> " +
"[eg: Autonpbil 2 auto.dot]: ");

word = keyboard. next ();
depth = keyboard. nextInt();
dest Nanme = keyboard. nextLine().trim));

// to be continued..

Step 3: Create a GermaNet Object

To construct a GermaNet object, provide the location of the GermaNet data. This can be done with a String
representing the path to the directory containing the data, or with a File object. Generally speaking, file locations
should never be hardcoded, but for the sake of simplicity, this code assumes that the GermaNet data files are in a
directory called /germanet/V51_UTF. Please change the line:

gnetDir = new File("/germanet/ V51 UTF");
to reflect the actual location of the GermaNet data files on your computer.

i mport gernanet.*;
i mport java.io.*;
i mport java.util.*;

public class HyperonynG aph {
public static void main(String[] args) {

Java-API to GermaNet Version 1.0

try {
Scanner keyboard = new Scanner (Systemin);

String dest Nane;
String word;

i nt depth;
Witer dest;

System out. println("Hyperonynaaph creates a GraphViz graph " +
"description of hyperonynms and hyponyns of a GermaNet" +
"concept up to a given depth.");

Systemout. println("Enter <word> <depth> <outputFile> " +
"[eg: Autompbil 2 auto.dot]: ");

word = keyboard. next ();
dept h = keyboard. nextInt();
dest Nane = keyboard.nextLine().trim);

gnetDir = new File("/gernmanet/V51 UTF")
GernaNet gnet = new GernmaNet (gnetDir);

// to be continued...

} catch (Exception ex) {
ex. print StackTrace();
System exit (0);
}
}
}

Notice that we need to enclose the call to the constructor in a try/catch block. This is because the GermaNet object
cannot be created if the data files are not found or are corrupted. If something goes wrong, an exception is thrown.
We just print the stack trace and exit if this happens.

Step 4: Finding All Synsets

We can now find all the synsets in GermaNet that the word wor d is a member of. Recall that words may be
ambiguous, which means that a word (or lexical unit) may occur in more than one synset.

Li st <Synset > synsets;
synsets = gnet.get Synset s(word);

if (synsets.size() == 0)
Systemout.println(word + " not found in GermaNet");
System exit(0);

}

// to be continued..

The method get _synset s, which is defined in the class Ger maNet , returns a List containing all of the Synsets
that the word occurs in. If the size of this list is zero, then no Synsets were found with a LexUnit containing the
orthForm wor d, and we exit the program.

Each element of the List synset s is a Synset object. A Synset object has methods to retrieve all the lexical units
that are members of the Synset, and to find out about what other synsets are related to it with respect to a specific
kind of conceptual relation. We will use some of the methods that are implemented in the Synset class in the

next step.

Java-API to GermaNet Version 1.0

Step 5: Generating the Hyperonym Graph

We are now ready to generate the output, which is first stored in a String called dot Code, then written to the
output file. As mentioned before, our program does not directly create images, but rather textual descriptions of
graphs in the GraphViz graph definition language. These can later be turned into images using the GraphViz tools.

String dotCode = "";

dot Code += "graph G {\n";

dot Code += "overl ap=fal se\n";

dot Code += "splines=true\n";

dot Code += "orientation=l andscape\n”;
dot Code += "size=\"13, 15\"\n";

HashSet <Synset > vi sited = new HashSet <Synset >();
for (Synset syn : synsets) {

dot Code += printHyperonynms(syn, depth, visited);
}

dot Code += "}";

dest = new BufferedWiter(new QutputStreamiWiter(

new Fi | eQut put St reanm(new Fi | e(dest Nane)), "UTF-8"));
dest.wite(dot Code);
dest . cl ose();

The first line of the dot Code String opens a GraphViz gr aph-statement. The following four lines then define
the basic layout of the graph. Please refer to the GraphViz manual if you want to find out what exactly these
statements do.
The algorithm that traverses the network to find the hyperonyms and hyponyms is not very complicated. It works
as follows:
@ Start with a synset that the word the user requested is a member of (called Synset Syn). This becomes the
center node of the graph.
® Look up all hyperonyms of Syn and add them to the graph as neighbor nodes of syn.
® Look up all hyponyms of syn and add them to the graph also.
® For each hyperonym and hyponym found, recursively find and add their hyperonyms and hyponyms to
the graph, up to the maximum distance to the center node, as specified by the user.

To sum up, the algorithm finds all hyperonyms and hyponyms of a given synset Syn, adds them to the graph, and
then in turn does exactly the same it did with Syn with all of its hyperonyms and hyponyms.

There is one catch, however, that we must pay attention to: Assume the algorithm looks at some synset S. It finds
all hyperonyms of S and adds them to the graph. Then it recursively repeats all its steps for each hyperonym h it
found: That is, it first finds all hyperonyms of h, then it finds all hyponyms of h. At this point, we must be careful,
since the synset S the algorithm looked at in the previous recursive step is, of course, a hyponym of h! We must
make sure that the algorithm doesn't consider synsets it already looked at over and over again. In our program, we
use the HashSet vi si t ed for this: For each synset the algorithm finds, we add the synset to the vi si t ed set.
Any synset that is in the vi Si t ed set is not considered any further by the algorithm in subsequent recursive
steps.

The program proceeds by calling the static pri nt Hyper onyns method for each synset in the synset s list. In
the next step, we will turn to pri nt Hyper onyns, which is the implementation of the recursive algorithm
sketched above.

Java-API to GermaNet Version 1.0

We then finish up by adding a closing brace to the GraphViz description, write the code to the output file, and
close the file.

Step 6: Recursively Printing Hyperonyms and Hyponyms

The pri nt Hyper onyns method, which recursively adds all hyperonyms and hyponyms of a synset to the
hyperonym graph, expects three arguments:
@ the synset whose hyperonyms and hyponyms are to be added next (the argument synset)
® the remaining distance from the center node of the graph to the last hyperonym or hyponym to be added
(argument dept h)
® the set of synsets already visited (argument Vi Si t ed)

static String printHyperonyns(Synset synset, int depth,
HashSet <Synset > visited) {

Now declare the variables we'll need later:

String rval = ;
Li st<LexUnit> | exUnits;

String orthForm = ;

Li st <Synset > hyperonyns = new ArraylLi st <Synset >();
Li st <Synset> rel ati ons;

String hypOthForm

vi si t ed. add(synset);
// to be continued...

}

The synset is added to the vi si t ed set (to make sure the algorithm does not run in an infinite loop; see step 4).
We have already seen that the GermaNet-API contains a special class, Synset , that represents the properties of a
synset. There is also a class LexUni t that represents the properties of a lexical unit. Both classes provide
methods to obtain information about other objects in GermaNet the synset or lexical unit is related to. A lexical
unit may contain multiple orthographic forms, which represent different spellings of the same word. In the current
version of GermaNet, however, a lexical unit never contains more than one orthographic form. If there are in fact
several spellings of the same word (such as Schlof3 vs Schloss in the old and new German spelling), two lexical
units exist instead in a synset.

We will use the first lexical form in a synset as a representative for the concept the synset represents. So we must
first retrieve all lexical units that are a member of the synset:

I exUnits = synset.getlLexUnits();

As you can see, this works very much the same as retrieving all synsets in GermaNet. get LexUni t s, which is a
method of the Synset class, returns a List of LexUni t objects.

We now fetch the first orthographic form of the first LexUni t and add it to the graph description, along with
some formatting information:

orthForm = |l exUnits.get(0).getOthFornm(0);
rval += "\"" + orthForm + "\" [fontnane=Hel vetica, fontsi ze=10]\n";

Again, you can see that the way orthographic forms are retrieved is extremely similar to the way synsets and
lexical units are accessed. Of course, since orthographic forms are plain strings, the List returned is of type

Java-API to GermaNet Version 1.0

String.

It is now time to collect all hyperonyms and hyponyms and add them to the graph. Since we will make no
difference in the graphical output between hyperonyms and hyponyms we will store them (a little sloppily) in one
list called hyper onyns.

rel ati ons = synset. get Rel ati ons(ConRel . hyperonyny) ;
hyper onyns. addAl | (rel ati ons);

rel ati ons = synset. get Rel ati ons(ConRel . hyponyny) ;
hyper onyns. addAl | (rel ati ons);

ConRel is an enum class defined in GermaNet. Enums are special constructs in Java for storing constants. The
ConRel class provides a way of telling the get Rel at i ons method which relation is being requested so that an
invalid relation cannot be requested.

ConRel . hyperonyny and ConRel . hyponymny are conceptual relations that apply between synsets. The
complete list of conceptual realations are: hyperonymy, hyponymy, meronymy, holonymy, entailment, entailed,
causation, caused, and association.

Similarly, the LexUnit class contains a get Rel ati ons method which accepts a LexRel object as a
parameter.

01 for (Synset syn : hyperonyns) {

02 if (!visited.contains(syn)) {

03 hypOrt hForm = syn. get LexUnits().get(0).getOthForns().get(0);
04 rval += "\"" + orthForm+ "\" -- \"" + hypOthForm+ "\";\n";
05

06 if (depth > 1) {

07 rval += printHyperonyns(syn, depth - 1, visited);

08 } else {

09 rval +="\"" + hypOrthForm + "\" [fontname=Hel vetica, fontsize=8]\n";
10 }

11 }

12 }

13 /1 return the graph string generated

14 return rval;

For each hyperonym and hyponym we found, we first check if we have visited it before (line 2). If so, we skip it.
Otherwise, we fetch the first orthographic form of the first lexical unit (line 3) and use it in line 4 to add an edge
to the graph description between the node that represents the current synset and the node that represents the
hyperonym or hyponym (edges in GraphViz syntax are expressed by two node labels that are separated by - -).

If the maximum distance to the center node has not yet been reached (line 6), we add the hyperonyms and
hyponyms of the current hyperonym or hyponym by recursively calling pri nt Hyperonyns with a
decremented dept h. Otherwise, we add some formatting information for the hyperonym or hyponym node.

Step 7: Trying it out
This is it! We are now ready to test our program. Compile the source code using java jdk 6.0 or above:

j avac HyperonynGraph. j ava

Then run the program:

Java-API to GermaNet Version 1.0

java - Xns128m - Xmx128m Hyper onynia aph

Let's create a graph that shows the concept Automobil in the center and the hyperonyms and hyponyms up to a
distance of two. When asked to enter the data, type Automobil 2 auto.dot:

Hyper onynzraph creates a GraphViz graph description of hyperonyns and hyponyns
of a GernmaNetconcept up to a given depth.

Ent er <word> <depth> <outputFile> [eg: Autonpbil 2 auto.dot]:

Aut onobi | 2 auto. dot

This creates the graph description file auto.dot in the current working directory. The first few lines should look
like this:

graph G {
over | ap=f al se
splines=true

ori ent ati on=l andscape

size="13, 15"

"Aut omobi | " [font name=Hel veti ca, f ont si ze=10]
"Autonobi | " -- "Ml denki pper"

"Mul denki pper" [font nane=Hel veti ca, f ont si ze=10]
"Mul denki pper" -- "Bauwer kzeug"

"Bauwer kzeug" [font nane=Hel veti ca, fontsi ze=8]
"Aut omobi | " -- "Bagger";

We can now use one of the GraphViz tools to create a visual representation of the graph from the graph
description file in a PNG file called auto.png:

neato - Tpng auto.dot -o auto.png

The GraphViz tools provide many more output formats and ways of influencing the layout of the graph, which are
described in the GraphViz manuals.

This finishes the tutorial. Please see the GermaNet javadoc documentation, viewable in your web browser, for a
complete list of methods, including descriptions, available for each class within the GermaNet package.

Java-API to GermaNet Version 1.0

Code Snippets and Samples

This section contains code snippets and samples that demonstrate how to use the GermalNet library objects and
their methods.

Creating a GermaNet object

Before you can contruct a GermaNet object, you need to make sure that the GermaNetl.0.jar file is on your
classpath, then import the library:

i mport gernmanet. *;

When a GermaNet object is created, it needs to know where to find the XML-formatted germanet data files. The
location of the directory containing the data files is sent as a parameter to the GermaNet constructor either as a
String or a File object:

Ger maNet gnet = new GermaNet ("/ ger manet/V51_UTF/ ") ;
or:

File gnetDir = new File("/germanet/ V51 _UTF");

Ger maNet gnet = new GermaNet (gnetDir);

Unless otherwise stated in the javadoc documentation, all methods in all objects will return an empty List rather
than null to indicate that no objects exist for a given request.

Getting Synsets from a GermaNet object

A Synset has a WordClass (adj, nomen, verben) and consists of Lists of LexUnits, Frames, paraphrases
(represented as Strings), and Examples. The List of LexUnits for a Synset is never empty, but any of the others
may be. A Synset object provides methods for retrieving any of its properties as well as methods for retrieving
Lists of other Synsets conceptually related to it. Once you have constructed a GermaNet object (called gnet in the
examples below), you can retrieve Lists of Synsets, using orthForm or WordClass filtering, if desired.

Get a List of all Synsets:
Li st <Synset > al | Synsets = gnet. get Synsets();

Get a List of all Synsets containing a lexical unit with orthForm "gehen":
Li st <Synset > synLi st = gnet. get Synset s("gehen");

Get a List of all Synsets with a word class of adj (other options are nomen and verben):
Li st <Synset > adj Synsets = gnet. get Synset s(Wrdd ass. adj);

Getting LexUnits from a GermaNet object

A LexUnit consists of one or more orthForms (represented as a List of Strings), and has the following attributes:
markedStyle (boolean), sense (int), orthVar (boolean), artificial (boolean), properName (boolean), status (String).
A LexUnit object provides methods for retrieving any of its properties, as well as methods for retrieving Lists of
other LexUnits lexically related to it. Once you have constructed a GermaNet object (called gnet in the examples
below), you can retrieve Lists of LexUnits, using orthForm or WordClass filtering, if desired.

Java-API to GermaNet Version 1.0

Get a List of all LexUnits:
Li st<LexUnit> all LexUnits = gnet.getlLexUnits();

Get a List of all LexUnits with orthForm "Bank":
Li st <LexUnit> | exLi st = gnet.getLexUnits("Bank");

Get a List of all LexUnits with a word class of nomen (other options are adj and verben):
Li st <LexUni t> nonlexUnits = gnet. getLexUnits(Wrdd ass. nonen);

Working with Synsets

Once you have obtained a List of Synsets, you can start processing them. A Synset object has methods for
retrieving its word class, LexUnits (or just the orthographic forms of the LexUnits), Exmaples, Frames, and
paraphrases, as well as methods for retrieving Synsets that are related to it.

To get a Synset's word class:
Wordd ass wec = aSynset.get Wrdd ass();
if (w == Wordd ass. adj) {
/1 do sonet hing
}

To get a Synset's orthographic forms (retrieves a list of all orthographic forms in all the LexUnits that belong to

this Synset):
Li st<String> orthFornms = aSynset.getA | OthForns();

To get a Synset's lexical units:
Li st<LexUnit> | exLi st = aSynset.getLexUnits();
for (LexUnit lu : lexList) {
/1 process lexical unit
}

Finding the Examples, Frames, and paraphrases is done in a similar way:

Li st <Exanpl e> exLi st = aSynset. get Exanpl es();

Li st <Frame> frameLi st = aSynset. get Franes();

Li st<String> paraphraseLi st = aSynset. get Paraphrases();

Suppose you want to find all of the meronyms of a Synset:
Li st <Synset > nmeronyns = aSynset. get Rel ati ons(ConRel . mer onyny) ;

Sometimes you may have a conceptual relationship represented as a String. The following code can be used to

validate the String and retrieve the relations:

String aRel = "hyperonyny”;

Li st <Synset > rel Li st;

if (ConRel.isRel(aRel)) {// make sure aRel is a valid conceptual relation
rel Li st = aSynset. get Rel ati ons(ConRel . val ueX (aRel));

}

The following are all valid calls to get Rel ati ons:
aSynset . get Rel ati ons(ConRel . hyper onyny) ;
aSynset . get Rel ati ons(ConRel . hyponyny) ;
aSynset . get Rel ati ons(ConRel . neronyny) ;
aSynset . get Rel ati ons(ConRel . hol onyny) ;

Java-API to GermaNet Version 1.0

aSynset . get Rel ati ons(ConRel . associ ati on;

aSynset . get Rel ati ons(ConRel . causati on);

aSynset . get Rel ati ons(ConRel . caused) ;

aSynset . get Rel ati ons(ConRel . entai |l ed) ;

aSynset . get Rel ati ons(ConRel . entail nent);

aSynset . get Rel ati ons(ConRel . val ue (“hyperonyny”));

aSynset . get Rel ati ons(ConRel . val ue (“hyponyny”)); // and so on..

Suppose you are not interested in any particular relation, but want a list of all Synsets that are related to aSynset
in any way:
Li st<Synset > al | Rel ati ons = aSynset.getRel ations();

For transitive relations (hyperonymy,hyponymy,meronymy,holonymy), there is a method that retrieves a List of
Lists of Synsets, where the list at position 0 contains the originating Synset, the List at position 1 contains the
relations at depth 1, the List at position 2 contains the relations at depth 2, and so on up to the maximum depth.
Using this data structure, some information cannot be included — namely, for any Synset at depth n, you can't
determine which Synset at depth n-/ it is a relation of. Nonetheless, you may find the method useful. The
following code prints the orthographic forms of each Synset at every depth of the hyponyms of “Decke”:

Li st <Li st <Synset >> transHyponyns;
synLi st = gnet. get Synset s("Decke");
String spaces;
for (Synset s : synList) {
spaces = "";
transHyponyns = s. get TransRel ati ons(ConRel . hyponyny) ;
for (List<Synset> listAtDepth : transHyponyns) {
for (Synset synAtDepth : listAtDepth) {
Systemout. printl n(spaces + synAtDepth.getA |l OrthFornms());
}

spaces += :

Two Synsets are found containing the orthForm “Decke”. For each of them, we retrieve the hyponyms using the
get TransRel at i ons method, store the result in the List of Lists of Synsets called t r ansHyponymns, and
then print t r ansHy ponyns. The output looks like this:

[Decke]
[Bett decke]
[Vol | decke]

[Kuschel decke]
[Al tar decke]
[Satt el decke]
[Pl ane]
[Loschdecke]
[Pl asti kpl ane]
[Decke, Zi merdecke]
[Kuppel]
[Bel eucht ungsdecke]
[Hangedecke]
[St uckdecke]
[Zi r kuskuppel]

Java-API to GermaNet Version 1.0

Working with LexUnits

Once you have obtained a List of LexUnits, you can start processing them. A LexUnit object has methods for
retrieving its word class, parent Synset, orthographic forms, attributes (including word sense number, status,
properName, orthVar, artificial, and markedStyle), as well as methods for retrieving LexUnits that are related to
it.

To get a LexUnit's word class:
Wirdd ass we = alLexUnit. get Wrdd ass();
if (w == Wordd ass. verben) {
/1 do something
}

To get a LexUnit's orthographic forms:
Li st<String> orthForns = alLexUnit.getOrthForns();

Since the current versin of the germanet data does not contain any LexUnits with multiple orthForms, you may

prefer to just retrieve the first orthForm:
String orthForm = aLexUnit.getOrthForm(0);

Suppose you want to generate a List of LexUnits with wordclass nomen, but you are not interested in proper
nouns or artificial nouns. You could generate such a List with the following code (note that we use a real Iterator
object here instead of just a simple for-loop because it is the only safe way to remove elements from a List while
iterating):

Li st <LexUnit> | exLi st = gnet. get LexUnits(Wrdd ass. nonmen) ;
LexUnit alLexUnit;

Iterator<LexUnit> iter = lexList.iterator();
while (iter.hasNext()) {
aLexUnit = iter.next();
if (aLexUnit.isProperNane() || aLexUnit.isArtificial()) {
iter.remove();
}
}
/1 ... process |exList

Suppose you want to find all of the antonyms of a LexUnit:
Li st <LexUni t> antonyns = alLexUnit. get Rel ati ons(LexRel . antonyny);

Sometimes you may have a lexical relationship represented as a String. The following code can be used to

validate the String and retrieve the relations:

String aRel = "antonyny”;

Li st<LexUnit> rel Li st;

if (LexRel.isRel(aRel)) {// make sure aRel is a valid lexical relation
rel Li st = alLexUnit.getRel ati ons(LexRel.valueO (aRel));

}

The following are all valid calls to get Rel at i ons:
aLexUni t. get Rel ati ons(LexRel . synonyny) ;
aLexUnit. get Rel ati ons(LexRel . antonyny);
aLexUnit. get Rel ati ons(LexRel . pertonyny);
alLexUnit. get Rel ati ons(LexRel . participled);
alLexUnit.get Rel ati ons(LexRel .argl);

aLexUni t. get Rel ati ons(LexRel .argl_pred);

aLexUnit. get Rel ati ons(LexRel .
aLexUni t. get Rel ati ons(LexRel .

aLexUnit. get Rel ati ons(LexRel
aLexUni t. get Rel ati ons(LexRel

Java-API to GermaNet Version 1.0

arg2);
arg2_pred);

.val ueCr (“synonymy”));
.val ueCr (“ant onymy”));

/] and so on ...

Suppose you are not interested in any particular relation, but want a list of all LexUnits that are related to

aLexUni t in any way:
Li st<LexUnit> all Rel ati ons = aLexUnit.getRel ations();

Working with Frames and Examples

A Frame is simply a container for frame data, which can be retrieved with the get Dat a method. Frames occur in

two contexts within GermaNet:

1. A List of Frames may be present within a Synset object. You could print the orthForms of verb Synsets

containing a Frame the begins with “NN” like this:

synLi st = gnet. get Synset s(Wr dd ass. verben);
Li st <Frame> frameLi st;
bool ean printlt;
for (Synset syn : synList) {
printlt = fal se;
franeLi st = syn. get Franmes();
for (Frame f : frameList) {
if (f.getData().startsWth("NN")) {
printlt = true;
}

}
if (printlt) {

Systemout. println(syn.getAl Il OthFornms());

}

2. A List of Frames may be present within an Example (which in turn is part of a Synset). We could print

the Examples with Frames containing the substring “AN” of verb Synsets with the following code:

synLi st = gnet. get Synset s(Wr dd ass. verben);
Li st <Exanpl e> exLi st ;
Li st <Frame> franelLi st;
for (Synset syn : synList) {
exLi st = syn. get Exanpl es();
for (Exanple ex : exList) {
frameLi st = ex.getFranes();
for (Frame f : franeList) {
if (f.getData().contains("AN")) {
Systemout.println(f.getData() + "
}

+ ex.getText());

	What is GermaNet?
	Java API to GermaNet
	GermaNet Data Organization and Objects
	Tutorial

	Obtaining the GraphViz Tools
	Before You Start
	Step 1: Importing Libraries
	Step 2: Getting User Input
	Step 3: Create a GermaNet Object
	Step 4: Finding All Synsets
	Step 5: Generating the Hyperonym Graph
	Step 6: Recursively Printing Hyperonyms and Hyponyms
	Step 7: Trying it out
	Code Snippets and Samples

	Creating a GermaNet object
	Getting Synsets from a GermaNet object
	Getting LexUnits from a GermaNet object
	Working with Synsets
	Working with LexUnits
	Working with Frames and Examples

