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Reading Comprehension

Reading comprehension in foreign language learning context:

v

v

text
questions

target answers

student (language learner) answers
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Reading Comprehension

Learners need to ...

>

>

understand the text and questions

use L2 to formulate answers
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Learners need to ...
Introduction

> ... understand the text and questions
— task competence
> ... use L2 to formulate answers

— language competence / performance

Goal of this work: incorporate aspects of concrete task and
general language in automatic SAA approach by alignment
weighting




Data : CREG

Corpus of Reading Exercises in German [Meurers et al.,
2010]

> longitudinal learner corpus collected at 2 German
programs in USA (OSU, KU)
» structure:

> texts

> questions

> target answers (TA)

» student answers (SA)
» meta data

> links between elements

(SA — TA, SA — Diagnosis,...)

» significant variation / deviation of form and meaning in
SAs

» binary (and detailed) gold diagnosis of semantic
correctness of SAs
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Data: CREG

Various subsets used for experiments

data set # questions | # SAs | # TAs
CREG-1032-KU 117 610 180
CREG-1032-OSU | 60 422 147
CREG-3620-KU 89 735 181
CREG-3620-OSU | 585 2885 705
CREG-5K-KU 214 1814 382
CREG-5K-0OSU 663 3324 875

Table: Data distribution of CREG subsets used in this study.
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Baseline System

CoMiC-DE system [Meurers et al., 2011]

» Comparing Meaning in Context

» alignment-based short answer assessment system
» UIMA pipeline [Ferrucci and Lally, 2004]

» goal: diagnose form-independent meaning of SAs
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CoMiC: System Architecture

3-step approach:

1. Annotation
use NLP tools to generate linguistic multi-layer markup

2. Alignment
use annotations to align similar elements between SA
and TA

3. Diagnosis
use features measuring quantity and quality of
alignments for binary diagnosis

Alignment
Weighting for
Short Answer

Assessment

Bjorn Rudzewitz
University of
Tiibingen

System



CoMiC: System Architecture

3-step approach:

1. Annotation
use NLP tools to generate linguistic multi-layer markup

2. Alignment
use annotations to align similar elements between SA
and TA

3. Diagnosis
use features measuring quantity and quality of
alignments for binary diagnosis

Alignment
Weighting for
Short Answer

Assessment

Bjorn Rudzewitz
University of
Tiibingen

System



CoMiC Phase 1: Annotation

Task

NLP Tool

Sentence Detection

OpenNLP[Baldridge, 2005]

Tokenization

OpenNLP [Baldridge, 2005]

Lemmatization

TreeTagger [Schmid, 1994]

Spell Checking

Edit distance [Levenshtein, 1966]
, igerman98 word list

Part of Speech Tagging

TreeTagger [Schmid, 1994]

Noun Phrase Chunking

OpenNLP [Baldridge, 2005]

Lexical Relations

GermaNet [Hamp et al., 1997]

Similarity Score

PMI-IR [Turney, 2001]

Dependency Relations

MaltParser [Nivre et al., 2007]

Table: NLP tools used in the CoMiC-DE system.
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CoMiC: System Architecture

3-step approach:

1. Annotation
use NLP tools to generate linguistic multi-layer markup

2. Alignment
use annotations to align similar elements between SA
and TA

3. Diagnosis
use features measuring quantity and quality of
alignments for binary diagnosis
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CoMiC Phase 2: Alignment

» align tokens, chunks, dependency triples
» elements given in question are excluded

» alignment candidates: words with overlaps on various
linguistic levels

» use TMA [Gale and Shapley, 1962] for annotation
matching

> alignment annotation contains alignment label
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CoMiC Phase 2: Alignment

Interessante Museen - das  Stadtmuseum  besuchen oder ganz einfach in
%ﬁm
SIMILARITY SEMTYPE LEMMA TOKEN SIMILARITY

GroBe Garten , Parks , interessanten Museen und der Frauenkirche

Figure: Alignment between target answer (top) and student
answer (bottom) on different levels.
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CoMiC: System Architecture

3-step approach:

1. Annotation
use NLP tools to generate linguistic multi-layer markup

2. Alignment
use annotations to align similar elements between SA
and TA

3. Diagnosis
use features measuring quantity and quality of
alignments for binary diagnosis
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CoMiC Phase 3: Diagnosis

» extract number and kinds of alignments for each SA
— 13 ml features

» use TiIMBL Daelemans et al. [2004] for LOO k-NN
classification

> result: binary diagnosis for each SA
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CoMiC Phase 3: Diagnosis

[ Feature Description
[ 1. Keyword Overlap % keywords aligned
2. TA Token Overlap % aligned TA tokens
3. Learner Token Overlap % aligned SA tokens
4. TA Chunk Overlap % aligned TA chunks
5. Learner Chunk Overlap % aligned SA chunks
6. TA Triple Overlap % aligned TA dependency triples
7. Learner Triple Overlap % aligned SA dependency triples
8. Token Match % token-identical token alignments
9. Similarity Match % similarity-resolved token alignments
10. Type Match % type-resolved token alignments
11. Lemma Match % lemma-resolved token alignments

12. Synonym Match

%

synonym-resolved token alignments

13. Variety

Number of kinds of token-level alignments (features 8-12)

Table: CoMiC baseline features.
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Idea:
> aligned elements have different properties Alignment
Weighting

» alignments between certain elements may be more
important

— weight existing alignments in new dimension of similarity



Alignment Weighting

2 conceptual weighting approaches
— 3 implementations

1. General Linguistic Weighting
2. Task-Specific Weighting
3. Hybrid Approach

global vs. local weighting schemes
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General Linguistic Weighting

» weighting of aligned elements by language-wide
property in new dimension of similarity

> operationalization of abstract concept of general
linguistic property:
part of speech tag classes

> pos tags represent syntactic, semantic, morphological
language-wide properties
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» problem: data sparsity
» solution: abstraction/generalization via equivalence
classes of outcomes
— pos tag classes
. . Ger]era[ Linguistic
How to find equivalence classes: EEEE

> top-down approach:
using linguistic intuition to form classes of tags

» bottom-up approach:
induce classes of tags from sample data



Option 1: top-down approach

| Group | STTS tags
nominal | NN, NE
verbal VVFIN, VVIMP, VVINF, VVIZU,
VVPP, VAFIN, VAIMP, VAINF, VAPP,
VMFIN, VMINF, VMPP
adjv ADJA, ADJD, ADV

rest

APPR, APPRART, APPO, APZR,
ART, CARD, FM, ITJ, KOUI, KOUS,
KON, KOKOM, PDS, PDAT, PIS,
PIAT, PIDAT, PPER, PPOSS,
PPOSAT, PRELS, PRELAT, PRF,
PWS, PWAT, PWAV, PAV, PTKZU,
PTKNEG, PTKVZ, PTKANT, PTKA,
TRUNC

Table: Coarse STTS subsets used for the general linguistic
weighting, adapted from [Rudzewitz and Ziai, 2015].
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Option 2: bottom-up approach

v

v

v

choose a development set
output single pos features for every tag for TA and SA
perform hierarchical agglomerative clustering

use clusters as equivalence classes for features
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Option 2
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Option 2: bottom-up approach Al
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» observation: distinct clusters are representatives for

"'main word’ classes defined in STTS tag set [Schiller

et al" 1995] General Linguistic
> hclust algorithm is given no assumptions about main Tatspe

word classes !

— use STTS main word classes as equivalence classes



Feature Variants

» problem with features: how to normalize ?

> more concrete: given numeric quantities of aligned
elements, how to account for effects of answer length 7

» solution (in this work): explore and report results for all
variants
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Feature Variants

Ap € A("Answers”), w; € Wy, C W("Words"), t,,. € T; C T("tag from tag group”
h /j Ap Vi i

doteT, ZWjEWAh[VVj is aligned AND t,, = t AND w; is
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new]

General Linguistic
Weighting

ol(A 77—,' =
(Ao T3) ZterizwjewAh[see Table 1]
variant tw, = wj is new | w; is aligned
local v
semi-global v v
global v

Table: Denominator constraints for different feature variants.
Logical conjunction AND between row values.
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> Jocal: Are many of the new tokens with this part of
speech tag aligned ?

» semi-global: Are many of the aligned tokens from a Goneral Linguistic
certain part of speech group ? o

» global: Do many of the new words have a tag from this
part of speech group and are at the same time aligned 7



Interpolated Features

olip(An, Ti) = Oliocat(An, Ti) X Olsgiobat(Ans Ti) X Olgiobai(An, Ti)
1
olip(Ap, Ti) = 3% (0liocai(An, Ti) + Olsgiobai(An, Ti) + Olgiobai(An, Ti))

» combine the different feature variants
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Task-Specific Weighting

» goal: include the specific (local) task context in SAA
> "task”: complex concept, many aspects

> operationalization: implement question-type features
> binary indicator function for each question type

» gold standard from previous study [Meurers et al., 2011]
as development set

> 11 types: Alternative, How, What, When, Where,
Which, Who, Why, Yes/No, Several, Unknown
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Hybrid Weighting Approach

v

tf.idf lemma-based weighting, adapted from Manning
and Schiitze [1999]

generally applicable measure, but task-specific training

v

v

document collection: all reading texts in CREG-5K

v

for each aligned token, get tf.idf weight in reading text
to which the SA refers

ol igr(An) = Y, weightsr igr(wj, o)

wieWa,
0 . if (w; NOT new) OR
. w; NOT aligned) OR
weightr jar(w;, d;) = EWJ ¢ d;) :
/j i

1+ log(tf; ;) x logfL | otherwise
j, df
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Experimental Testing

Significance Testing: McNemar's test (o = 0.05)

HQZ

Hli

The binary classification performance of an
alignment-based short answer assessment
system does not change if it is augmented
with part of speech or tf.idf features.

The binary classification performance of an
alignment-based short answer assessment
system significantly improves if it is aug-
mented with part of speech or tf.idf features.
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Experimental Testing: Coarse POS Weighting for
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system 3620-KU 3620-OSU 1032-KU 1032-0SU 5K-KU 5K-0SU
base 81.5 82.2 84.6 87.0 80.9 82.5
local 82.0 82.6 85.2 90.0" 82.0 82.8
semi-global 81.2 84.1% 85.4 87.2 81.3 84.0"
global 83.0 83.6F 84.8 85.8 81.6 83.6™
ip 80.5 84.1% 85.1 85.1 81.7 84.4%
Tip 82.6 81" 84.4 87.0 814 841"

Table: System performance for the baseline system augmented
with part of speech features in terms of accuracy. The symbol *
denotes a statistically significant improvement over the baseline E:gji:ge"ta'

(a =0.05).



Experimental Results: Question Types and tf.idf

system variant 3620-KU 3620-OSU 1032-KU 1032-0SU 5K-KU 5K-OSU
baseline 81.5 82.2 84.6 87.0 80.9 82.5
q-types 80.8 83.1F 85.4 87.2 80.9 82.8

Table: System performance for the baseline system augmented
with question type features in terms of accuracy. The symbol *
denotes a statistically significant improvement over the baseline

(o =0.05).

system variant 3620-KU 3620-OSU 1032-KU 1032-0SU 5K-KU 5K-OSU
baseline 81.5 82.2 84.6 87.0 80.9 82.5
tf.idf 84.27 84.17 86.1 88.4 83.17 84.3

Table: System performance for the baseline system augmented

with tf.idf features in terms of accuracy. The symbol * denotes a
statistically significant improvement over the baseline (o = 0.05).
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Experimental Testing: Combination
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system variant 3620-KU 3620-OSU 1032-KU 1032-0SU 5K-KU 5K-0OSU
baseline 81.5 82.2 84.6 87.0 80.9 82.5
q-types + stts local + tf.idf 83.8 84.7F 87.9" 86.5 82.4 84.9
Q-types + stts semi-globalt th.idf | 83.1 84.6" 85.4 88.2 82.1 84.9
g-types + stts global+ tf.idf 84.2% 84.5 87.9F 84.6 82.6™ 84.6"
q-types + stts ip+ tf.idf 83.3 84.7F 88.9F 84.1 82.8% 85.3
q-types + stts lip+ tf.idf 84.5" 85.0" 88.0" 85.8 82.8 84.97

Table: System performance for the baseline

system augmented

with question type and STTS group part of speech features and

tf.idf weighting in terms of accuracy. The symbol * denotes a

statistically significant improvement over the baseline (aw = 0.05).

Experimental
Testing
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» many more tables with accuracies and test statistics ... :
> pos features alone result in highest accuracy on one
data set (90%)
» tf.idf always yields improvement
> question-types alone not as effective
> best overall result for combination of all 3 weightings
» linguistically interpretable question-type specific pos Tbermental

alignment patterns (appendix 1)

> question-type specific macro-averages show
improvement from Meurers et al. [2011] (appendix 2)



Discussion: Related work

» Ziai and Meurers [2014]: CoMiC + information
structure

» Horbach et al. [2013]: CoMiC-reimplementation +
pos-align criteria 4+ use of reading text

» Hahn and Meurers [2012]: CoSeC
» many other SAA systems (see thesis)
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> significant improvements with novel techniques

» results highly competitive to state-of-the-art systems
» no human annotation needed

> linguistically interesting insights from ml algorithms
» combination of all feature variants most effective

Conclusion



Appendix 1: g-type pos align patterns
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q-type F#inst. [ 10 most informative Part of Speech tags

Alternative | 7 VVPP, PPOSAT, PPER, PPOS, VMFIN, PRELAT, PIS, PIDAT, PIAT, PDS
How 144 NN, CARD, VVFIN, ADJA, ART, VAFIN, NE, PIAT, PRELS, PTKNEG
What 276 NN, KON, ADJA, VVPP, VVINF, APPRART, PIS, CARD, PTKNEG, PWAV
When 6 ADV, KOKOM, KOUS, NN, PIS, PWF, PIDAT, PWAV, PPOSAT, VAFIN
Where 9 PIDAT, PPER, PPOSAT, PRELAT, PIS, VVPP, PRF, PIAT, PAVDAT
Which 170 NN, ADV, VVPP, PTKNEG, VAFIN, NE, VAINF, CARD, KON, PIS

Why 174 NN, VVFIN, ART, APPR, PIAT, VAFIN, KON, NE, ADJA, KOKOM

Who 41 NN, VVINF, ADJD, VMFIN, PPER, PRELAT, PRELS, PPOS, PPOSAT, PTKANT
Yes/No 5 PTKANT, PPOSAT, PRELAT, PPOS, PIS, PPER, PIDAT, PRF, PIAT, PAV
Several 200 NN, NE, ADJA, PIAT, VMFIN, KON, PIS, VVPP, KON, PTKNEG

Table: Most informative part of speech alignments by question

type.
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Appendix 2: g-type macro-averages gvhﬁ!ifh":\imfg"ﬁm
ort Answer
Assessment

Bjorn Rudzewitz
University of

Tiibingen
q-type ## inst. local sglobal global ip lip
Alternative 7 0.57 0.57 0.57 0.57 0.57
How 144 0.88 0.89 0.91 0.90 0.90
What 276 0.87 0.88 0.87 0.85 0.88
When 6 1.00 0.83 1.00 0.83 0.83
Where 9 0.67 0.56 0.67 0.67 0.67
Which 170 0.91 0.92 0.93 0.92 0.92
Why 174 0.84 0.84 0.84 0.83 0.84
Who 41 0.88 0.90 0.85 0.88 0.85
Yes/No 5 0.80 0.80 0.80 0.80 0.80
Several 200 0.86 0.83 0.83 0.86 0.85

[ Micro [ 1032 | 86.7 | 86.8 [ 87.0 ] 865 [ 87.3 |

Table: Macro-averages of the best system variant on CREG-1032
obtained by grouping results by question type. Boldface indicates
an improvement upon the results by Meurers et al. [2011]
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