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Abstract

In this thesis, two requirements on Underspeci�ed Representation Formalismsare investi-

gated in detail in the context of underspeci�cation of scope. The requirement on partial

disambiguation, stating that partially disambiguated ambiguities need to be represented,

does not carry much content unless it has become clear, exactlywhat those ambiguities

are. In line with K önig and Reyle (1999), I argue that all theoretically possible patterns

of ambiguity, i.e. subsets of readings, can occur in natural language and that therefore

an underspeci�ed representation formalism can only be regarded asexpressively com-

plete, if it provides representations for all of these subsets. This discussion is couched in

a general formal setting, which facilitates clean de�nitions and allows for the derivation

of formally precise results. With those formal de�nitions at han d, various underspeci-

�ed representation formalisms are evaluated. As it turns out, none of the investigated

formalisms is expressively complete, which answers a corresponding question raised in

(König and Reyle, 1999). These incompleteness results allow fora straightforward com-

parison of the discussed approaches with respect to expressive power, which forms the

second contribution of this thesis.

The second requirement is theavoidance of combinatorial explosion, which can only be

achieved if the involved representations are in some sense morecompactthan the mere

listing of the available readings, as I argue and elaborate. I put forward a formal de-

�nition of compactness that identi�es avoidance of combina torial explosion with the

feasible construction of underspeci�ed representations. As another main result it is then

shown that – under two natural assumptions – the two requirements of compactness and

expressive completeness cannot be ful�lled at the same time.This tension between these

two requirements has been neglected in the literature, which hasfocussed on ef�cient

decision procedures and implementation. In a last part I show, how an approach that

is geared towards expressive richness can facilitate expressivecompleteness and precise

statements of disambiguating information.
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Chapter 1
Introduction

Scope ambiguities pose one of the most challenging problems for natural language se-

mantics. The following sentence is a classical example of anexpression that is ambiguous

between readings, which are induced by scope taking elements.

(1.1) Every child told two teachers some story.

For instance, (1.1) can mean that for every child, there were two teachers such that the

child told a different story to each of the two. Or it can mean tha t there were two speci�c

teachers (e.g. the principal and his deputy), each of which had a speci�c story (e.g. their

famous fairy tale) such that every child told the respective story to these teachers. In

fact, there are six different readings for (1.1), which correspond to the permutations of

the quanti�cational noun phrases every child, two teacher, and a story.

In Montague (1974a,b,c), Richard Montague presented his in�uent ial approach to nat-

ural language semantics. Montague proposed to treat scope ambiguities syntactically.

Therefore, in the Montagovian framework, scopally ambiguous sentences receive mul-

tiple syntactic analysis – one for each reading1. In Figure 1.1 the entire process of

interpretation of an expression e is depicted. If the expression isn-fold ambiguous be-

tween readingsm1; : : : ; mn , then for each meaningmi there is a corresponding syntactic

analysisSi of e. This syntactic analysis is then translated into an expression' i of some

intermediate logical language, which can in turn be interpreted asmi . Because of Mon-

tague's implementation of compositionality, this intermed iate language is dispensable in

principle. In the following, I will use the term 'reading' for bo th the interpreted meaning

as well as for some logical expression representing it.

1To be precise, a scopally ambiguous sentence is derived in more than one way and hence 'receives'
multiple derivations.

8
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Input Syntactic Logical Meaning

String Structure Formulae

S1 ' 1 m1

e
...

...
...

...
...

Sn ' n mn

Parsing Translation Interpretation

Figure 1.1: Montague's framework

This strategy of calculating each reading of an ambiguous sentence has been criticized

for several reasons.

Spurious Syntactic Analysis The Montagovian approach of a syntactic treatment of an

essentially semantic phenomena seems undesirable. There is no independent rea-

son why a semantically ambiguous sentence should receive morethan one syn-

tactic analysis and therefore the move to deal with the ambiguity on the syntactic

level seems unwarranted.

Combinatorial Explosion One major problem with the Montagovian approach has be-

come well-known as the combinatorial explosionproblem. The term combinatorial

explosionrefers to the fact that natural language exhibits cases of massive ambigu-

ity. One often cited sentence in this context2 is

(1.2) A politician can fool most voters on most issues most of the time, but no

politician can fool all voters on every single issue all of the time.

This sentence consists of two clauses, each containing fourquanti�ed NPs and one

modal verb (can). Taking into account that these �ve scope-taking elements have

to take scope within their clauses, there are5! ∗ 5! = 14400 different possibilities of

arranging them. Although not all of those theoretically imagin able arrangements

of scope-taking elements correspond to available readings, the number of actually

available readings is still massive3. In general, the number of distinct readings for

some expression withn scope taking elements isn! in the worst case. Any approach

that calculates all the different readings (such as the Montagovian framework)

has therefore to deal with n! different objects, a number which grows worse than

exponentially with n. From a computational point of view, it is very inef�cient

to compute all n! readings. In general dealing with an exponentially growing

number of objects is regarded as infeasible. In particular, it is assumed that only

2see e.g. (Bos, 1995; Muskens, 1995; Poesio, 1996)
3cf. (Muskens, 1995)
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those procedures are feasible, which need a number of steps thatis polynomial in

the length of the input.

Psycholinguistic Evidence It seems that human speakers often do not calculate differ-

ent readings at all. As in the case of (1.2) it is unlikely that a human speaker

entertains such a huge number of different readings simultaneously. On the con-

trary, often speakers are not evenaware that a sentence is ambiguous. Hence it

seems that humans reason with some kind ofunderspeci�edstructure, which con-

tains some information about the scope taking elements but makes no commitment

concerning their actual scope.

As the psycholinguistic considerations suggest,Underspeci�ed Representation Formalisms

(URFs henceforth) aim at providing one single representation which stands proxy for

the entire set of readings of an ambiguous expression. The idea is, that a scopally

ambiguous expression receivesone syntactic analysis4 out of which one underspeci�ed

representation is constructed. This framework is depicted in Figure 1.2.

Input Syntactic Underspeci�ed Meaning

String Structure Representation

e S u mu

Parsing Construction Interpretation

Figure 1.2: Underspeci�ed processing framework

The advantage over the Montagovian framework seems obvious. There is no need to

calculate all the n! different syntactic analyses and readings in the worst case, but only

one syntactic analysis, which is used to construct one underspeci�ed representation that

somehow represents all readings simultaneously. Therefore it seems that one does not

run into the combinatorial explosion problem, as the calculation of the (potentially mas-

sive number of) readings is avoided. However, a closer look reveals that this is only

true if the URF meets certain requirements. Those requirements are discussed in the

following section.

1.1 Requirements on Underspeci�ed Representations

Requirements on underspeci�ed representation formalism have been discussed infor-

mally by many researchers in underspeci�ed semantics. The following are of particular

importance and will be investigated more closely in this thesis.

4modulo any independent syntactic ambiguity, of course, which I leave asidehere
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1.1.1 Partial Disambiguations

Up to this point we have only considered the worst case of a sentence bearingn quanti-

�ers, the order of which was completely unrestricted. Therefore th e sentence wasn!-fold

ambiguous among readings that correspond to possible permutations of the quanti�er

sequence. However, natural language expression do not always show this worst case

behaviour, and the combinatoric possibilities of the scope taking elements may be re-

stricted. There are two cases which can be distinguished.

1. There are syntactic and semantic restrictions at the level of individual sentences,

which restrict the set of possible readings. For instance, a relative clause consti-

tutes a so-calledisland5 for certain quanti�cational NPs. Such an NP occurring in

a relative clause may not take scope outside of it6. In the sentence

(1.3) Two children who read every book were praised by a teacher.

the quanti�ed NP every book occurs inside a relative clause. Although (1.3) con-

tains 3 quanti�ed NPs, it does not exhibit 3! = 6 readings, but only two. One,

where there are two children, each of which read every book and each of which

was praised by a (possibly different) teacher. And another where there is one

speci�c teacher (the principal, say) who praised two children, e ach of which read

every book. The quanti�ed NP every book cannot contribute to the ambiguity of

the sentence as it is con�ned to take scope inside the island it occurs in. Syntactic

and semantic restrictions like this one impose restrictions on the possible ambigu-

ities of a sentence. A sentence which is restricted in such a waydoes not have all

n! (theoretically) possible readings, but only a subset of them.

2. Sentences may bedisambiguatedby discourse or by (possibly non-linguistic) con-

text. Consider, for instance, the following small piece of discourse, consisting of

(1.1) followed by another sentence:

(1.4) Every child told two teachers some story. It wasAlice in Wonderland.

By using the anaphor It , the discourse makes explicit that only one speci�c story

was involved in the tell events of the �rst sentence, namely Alice in Wonderland.

5(Ross, 1967)
6In this thesis I take inde�nites such as two teachers to be quanti�cational on a par with other NPs such

as every N and most N. This contrasts with other proposals where inde�nites are construed to have no
quanti�cational force on their own (e.g. Kamp and Reyle, 1993) or where the ambiguities involving indef-
inites come about due to a lexical ambiguity of the inde�nite between a quanti�ca tional and a referential
reading (e.g. Fodor and Sag, 1982) or introduction of a choice function (e.g. Reinhart, 1997). The latter
two approaches aim at an explanation of the fact that inde�nites are kn own to be able to take scope out of
islands. That this is possible with a fully quanti�cational construal of inde�nit es (as it is adopted here) is
shown in (Ebert and Endriss, 2004), where the class of thesewide-scope inde�nitesis characterized on basis
of their inherent lexical semantic properties.
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The second, follow-up sentence serves todisambiguatethe �rst one in favour of

a wide scope reading for some story. Thus disambiguation means, that from the

six readings, which (1.1) initially allowed, only two remain: o ne, in which for

every child there were two teachers such that the child told those two teachers

Alice in Wonderland. And another, in which there were two speci�c teachers (e.g.

the principal and his deputy) such that every child told those tw o Alice in Wonder-

land. There is still some ambiguity left, which concerns the relation between every

child and two teachers. Therefore (1.1) has only been partially disambiguated in

contrast to a full disambiguation, where only one reading remains.

As the two points above illustrate, it is crucial for a URF to provide representations for

partially disambiguated structures, where the scope taking behaviour of some of the

scope taking elements is fully determined, although it remains undetermined for other

elements. For instance, there has to be a representation for thesix readings of (1.1), for

the two remaining readings in (1.4), and for the two readings in (1 .3). Although this

latter set of readings did not actually emerge through disambiguation, i.e. by restriction

of some larger set of readings, I will nevertheless subsume thiscase under the heading

'partial disambiguation'.

For the moment, let me simply state that an underspeci�ed representation formalism

must provide representations for partial disambiguations.

1.1.2 Compactness

To motivate the Compactnessrequirement7, let me make a naive URF proposal. The

proposal is to represent all readings by the set they form. For instance, if a sentence

has the readings' 1; : : : ; ' n (cf. Figure 1.1) I propose to underspecify these readings by

their set {' 1; : : : ; ' n}. This is indeed a representation which can serve to simultaneously

represent all the readings without any preference for one of them.

However, this does not seem to be a sensible underspeci�ed representation, as it does

not underspecifyanything, intuitively speaking. In fact, to construct the repre sentation

from a syntactic analysis (cf. Figure 1.2) we still have to calculate each reading, and

thus we will run into the combinatorial explosion problem. Note however, that in this

case it is not due to the general architecture of the framework, but due to an implicit

problem with the de�nition of the URF itself. Therefore combinat orial explosion can

7Note that compactnessas it is used here is not to be confused with the compactness property of logics.
Here, compactness is a requirement on the syntactic part of an underspeci�ed representation formalism,
whereas it is a property of entailment in the logical setting. Despite this possible source of confusion, I
decided to stick with the term compactas it is used in the vast majority of work on underspeci�cation to
talk about concise representations.
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only be avoided, if the de�nition of the URF allows for ef�cien t construction of the

underspeci�ed representations, which implies that the representations themselves must

be more compact than the complete enumeration of the readings.

This requirement is also mentioned in K̈onig and Reyle (1999). They call a representa-

tion underspeci�ed

'[...] if it represents an ambiguous natural language sentence of text in a

more compact manner than [...] a disjunction of all its readings.'

(König and Reyle, 1999, p. 252)

My terminology differs somewhat from theirs. They make the compactness requirement

the de�ning feature which allows one to call a representation fo rmalism underspeci�ed. I

take a more liberal view and understand underspeci�cationassimultaneously representing

various readings. Then compactness becomes a separate requirement. The compactness

requirement will be discussed in detail in Chapter 6, where the issue is taken up formally.

For the moment, I will just state that an underspeci�ed representation formalism must

have compactrepresentations.

1.2 Variable/Constraint Approaches

Let me brie�y introduce a family of approaches to underspeci�cat ion which all aim at

solving the combinatorial explosion problem while adhering to the requirements on un-

derspeci�ed representations. The introduced approaches all share certain key features.

They make use ofmeta-variablesto constrainthe way in which parts of an underlying ob-

ject language can be combined. For this reason I will call thisfamily variable/constraint

approaches.

This strategy – constraining the composition of parts of an underlying formal language

– has been pursued by seminal approaches to underspeci�cation.With Underspeci�ed

Discourse Representation Theory (UDRT)Reyle (1993) de�ned one of the �rst approaches

to underspeci�cation. He uses DRT (Kamp and Reyle, 1993) as the underlying language

and constrains the composition Discourse Representation Structures in a way that can

account for scope ambiguities. Furthermore, he gives a calculus to reason with the

underspeci�ed structures, which he revised later (Reyle, 1995).

Hole Semantics(Bos, 1995) is an approach that is inspired by UDRT. It is more �exible in

the sense that it is independent of the underlying object language. (Bos, 1995) illustrates

this by applying his general de�nitions to Predicate Logic, whi ch yields its underspeci�ed

sister Predicate Logic Unplugged.
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Minimal Recursion Semantics(MRS; Copestake et al., 1995, 1999) again is similar in

spirit to the approaches above. It has been reformulated in a feature structure framework

which makes MRS particularly well suited as the semantic component in Head-Driven

Phrase Structure Grammars.

More recently, Normal Dominance Constraints(Koller et al., 2003) have been used for

underspeci�cation. They restrict the powerful formalism of Domin ance Constraint in a

way that enables effective computational procedures (cf. Koller et al., 2000).

In the following I will put special emphasis on the above-mentioned approaches for

mainly two reasons. First, all of them are seminal, prominent, and widely used ap-

proaches. Second, they seem so similar w.r.t. their de�nitions of variables, parts, and

constraints, that it is interesting to ask whether they actually differ in expressive power

and – if they do – where the differences are.

1.3 A URF Example

To illustrate the concepts common to the variable/constraint approaches, consider exam-

ple (1.1) again. This sentence is ambiguous between six different readings correspond-

ing to the six distinct possible orderings of quanti�cational elements. In the Montagovian

framework, the analysis and translation of the readings of (1.1) in to some logical lan-

guage yields the six expressions of that language. In the following, I will use First Order

Logic, enriched with Generalized Quanti�ers (FOLGQ) as the logical language8. Gen-

eralized Quanti�ers are stated as tripartite structures, comprising a variable, and two

formulas with that variable occurring free, called restrictor and scope, respectively. For

instance, the logical representation of a simple sentence such as

(1.5) Most men smoke.

would turn out as

(1.6) most(x; man(x); smoke(x))

and it would be interpreted as true w.r.t. a model according to a standard interpretation

of most, if the set of men that smoke is larger than the set of men that do not smoke

in that model. Employing generalized quanti�ers in the followi ng, the six readings of

8see (Barwise and Cooper, 1981; Keenan and Westerst	ahl, 1997), for instance. Using generalized quan-
ti�ers, one actually leaves the realm of �rst order logic (cf. Barwise and Coop er, 1981).
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example (1.1) are as follows.

∀x(child(x) → two(z; teacher(z); ∃y(story(y) ∧ told(x; y; z)))) (∀2∃)(1.7)

∀x(child(x) → ∃y(story(y) ∧ two(z; teacher(z); told(x; y; z)))) (∀∃2)

∃y(story(y) ∧ ∀x(child(x) → two(z; teacher(z); told(x; y; z)))) (∃∀2)

∃y(story(y) ∧ two(z; teacher(z); ∀x(child(x) → told(x; y; z)))) (∃2∀)

two(z; teacher(z); ∃y(story(y) ∧ ∀x(child(x) → told(x; y; z)))) (2∃∀)

two(z; teacher(z); ∀x(child(x) → ∃y(story(y) ∧ told(x; y; z)))) (2∀∃)

Variable/constraint approaches to underspeci�ed representations make use of the fact

that logical expressions of different readings have elementaryparts in common. In the

example above these are:

∀x(child(x) → � ) ∃y(story(y) ∧ � )(1.8)

two(z; teacher(z); � ) told(x; y; z)

Here the box � indicates a 'hole' in the expression which needs to be �lled with material

from some other part. The order of combination of these parts is what determines the

different readings and therefore theories of underspeci�ed representation do not fully

specify this order. The above case is exceptional in that thereis no constraint on the order

of combination of the three quanti�cational elements at all – every order of combination

yields a logical form which represents a legitimate reading of sentence (1.1). To impose

those constraints it is necessary to be able to talk about the parts and make statements

which indicate that certain 'holes' of certain parts may only be �lled with certain other

parts. This is wheremeta-variablescome in.

Let us assume a set of meta-variable symbols{X 0; X 1; X 2; : : :}. Then we may 'label'

each of the parts in (1.8) by pre�xing a meta-variable to it, separa ted by a colon ':'.

Furthermore, we may be more explicit about those 'holes' and substitute meta-variables

for the boxes, too. Then the parts of (1.8) turn out as follows:

X 0 : ∀x(child(x) → X 1) X 2 : ∃y(story(y) ∧ X 3)(1.9)

X 4 : two(z; teacher(z); X 5) X 6 : told(x; y; z)

Now there are 'handles' to actually get hold of the parts and talk about their combination.

For instance, one could specify, that the part labeledX 4 has to occupy the holeX 3. Then

only the following possibilities of combination remain, whe re we let X i 7→ X j stand for

'the part X i occupies the holeX j ': Either X 2 7→ X 1 and X 6 7→ X 5, which yields the (∀∃2)
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reading. Or X 0 7→ X 5 and X 6 7→ X 1, which yields the (∃2∀) reading.

In addition to simply specifying that some part has to take the place of some speci�c

hole, one could impose the weaker constraint that the part labeled X 4 must occur only

somewhere at the place of the holeX 3 after combination, i.e. possibly as a subpart

of some other part occupying X 3. This constraint, which we will write as X 3 / X 4 in

the following, would of course still allow for the combinatio ns described above (i.e. for

the (∀∃2) and the (∃2∀) readings) but in addition for one other way of combination:

if X 0 7→ X 3, X 4 7→ X 1 and X 6 7→ X 5 in turn, this weaker constraint is still ful�lled

and therefore the (∃∀2) reading is licensed as well. Of course we can think of further

constraints, such aspart X i does not occur at holeX j and so on.

A further increase in expressive power can be achieved by conjoining constraints. For

instance, we could add another constraint X 3 / X 0 to X 3 / X 4 from the previous para-

graph and allow only for those combinations of parts, which simultaneously ful�l both

constraints. As it is easy to see, the only remaining way of combination of parts yields

the (∃2∀) and (∃∀2) readings. These are exactly the two remaining readings for the �rst

sentence in (1.4) after disambiguation has taken place. Let us write this underspeci�ed

representation a bit more formally as a pair 〈P; C〉, where P is the set of labeled parts

(1.9) and C is the set of constraints. So in this example we would write

(1.10)

*

8
>>>><

>>>>:

X 0 : ∀x(child(x) → X 1);
X 2 : ∃y(story(y) ∧ X 3);

X 4 : two(z; teacher(z); X 5);
X 6 : told(x; y; z)

9
>>>>=

>>>>;

; { X 3 / X 4; X 3 / X 0 }

+

for the underspeci�ed representation described in this paragraph. This also illustrates

that further disambiguation can be achieved by adding further constraints to the set C.

For instance, the addition of the constraint X 1 / X 4 to (1.10) would only allow for one

single combination of the parts resulting in the (∃∀2) reading. Hence, disambiguation

can be achieved with a monotonic operation (Alshawi and Crouch, 1992, cf.), where

monotonicity requires to non-destructively alter an initial re presentation by adding only

something to it, leaving the original representation intact.

An interesting question is now, how well this approach to underspeci�cation ful�ls the

requirements of section 1.1. First, it seems that it provides compact representations. For
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instance, the representation

(1.11)

*

8
>>>><

>>>>:

X 0 : ∀x(child(x) → X 1);
X 2 : ∃y(story(y) ∧ X 3);

X 4 : two(z; teacher(z); X 5);
X 6 : told(x; y; z)

9
>>>>=

>>>>;

; ∅

+

which does not impose any constraints and therefore represents all six possible readings

is much shorter than the speci�cation of the full set of the six readings in (1.7). Sec-

ond, as the representation in (1.10) illustrates, the approach provides representations

for partially disambiguated structures, i.e. for subsets of readings. However, it is not

obvious which partial disambiguations/subsets of readings can actually be represented

in this approach. In particular, it is not clear if it provides rep resentations for all possi-

ble subsets of readings that can occur. To discuss and answer these questions properly,

formal de�nitions of the approaches and the requirements are needed.

1.4 Aim and Structure of the Thesis

This thesis aims at elucidating the real content of the two often-cited, informal and yet

fundamental requirements Partial Disambiguation and Compactnessof underspeci�ca-

tion approaches. The �rst requirement is one on the expressive power of underspeci�ed

representation formalisms, after one has become clearwhich partially disambiguated

sets of readings actually need to be represented. The second requirement is one on the

complexity of those formalisms, requiring them to avoid combinatorial explosion and to

provide for ef�cient construction procedures. They create a tension between expressivity

and complexity that is of the same sort as in other �elds, such as formal language theory

or logic, where increased expressive power goes along with increased complexity.

This all will be discussed on a rather abstract and technical level and in this respect

this thesis differs from most other work on underspeci�cation. I am not interested in

devising yet another formalism, but rather in more theoretical qu estions about scope

underspeci�cation. Those questions concern the expressive power needed to adequately

account for scope ambiguities of natural language, an evaluation of existing approaches

in this respect and connected issues of ef�cient constructionand combinatorial explo-

sion. One would think that such fundamental questions have been asked and partially

answered already, but surprisingly this does not seem to be the case, despite more than

ten years of research in the �eld. For instance, although there are various formalisms for

the underspeci�cation of scope on the market, discussions about a comparison of their
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expressive power have emerged only very recently9. The same is true for discussions

of the necessary means to properly represent natural language ambiguities (cf. Fuchss

et al., 2004). Perhaps most surprisingly, even the above-mentioned tension between the

two requirements is rarely noticed or acknowledged, so it seems.

In this thesis I put forward a formal framework and de�nitions that allow for an evalu-

ation and a comparison of underspeci�ed representation formalisms, and I will discuss

the issues touched above in detail. The thesis is structured asfollows:

In Chapter 2 I will set the stage by clarifying the terms 'reading' and 'underspeci�ed

representation formalisms' and by providing general and abstractde�nitions which will

be used in the remainder of the thesis.

The third Chapter then discusses theexpressive completenessof underspeci�ed repre-

sentation. The property of expressive completenessactually gives that of partial disam-

biguation real content by classifying a formalism as expressively complete if it is capable

of representing all ambiguities that may possibly occur in natural language. In other

words, an expressively complete formalism is linguistically adequate as it can be used

to represent ambiguities that need to be represented. I will �rst i llustrate the notion at

an elaborate example and argue (in line with König and Reyle (1999)) that in principle

disambiguation is unconstrained, in particular considering disambiguation information

from discourse and context. I will �esh this out by giving two fa irly simple examples

that will prove problematic for the variable/constraint approach es and conclude with a

formal de�nition of expressive completeness in the setting that has been established in

Chapter 2.

Chapter 4 is concerned with an evaluation of the variable/constraint approaches w.r.t.

expressive completeness as de�ned in Chapter 3. It will turn out that none of these

formalisms is expressively complete as each fails to represent one or more of the exam-

ples of Chapter 3. The chapter concludes with a brief discussion of other approaches to

underspeci�cation.

The proofs from Chapter 4 can be applied straightforwardly for a comparison of the

expressive power of the variable/constraint approaches. This isdone in Chapter 5, where

the differences and their common aspects are worked out. A general discussion on

expressive power, linguistic adequacy and existing formalisms concludes the chapter.

The negative results from Chapter 4 naturally lead to the question what an expressively

complete formalism may look like. In Chapter 6 I will give two o bvious answers, mainly

to highlight that expressive completeness leads directly to aproblem with the com-

pactness requirement. After a further discussion about complexity issues and a formal

9(cf. Koller et al., 2003; Niehren and Thater, 2003)
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de�nition of this latter requirement, I will show that it is imp ossible to have expressive

completeness and compactness at the same time.

Motivated by this result, expressively rich approaches for underspeci�cation are dis-

cussed in Chapter 7. Those approaches take a different route fromvariable/constraint

approaches and strive for expressive completeness and linguistic adequacy, but are far

from satisfying the compactness requirement. I illustrate the bene�ts of such an ap-

proach by extending and elaborating the PTCT system of Fox and Lappin (2005a).

Finally, Chapter 8 summarizes the results of this thesis and shows some prospective lines

of research.



Chapter 2
Underspeci�ed Representation

Formalisms

On an informal level it is far from obvious how well an approach such as the one from

Section 1.3 ful�ls the requirements from Section 1.1. In this section I will therefore set

the stage and give the technical preliminaries which are necessary in order to work with

clean de�nitions in the subsequent chapters.

As the discussion in the preceding chapter (and particularly the example in Section

1.3) has shown, underspeci�cation in variable/constraint approa ches is achieved by

talking about the composition of expressions of some formal language, e.g. the for-

mulas of FOLGQ. So basically ameta-languageis de�ned, which speci�es how parts of

an underlying object languagecan be combined to �nally yield a set of expressions of

this object language. The URF in Section 1.3, for instance, employed additional meta-

variables X i and constraints on those variables to restrict the composition of the parts

∀x(child(x) → X 1); ∃y(story(y) ∧ X 3); two(z; teacher(z); X 5), and told(x; y; z).

An important observation at this point is that the exact nature of the parts of the object

language does not matter in order to evaluate the requirements on URFs. As long as we

keep track of the information about the meta-variables we can simply rename the parts.

20
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For instance, in the example above we could use the followingabbreviations1:

∀x(child(x) → X 1)  a(X 1)(2.1)

∃y(story(y) ∧ X 3)  e(X 3)

two(z; teacher(z); X 5)  t (X 5)

told(x; y; z)  x

Here entire parts have just been abbreviated by a single functor which takes the meta-

variable for the hole as its argument. Then the(∃2∀) and (∃∀2) readings of the represen-

tation in (1.10) would come out as e(t (a(x))) and e(a(t (x))), respectively, i.e. as terms

consisting of the functors above.

The example above is special in that the parts have only one hole or none, i.e. the scope

taking elements have only one scopal argument. In general however, parts may have

more than one hole. For instance, a generalized quanti�er actually takes two arguments:

a restrictor and a scope. We can account for this by having a part with two holes, for

instance two(z; X; Y ) as the translation for the generalized quanti�er corresponding to

two . Another case in point are logical connectives, such as implication, which has two

arguments: the antecedent and the conclusion. The corresponding part X → Y (using

in�x notation as usual) also has two holes. Again we could abbreviate those parts, this

time by functors which take two arguments:

two(z; X; Y )  t 0(X; Y )(2.2)

X → Y  i (X; Y )

The purpose of the foregoing paragraphs is to illustrate that there are several options

even within one object language. For instance, the part corresponding to the NP every

child could be construed as a unary functora(X ), corresponding to ∀x(child(x) → X ) as

above; or as a combination of a binary functor a0(X; Y ), corresponding to ∀x(X → Y ),
and a 0-ary functor c, corresponding to child(x); or as a combination of another unary

functor a00(X ) corresponding to ∀x(X ) and i (Y; Z) and c such that a(X ) = a0(c; X ) =
a00(i (c; X )). The crucial point is that it is suf�cient to use an abstract col lection of func-

tors, no matter what the actual choice of object language and parts is. In general, parts

which employ n holes correspond ton-ary functors and parts without holes correspond

to constant functors. Readings, i.e. expressions of the objectlanguage, will then be

encoded as terms over those functors. By only talking about functors and terms we

can abstract over the underlying object language of a URF and focus on the inherent

properties of the formalisms under investigation.

1where a is reminiscent of all, e of exists, and t of two
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2.1 Terms and Trees

'Collections of functors' are known assignatures, which specify a set of functors together

with their arity. Terms can then be de�ned over a given signature . The formal de�nitions

run as follows:

De�nition 2.1
A signature Σ = 〈F; ar〉 is a pair consisting of a �nite set F of functor symbols and an

associated arity function ar: F → N. The set of termsT� over a signatureΣ is de�ned as

follows:

1. If f ∈ F with ar(f ) = 0 then f ∈ T� . Functors of arity 0 are also calledconstants.

2. If f ∈ F with ar(f ) = n (n > 0) and t1; : : : ; tn ∈ T� then f t 1 : : : tn ∈ T� .

In the following I will use typewriterfont for concrete functor symbols and terms.

Therefore f ; g; : : : denote particular functors of some signature, while f; g; : : : are vari-

ables, ranging over functors. Often I will indicate the arity of a func tor symbol by a

superscript, i.e. I will write f 2 for a functor f with arity ar(f ) = 2. In the following I will

sometimes make string concatenation of two stringsc and d explicit by writing c_ d.

Another way of viewing a term is to regard it as a labeled tree, which is de�ned over a

tree domain(Gorn, 1967) that describes the tree structure. In the following, " stands for

the empty string.

De�nition 2.2 (Tree Domain)

A tree domainD is a setD ⊂ N�
+ such that

1. " ∈ D,

2. di ∈ D ⇒ d ∈ D (d ∈ N�
+ ; i ∈ N+ ) (i.e. D is pre�x-closed), and

3. di ∈ D ⇒ dj ∈ D for all j < i (d ∈ N�
+ ; i ∈ N+ ).

The elements of theD are called nodes.

Tree domains are de�ned such that " stands for the root of the tree (1.). Furthermore,

for every node it is ensured that its mother node and all its sister nodes to the left exist

(2. and 3., respectively).

Example 2.3
For instance, the set

(2.3) {"; 1; 11; 111; 2; 21; 22; 23}
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ful�ls all the requirements for a tree domain. The tree structure ca n be graphically

depicted as

"
P P P PP

�����
1

11

111

2
P P P PP

�����
21 22 23

The pre�x-closure in point 2. ensures that together with the nod e 111, the tree domain

contains its mother node 11 (and in turn this node's mother node 1 and so on). Point 3.

ensures that together with the node 23 the tree domain contains its sister nodes22 and

21.

Implicit in the tree domain are various relations, such as dominance of nodes. They are

spelled out explicitly in the following de�nition.

De�nition 2.4 (Tree Relations)

Let D be a tree domain. Then one can de�ne the following relations on D × D:

i -dominance / i
D := {〈u; ui 〉 | i ∈ N}

immediate dominance / D :=
�

〈u; v〉 | there is a i ∈ N such that u / i
D v

	

dominance / �
D := the re�exive and transitive closure of / D

i -descendance / i �
D := {〈u; v〉 | there is a w ∈ D such that

u / i
D w and w / �

D v
	

precedence ≺D := {〈uiv; ujw 〉 | u; v; w ∈ N� ; i < j ∈ N}

Spelled out less formally, u i -dominates v iff v is the i -th daughter of u, u immediately

dominates v if v is somedaughter of u. Dominance is de�ned straightforwardly as the

re�exive and transitive closure of immediate dominance 2. The relation of i -descendance

is somewhat less common and relatesu to v iff v is dominated by the i -th daughter of u.

It will be used later in the text to determine whether certain co nstraints hold. Finally, u

precedesv if u is left of v in the tree.

A Σ-labeled tree is nothing more than a tree domain and an additional labeling function,

that assigns a functor label of some given signatureΣ to each node. It only has to be

2Sometimes (cf. Bos, 2002) tree relations are noted differently, i.e.u ⊳ v is de�ned to mean that v is the
mother and u is the daughter, whereas it is vice versa in the de�nition above. My notation can be memorized

by rotating u ⊳ v clockwise by 90� . The resulting picture is then
u
�
v

, which resembles a drawing of a tree

where u dominates v.
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ensured that the number of daughter nodes of some noded corresponds to the arity

of the functor which labels d. This requirement constitutes the second point of the

following de�nition:

De�nition 2.5 (Labeled Tree)

Let Σ = 〈F; ar〉 be a signature. AΣ-labeled tree� is a pair � = 〈D; ` 〉 where

1. D is a tree domain, and

2. ` : D → F is such that

if `(d) = f then d_ ar(f ) ∈ D and d_ (ar(f ) + 1) =∈ D.

In the following I will write / i
� ; / � , etc. instead of / i

D ; / D , etc. for a tree � with under-

lying tree domain D . As terms are uniquely readable, there is a unique correspondence

between terms overΣ and Σ-labeled trees as the following examples illustrate:

Example 2.6
Given the signature Σ = {f 1; g2; x0; y0}, the term gfxy has to be read asg(f (x); y) The

corresponding Σ-labeled tree is depicted to the left and the underlying tree domain is

given to the right:

g
QQ��

f

x

y

"
b b""

1

11

2

Concerning the tree relations de�ned above, it holds that

/ 1
� = {〈"; 1〉 ; 〈1; 11〉}

/ 2
� = {〈"; 2〉}

/ � = {〈"; 1〉 ; 〈"; 2〉 ; 〈1; 11〉}

/ �
� = {〈"; 1〉 ; 〈"; 2〉 ; 〈1; 11〉 ; 〈"; 11〉 ; 〈"; " 〉 ; 〈1; 1〉 ; 〈2; 2〉 ; 〈11; 11〉}

/ 1�
� = {〈"; 1〉 ; 〈1; 11〉 ; 〈"; 11〉}

/ 2�
� = {〈"; 2〉}

≺� = {〈1; 2〉 ; 〈11; 2〉}

According to De�nition 2.5, a tree is given by a collection of node s and a labeling func-

tion which assigns a functor to every node. In general, different nodes may be labeled

with the same functor, of course. However, in the special casethat every functor appears

only once in the tree, one can actually dispense with the nodesand talk about the func-
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tors directly. Another way of stating this would be to say that t he labeling function is a

bijection, or the functor labels form a proper set (without mul tiple occurences) instead

of a multiset. In particular, the tree relations can then be de�n ed on the functors. For

instance, if in some such treed / d 0 and `(d) = f and `(d0) = g then one may as well

say that f / g as the correspondence between the nodes and the functors is unique. In

this case, I will often simplify the notation and leave out th e pair brackets, writing fg

instead of 〈f; g 〉.

Example 2.7
As the tree in Example 2.6 ful�ls the condition (i.e. the functor labels {f ; g; x; y} form a

proper set), the relations on the tree nodes can be rewritten as relations on functors as

follows:
/ 1

� = {gf ; fx }

/ 2
� = {gy}

/ � = {gf ; gy; fx }

/ �
� = {gf ; gy; fx ; gx; gg; ff ; yy; xx}

/ 1�
� = {gf ; fx ; gx}

/ 2�
� = {gy}

≺� = {fy ; xy}

Note that if x was substituted for y in the tree, one could not determine whether f / � x

holds, for instance, as this would depend on exactly which of the two occurences ofx

one had in mind.

I will make heavy use of this notation in later sections, where I will restrict the investi-

gation to sets of functor labels in order to simplify the discussion.

2.2 Formalisms and Expressive Power

To 'talk about' terms in meta-language formalisms actually means to represent a set of

them. As we have seen above, an underspeci�ed representation for (1.1) 'talks about'

FOLGQ formulas and in fact represents the set consisting of the six formulas in (1.7).

Therefore an underspeci�ed representation formalism, which is de�ned over some sig-

nature Σ, must de�ne

1. what the underspeci�ed representations are, and

2. how a representation encodes a set of terms overΣ.
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The following de�nition describes this more formally:

De�nition 2.8
An underspeci�ed representation formalismU over a signatureΣ is a pair 〈U;L〉, where

1. U is the set of underspeci�ed representationsand

2. L is the licensing mapping

L : U −→ Pow(T� )

that maps each representation inU to a set of terms overΣ.

I used the term licensingin this De�nition so I do not have to talk about representations

representingsomething. So licenseis the formal counterpart to the intuitive and vague

notion represent3.

Example 2.9
Let Σ = {a1; e1; t 1; c0} be the signature from the beginning of this Chapter. Let U =
Pow(T� ) be the set of sets of terms overΣ and L = idPow(T� ) the identity on the sets of

terms over Σ. Then 〈U;L〉 is a URF according to De�nition 2.8. It corresponds to the

naive proposal from Section 1.1.2, where every set of readings is represented by itself.

A more reasonable de�nition is the following one along the line s of the informal discus-

sion from Section 1.3. Let V = {X 0; X 1; : : :} be a set of variables and

(2.4) P = {X i : f (X j 1 ; : : : ; X j n ) | f n ∈ Σ; X i ; X j 1 ; : : : X j n ∈ V}

be a set of parts, which are built out of the functors in Σ and the variables in V . Then let

U = Pow(P), i.e. an underspeci�ed representation is a set of parts fromP. For instance,

for the given signature Σ, a possible representation would be

(2.5)
�

X 0 : a(X 1); X 2 : e(X 3); X 3 : t (X 4); X 5 : c
	

Now a licensing mapping has to be de�ned. In order to do this, we say that a tree� (and

hence term) satis�es an underspeci�ed representation u, if each of the variables in u can

be mapped onto a tree node of� such that the labeling and motherhood information in

the parts is respected. So letVar(u) be the set of variables which occur somewhere in

the parts in u. E.g. in case of (2.5) we haveVar(u) = { X 0; X 1; X 2; X 3; X 4; X 5 }. Then

3The de�nition of an underspeci�ed representation formalism is reminiscen t of the speci�cation of a
logical language together with a model relation. Just as a formula of a logical language has a class of
models, an underspeci�ed representation licenses a set of terms. Thereason why I didn't adopt those
logical notions is that licensingis still different from denotingor having a modelin that the latter should be
reserved for de�ning the meaningof underspeci�ed representations. I do not want to suggest that setsof
terms provide meanings for underspeci�ed representations in the model theoretic sense.



2.2. Formalisms and Expressive Power 27

we may say that a tree� = 〈D; ` 〉 satis�es an underspeci�ed representation u iff there is

a mapping

(2.6) � : Var(u) −→ D

such that for all parts X i : f (X j 1 ; : : : ; X j n ) ∈ u it holds that

(2.7) � (X i ) / k
� � (X j k ) (1 ≤ k ≤ n) and `(� (X i )) = f

Note that in (2.5) the variable X 3 is shared by two parts: as daughter ofX 2 (which bears

the label information e) and as the mother of X 4, where it is speci�ed that X 3 should be

labeled with t . Therefore, in every term which satis�es this representation, X 2 must be

mapped to a node labeled bye and X 3 must be mapped to its single daughter node and

be labeled by t . All other variables occur only once in the representation and therefore

there is no restriction on their mapping to tree nodes.

Therefore only those terms will satisfy (2.5) which contain (at l east) the functors a and

x and the subterm et . For instance aetx and etax both satisfy (2.5). However, as

satisfaction is currently de�ned, a term such as attttttetx also satis�es (2.5). This is

undesirable, as the term contains material (six instances of the functor t ) that is not

mentioned in the representation. In the following de�nition o f licensing we incorporate

a further restriction to rule out terms which are too big in this sens e:

(2.8) L : u 7→ {t ∈ Σ | t satis�es u and

t contains exactly the functors mentioned in u}

For the representation in (2.5) it now holds L
�

(2.5)
�

= {aetc ; etac } as desired.

With the speci�cation of the licensing relations we have completed the de�nition of

a URF 〈U;L〉. The underspeci�ed representations are sets of parts and the licensing

mapping assigns the set of satisfying terms (containing no additional functors) to each

underspeci�ed representation. This example formally spells out the basics of the infor-

mal URF de�nition of Section 1.3. It properly de�nes parts over som e signature using

meta-variables but does not touch the issue of constraints yet.

Given this general de�nition of URFs we may compare underspeci�ed representation

formalisms over a common signature with respect to their expressive power. We want

to say that a formalism U is as expressive as another formalismU0, if it licenses at least

those sets of terms which are licensed byU0.
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De�nition 2.10
For two underspeci�ed representation formalisms U and U0 over the same signatureΣ
with licensing mappings L and L0, respectively, we say thatU is at least as expressive

as U0 and write U0 ⊑ U iff for every underspeci�ed representation u0 of U0 there is an

underspeci�ed representation u of U with L(u) = L0(u0). As it is common practice, let

us specify when the formalisms areequivalentas

(2.9) U0 ≡ U iff U0 ⊑ U and U ⊑ U0:

Furthermore U is more expressive thanU0 (written U0 @U) iff U0 ⊑ U but not U0 ≡ U .

This concludes the formal de�nitions of the foundational not ions which will be used in

the investigations to come. The de�nitions have been kept general and independent

of any existing approach or logical language. Underspeci�ed representation formalisms

(URFs) are de�ned as a set of representations together with a licensing function that

maps each representation to a set of terms. In the following chapters these de�nitions

will be put to use.



Chapter 3
Expressive Completeness

Expressive Completeness is – generally speaking – a statementabout the expressive

power of some representational formalism with respect to some class of objects which

should intuitively be represented. The formalism is called expressively complete w.r.t.

the class of objects, if indeed each object in the class can berepresented.

A simple and well-known example concerns truth-functions, which are functions

(3.1) t : {0; 1}n −→ {0; 1}

mapping n-tuples of truth-values (0 and 1 corresponding to falseand true) to a truth-

value. This comprises unary negation¬ or binary connectives like conjunction ∧ or

disjunction ∨. It is well-known that any truth-function can be expressed by a minimal

pair of ¬ and a binary truth-function such as ∨ or ∧. For instance, the truth-function

given by implication, which sends〈1; 0〉 to 0 and all other pairs to 1, can be represented

with ¬ and ∨ as follows:

(3.2) a → b ≡ ¬a ∨ b

This means that{¬; ∨} are expressively completew.r.t. the class of all truth-functions. For

each truth-function we �nd a representation consisting just of {¬; ∨}.

Intuitively it is clear what it means for a URF to be expressively complete: for each

possibly occurring scope ambiguity in natural language there should be an underspec-

i�ed representation that represents this ambiguity. In terms of o ur formal de�nitions

this means that, for each set of readings of an ambiguous expression there has to be an

underspeci�ed representation which licenses this set. In other words, if a URF is not

expressively complete, it does not provide representations forcertain ambiguities which

29
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actually should be represented. Therefore such a URF is inadequate for the representa-

tion of natural language ambiguities.

In the following section I will illustrate the concept of expre ssive completeness using

Cooper Storageas a URF along the lines of Frank and Reyle (1994). Then I will review

the discussion of expressive completeness in K̈onig and Reyle (1999) and give further

support for their claims. I will �nish this chapter with a forma lization of expressive

completeness for URFs.

3.1 Cooper Storage as a URF

In Frank and Reyle (1994) it has been argued that there are sets of readings which can-

not be represented by a Cooper Storage representation. In this section I shall brie�y

introduce Cooper Storagein contrast to Montague's approach ofQuantifying In and illus-

trate this shortcoming of Cooper Storage.

3.1.1 Cooper Storage � A Sketch

Cooper Storage was originally proposed in Cooper (1983) to account for the derivation

of the readings of scopally ambiguous sentences without reducing them to syntactic

ambiguities. Roughly, Cooper Storage works bycollecting scope taking elements in a

set (the store), rather than applying them in the semantic construction direct ly. This

application is postponed to some later stage, at which the scope taking element is taken

out of the set and applied to the representation built up so far. At this point, the scope

element is retrieved.

Let us take (1.1) as a concrete example, which is repeated here as (3.3)

(3.3) Every child told two teachers some story.

The sentence has the standard syntactic analysis shown in Figure3.1. In the next two

paragraphs I will illustrate the syntactic Montagovian treatmen t of ambiguity and then

show the semantical treatment of Cooper Storage.

Montague’s Quantifying In

As has been pointed out above, Montague deals with scope ambiguities by proposing

a different syntactic structure for each reading. Those syntacticstructure deviate from

the standard analysis in Figure 3.1 by introduction of the operation of Quantifying In.
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Figure 3.1: Standard Analysis of (3.3)

Instead of dealing with the quanti�cational NPs in situ, i.e. at the place where they oc-

cur, Montague introduces syntactic placeholder variables, which are realized as indexed

pronouns such ashei . On the semantic side these pronouns are translated into variables

vi . The quanti�cational NPs can then 'quantify into' the result ing proposition in any or-

der, which eventually determines the scope relations and thusthe generated reading. To

exemplify the Quantifying In approach, consider Figure 3.2, which shows one possible

syntactic analysis of (3.3) in the Montagovian framework1: The subscripts at the upper
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Figure 3.2: A Quantifying In analysis of (3.3)

S nodes indicate, that these nodes are the result of an application of an indexed syntactic

rule Rn which is responsible for the replacement of the placeholder pronoun bearing the

1This is only one of in�nitely many analyses this sentence receives in the Montagovian framework, as
any NP node can be either realized by the surface NP or by a placeholder pronoun which is used for further
quantifying in. Note that I used placeholder pronouns different from hei as proposed by Montague (such
as it 2) as these sound more natural in the present sentence.
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corresponding index n by the quanti�cational NP. For instance, in the case above the

rule R1 combines the NPtwo teachers with the S he3 told him 1 it2 thereby substituting

the NP for the placeholder pronoun with the same index (him1). This results in the S he3

told two teachers it2 to which the rules R2 (yielding he3 told two teachers some story)

and R3 (resulting in every child told two teachers some story) are applied. Therefore

the grammar will generate the string in (3.3) despite the complex syntactic structure

with placeholder pronouns.

Due to the strictly compositional design of the grammar, the semantic construction par-

allels this syntactic analysis. First, the semantics�z�y�x: tell(x; y; z) of told successively

combines with the variables v1; v2, and v3 corresponding to the placeholder pronouns

him 1, it 2, and he3, respectively. This results in the open propositiontell(v3; v2; v1). This

open proposition serves as the basis for consecutive applications of indexed semantic

Quantifying In rules, which corresponds to the indexed syntactic rulesRn . Those rules

combine the (generalized quanti�er) semantics of an NP with th e (open proposition) se-

mantics of an S, where the variable corresponding to the indexn of the rule is abstracted

over:

(3.4) JSnK= JNPK(�v n :JSK)

In case of the �rst instance of Quantifying In above, the semantics

�Q: two(z; teacher(z); Q(z)) of two teachers combines with �v 1:tell(v3; v2; v1). After

a sequence of� -reductions this yields the open proposition

(3.5) two(z; teacher(z); tell(v3; v2; z)):

The further combination with the semantics of some story (this time abstracting over

v2) gives

(3.6) ∃y(story(y) ∧ two(z; teacher(z); tell(v3; y; z)))

and the �nal combination with the NP every child results in the (∀∃2) reading

(3.7) ∀x(child(x) → ∃y(story(y) ∧ two(z; teacher(z); tell(x; y; z)))):

Using the strictly compositional Montagovian method of semantic construction, we de-

rived exactly one reading from a single syntactic analysis.
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Cooper Storage

Cooper Storage pursues a different strategy, as more than one logical form is constructed

from the standard syntactic analysis in Figure 3.2. To achieve this, the scope taking

elements (i.e. quanti�ed NPs in this example) are not function ally applied, but put in

storage during the semantic construction process. Instead, a placeholder variable is used

in composition with the verb, the index of which is recorded with the quanti�er.

According to the standard analysis, the verbtold combines �rst with the NP two teach-

ers. However, instead of a direct application of the generalized quanti�er to the verb, a

placeholder variable v1 is used and the quanti�er itself is put into storage, together with

the index 1. The following structure represents this.

(3.8)
D

�y�x: told(x; y; v1);
�

(�P: two(x; teacher(x); P(x); 1)
	 E

This structure is of the form 〈'; S 〉: the left component ' represents the semantic core

component, which is the result of composing the semantics of the verb with the place-

holder variable v1. The second component is the storageS – an unordered set of quan-

ti�ers, which are paired with an index. This index has to be recorde d such that in a

later retrieval step the quanti�er can be applied to bind the co rresponding placeholder

variable in an argument position2. The combination with the next quanti�ed NP some

story adds another element to the storage, and another placeholdervariable is used for

the semantic core:

(3.9)
D

�x: told(x; v2; v1);
�

(�P: two(x; teacher(x); P(x)); 1);

(�P: ∃x(story(x) ∧ P(x)); 2)
	 E

The �nal combination of the representation above with the subj ect every child yields

(3.10)
D

told(v3; v2; v1);
�

(�P: two(x; teacher(x); P(x)); 1);

(�P: ∃x(story(x) ∧ P(x)); 2); (�P: ∀x(child(x) → P(x)); 3)
	 E

:

At this stage all quanti�ers are in the store, which is an unordered set. The order in

which the quanti�ers take scope is determined by the order in whi ch they are retrieved.

Retrieval of a quanti�er is performed by taking it out of storage a nd applying it to the

open core proposition. Speci�cally, the placeholder variable with the recorded index is

abstracted from the core representation. Then the quanti�er is applied to this abstract

just as in the application of the semantic Quantifying In rule (3.4). This will yield a

2similar to the index used in the syntactic/semantic rules in the Quantifying In approach
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new core representation and a new store from which the quanti�er ha s been removed.

For instance, retrieval of the quanti�er corresponding to every child yields the following

core representation:

(3.11) �P: ∀x(child(x) → P(x))
�
�v 3:told(v3; v2; v1)

�
= ∀x(child(x) → told(x; v2; v1))

The complete representation including the reduced storage is then as follows:

(3.12)
D

∀x(child(x) → told(x; v2; v1));
�

(�P: two(x; teacher(x); P(x)); 1);

(�P: ∃x(story(x) ∧ P(x)); 2)
	 E

Retrieving the quanti�er corresponding to some story next yields the following result:

(3.13)
D

∃y(story(y) ∧ ∀x(child(x) → told(x; y; v1)));
�

(�P: two(x; teacher(x); P(x)); 1)
	 E

Finally there is no other option but to retrieve two teachers last:

(3.14)
D

two(z; teacher(z); ∃y(story(y) ∧ ∀x(child(x) → told(x; y; z)))); ∅
E

This yields a structure with an empty storage and the(2∃∀) reading has been derived.

Note that the quanti�ers take scope in the opposite order in whi ch they have been re-

trieved. Every child has been retrieved �rst and takes narrowest scope,some story

has been retrieved second and takes intermediate scope, andtwo teachers takes widest

scope as it has been retrieved last. Therefore we can read off the order of retrieval

straightforwardly from the abbrevations we used for the readings by taking them from

right to left: For instance, in the case at hand, the (2∃∀) reading has been derived by re-

trieving every child (abbreviated as∀), some story (abbreviated as∃), and two teachers

(abbreviated as2) in sequence.

3.1.2 Cooper Storage is Expressively Incomplete

Cooper Storage representations can naturally be regarded as underspeci�ed representa-

tions, because the order of all quanti�ers which are in store has not been determined

and is left open. Therefore we can say that (3.10), for instance, underspeci�es the six

possible readings of sentence (3.3). By retrieving the stored quanti�ers in any order we

could derive any of the six readings.
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But structures where some retrieval has already taken place can also be taken to be

underspeci�ed representations. In (3.12) for instance, ∀ has been retrieved and has

therefore been con�ned to narrower scope than 2 and ∃, the relative scopes of which

have not been determined yet. Therefore this structure can be understood as an un-

derspeci�ed representation for the two readings (2∃∀) and (∃2∀). We might say that by

retrieving a quanti�er from storage we are partially disambiguating the representation.

By retrieving ∀ we have disambiguated (3.10) in favour of the narrow scope reading for

∀, which leaves us with only the subset{(2∃∀); (∃2∀)} out of the entire set of readings.

At this point, let me reiterate an important observation from the p revious paragraph.

Once a quanti�er has been retrieved, it takes narrower scope thanthe quanti�ers which

are still in the storage. For instance, after retrieval of ∀ it was con�ned to narrower

scope than∃ and 2. Subsequent retrieval of∃ limited this quanti�er to narrower scope

than 2. We can use this observation to make a general statement about the form of

the underspeci�ed readings for some structure s = 〈'; S 〉, where ' is the core semantic

representation and S the storage set of quanti�ers. Suppose that ' has been obtained

through retrieval and application of some quanti�ers Q1; : : : ; Qn in the order of their

indices. Then each of the readings which can be derived froms through further retrieval

of quanti�ers in S is of the form (R1 · · · Rm Qn · · · Q1), where R1 · · · Rm is a possible

sequence (i.e. permutation) of the quanti�ers in S. The entire set of readings which

such a structure underspeci�es is

(3.15)
�

(R1 · · · Rm Qn · · · Q1) | R1; : : : ; Rm is an enumeration of the elements ofS
	

Obviously, all the underspeci�ed readings end in a common sequence of retrieved quan-

ti�ers Qn · · · Q1.

This leads to a problem for expressions which do not exhibit this pattern of readings.

For instance, consider the small piece of discourse (1.4) again, repeated here as (3.16)

(3.16) Every child told two teachers some story. It wasAlice in Wonderland.

Recall that the presence of the anaphorit in the second sentence partially disambiguates

the �rst in favour of the wide scope reading for some story. Hence only the (∃∀2) and

(∃2∀) readings remain, where ∃ takes wide scope but the relative order of the other two

quanti�ers has not been determined yet. Of course we would like to �nd a suitable rep-

resentation of Cooper Storage to represent this set of two readings. But according to the

considerations about the form of the underspeci�ed readings, there is no such represen-

tation – the two readings in question do not end in a common sequence of quanti�ers.

This means that Cooper Storage is not capable of underspecifying the readings of the

partially disambiguated �rst sentence in (1.4).
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This shortcoming of Cooper Storage – when seen as a formalism forunderspeci�cation

– has been pointed out in Frank and Reyle (1994) already. They note that, in general,

Cooper Storage does not provide the means to restrict the scope relationships for the

type of ambiguity which was exempli�ed above. That is, for thre e given quanti�ers

Q1; Q2; Q3, Cooper Storage is not expressive enough to impose a scope restriction that

requires Q1 to take scope overQ2 and Q3 while leaving the relative scope of Q2 and

Q3 unspeci�ed. It is this kind of shortcoming with respect to expre ssive power that

expressive completeness of underspeci�ed representationformalisms is about. Identifying

a set of readings that cannot be represented with Cooper Storage,allows us to state

that Cooper Storage isexpressively incomplete. In other words, Cooper Storage is not an

adequate formalism for the representation of natural language ambiguities3.

3.2 Informal Discussions of Expressive Completeness

In König and Reyle (1999) the term 'completeness' was explicitly mentioned for the �rst

time in the context of underspeci�cation. In comparing several formalisms, the authors

called a representation formalism completeif its 'disambiguation device produces all pos-

sible re�nements[...]' (p. 2). They illustrate this de�nition as follows:

'[...] let us consider a sentence with three quanti�ed NPs with un derspeci�ed

scoping relations. Then [the formalism] must be able to represent all 23! = 64
re�nements, i.e. partial and complete disambiguations of this sentence. For

many formalisms the question whether they are complete [...] is not decided

yet.'

(König and Reyle, 1999, p. 252)

In this and the following chapter I will remedy this situation by giving a formal de�nition

of completeness and an evaluation of various approaches with respect to it.

Concerning a �rst step towards formalization, note that there are n! different permuta-

tions on a set of n distinct scope taking elements. This corresponds to the worst case

scenario, in which the order of the elements is totally unrestricted and each ordering

leads to a legitimate reading of the expression. A point in caseis sentence (3.3), where

the set of scope taking elements can be schematically depicted as {∀; ∃; 2} as above.

3Keller (1988) extends the original proposal of Cooper Storage by allowing for nestedstorage structures.
Those nested structures are necessary to avoid overgeneration of theoriginal Cooper storage approach in
case of certain sentences containing embedded NPs. Although nesting imposes further constraints on the set
of possible readings it cannot solve the problem of expressive incompleteness of the storage approach. See
Blackburn and Bos (2005) for a implementation of Cooper and Keller Storage in a computational semantics
system.
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Therefore, the entire set of readingsR will be of cardinality n! in general. In case of the

three quanti�ers above, R contains the following 3! = 6 readings

(3.17) R = { ∀∃2; ∀2∃; ∃∀2; ∃2∀; 2∃∀; 2∀∃ };

Now disambiguation can simply be seen as an operation which rules out some of those

readings, which in turn means that partial disambiguations correspond to subsets of

R. Using the fact that the power set of every set with cardinality m has 2m different

elements4, we can conclude that there are2n! subsets ofR, i.e. partial disambiguations.

This is what König and Reyle (1999) pointed out.

Let us reconcile this view with what has been said about expressive completeness at the

beginning of Chapter 3. There we asserted that a URF is called expressively complete,

if it provides an underspeci�ed representation for each possibly occurring ambiguity in

the processing of sentences and discourses. Now König and Reyle (1999) state that

expressive completeness of a URF should be de�ned w.r.t. the fullset of partial disam-

biguations. This view implies the claim that natural language is unrestricted concerning

ambiguities – each imaginable partial disambiguation could, in principle, arise while

processing discourse. In the following Section I will substantiate and support this claim

further.

3.3 Partial Disambiguation is Unconstrained

Suppose that some URF isnot capable of representing some set of readingsP, i.e. sup-

pose that there is no underspeci�ed representation of the formalism that licensesP. If

we claimed that this URF suf�ces to properly represent the meaningof natural language

expressions in discourse processing (i.e. if we claimed that a de�nition of expressive

completeness does not compriseP), then we would make a strong claim about natural

language ambiguities. More precisely we would claim that

1. there is no individual sentence in natural language that canbe ambiguous between

the readings in P, and

2. discourse cannot evolve in a way such that discourse processing yields an ambigu-

ity among the readings in P.

To summarize, we would claim that there is no means in natural language to produce

an ambiguity among the readings in P – neither for isolated sentences nor for entire

discourses.
4including the set itself
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3.3.1 Ambiguity in Individual Sentences

Concerning point 1, for individual sentences, it does not seem implausible to think that

the ambiguity of sentences behaves in some regular way such that certain 'weird' pat-

terns of ambiguity P may not actually occur. For instance, scope islands are one phe-

nomenon which is known to restrict the ambiguities of sentences (as mentioned in Sec-

tion 1.1.1), and we may assume that this happens in a systematic way. However, if the

assumption is correct that certain patterns of ambiguity do not arise, the underlying reg-

ulating factors are far from obvious, as ongoing discussion on this matter shows5. At

present, there is no evidence for the claim that isolated sentences cannot, in general,

exhibit certain patterns of ambiguity.

In fact, there are rather simple sentences which prove problematic for certain under-

speci�ed representation formalisms. Consider the following sentence, which has only

four readings according to Park (1995).

(3.18) Two representatives of three companies saw most samples.

Although (3.18) contains the three quanti�ed noun phrases two representatives (2),

three companies (3), and most samples (M), not all possible permutations lead to licit

meanings. As has been pointed out for similar examples by Hobbs and Shieber (1987)

already, the following logical form contains an unbound variab le and therefore this read-

ing is excluded:

(3.19) two(x; rep of(x; y); most(z;samp(z); three(y; comp(y); saw(x; z))))

Note that the �rst occurence of y in rep of(x; y) is free as the corresponding quanti�er

threetakes scope belowmost.

Park (1995) observes that from the �ve readings, where all variables are bound properly,

another one is not warranted by the sentence. He states that thefollowing reading is

not available to native speakers of English.

(3.20) three(y; comp(y); most(z;samp(z); two(x; rep of(x; y); saw(x; z))))
5cf. the contributions in Szabolcsi (1997), for instance.



3.3. Partial Disambiguation is Unconstrained 39

Thus the remaining four readings are as follows.

two(x; three(y; comp(y); rep of(x; y)); most(z;samp(z); saw(x; z)))(3.21)

three(y; comp(y); two(x; rep of(x; y); most(z;samp(z); saw(x; z))))

most(z;samp(z); two(x; three(y; comp(y); rep of(x; y)); saw(x; z)))

most(z;samp(z); three(y; comp(y); two(x; rep of(x; y)); saw(x; z)))

In order to account for this data, Park (1995) puts forward the prin ciple that quanti�ers

take scope around the relations they are involved in and that they may not intercalate

between quanti�ers from other relations. For instance, in the re adings of (3.18) there are

two relations involved, namely rep of(x; y) and saw(x; z). According to Park's principle,

two and three take scope around rep of(x; y), while two and most take scope around

saw(x; z). Additionally, the proposed 'non-intercalation' of Park prohi bits most to take

scope betweentwo and three such that only the four desired readings are generated.

(Willis, 2000) devised a restrictive system to underspeci�cati on by directly implementing

Park's scope principle6.

Obviously, an expressively complete approach to underspeci�cation must provide a rep-

resentation for the four readings in 3.21. However, in the follo wing Chapter I will show

that some of the URFs under investigation are not capable of representing this ambigu-

ity7. This lack of expressive power is an indication of their inadequacy as underspeci�ed

representation formalisms for natural language.

3.3.2 Ambiguity in Discourses

Concerning point 2 above, the claim that certain patterns of ambiguity cannot arise

during the processing of an entire discourse seems dubious. In order to uphold this view,

one would need to argue that discourse evolves in a way that systematically generates

only certain kinds of ambiguities while it never generates others. This assumption seems

far-fetched, considering that it has to apply even to non-linguistic contexts which can

also be a cause for disambiguation. And again, there is no evidence that discourse is

restricted in a way such that certain patterns of ambiguity cannot arise while processing

the discourse.

I shall give a very simple example of a contextual disambiguation which will prove prob-

lematic for certain URFs. In order to make it sound natural, I will give some context.

6see also (Willis and Manandhar, 1999a,b)
7under the assumption that all NPs, including inde�nites, denote quanti� ers and therefore contribute to

genuine scope ambiguities, cf. footnote 6, page 11
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Consider the situation of a company producing chocolate products. At some

point before christmas, sales representatives from retailers visit the company

to place orders. After their arrival they are shown samples by the marketing

managers. Of course the marketing managers want to make a good impres-

sion, so they plan ahead to avoid one situation which is particularly embar-

rassing. They want to avoid the situation where each of the sales representa-

tives is contacted by all marketing managers, each of them showing the sales

representative the same sample.

Suppose that with this knowledge about the company an employee utters the following.

(3.22) Yesterday, we had our annual product presentation and everythingwent well.

Every marketing manager showed �ve sales representatives a sample.

The �rst sentence serves to make the whole utterance a bit more natural sounding,

but actually we are only interested in the second one. It parallels sentence (3.3) in

syntactic structure and is in principle ambiguous among six readings corresponding to

the permutations of the involved quanti�ers. However, as we are also aware of the

company's policy8, we know that (3.22) does not describe the embarrassing situation

mentioned above. More precisely, the preceding context rules out the (∃5∀) reading. It

is not the case, that there was one speci�c sample and �ve salesrepresentatives such

that every marketing manager showed each of the �ve representatives this sample. Note

that all the other �ve remaining readings are still plausible. F or instance, there may have

been one speci�c sample which each of the marketing manager showed to �ve different

representatives (the (∃∀5) reading). Or there may have been �ve representatives and

a different sample for each of them, such that every marketing manager showed this

sample to that representative (the (5∃∀) reading).

Although some of these remaining readings are far from impressivew.r.t. the perfor-

mance of the marketing department (and therefore maybe less plausible), they are still

possible readings contributing to the ambiguity of (3.22). Thu s the set of remaining

readings is the full set of permutations of the involved quanti�ers less the contextually

excluded reading.

(3.23) {(5∀∃); (5∃∀); (∃∀5); (∀∃5); (∀5∃)}

Note that the source of the disambiguating information can vary. It could be world

or domain-speci�c knowledge, probably encoded in the knowledge base of some

expert/dialogue/question-answering system. Or it could come aslinguistic knowledge in

form of preceding or succeeding sentences. The crucial point isthat it seems improbable

8and of the employee's awareness of this policy and of the fact that the presentation went well
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that non-linguistic context, world knowledge and linguisti c context are so well-behaved

such that they disambiguate ambiguous information only in certain limited ways. I

rather conjecture that in this respect really anything is possible. For instance, the com-

pany may have further policies. Maybe each marketing manager isresponsible for a

speci�c sample? Or maybe the employee continues by sayingI know those �ve guys,

they have been here last year? Or maybe both? The challenge for an underspeci�ed

representation formalism is that it has to provide representations for the ambiguities

remaining after contextual disambiguation, such as for the � ve-fold ambiguity of (3.22).

To provide further support for the claim that indeed any imagina ble partial disambigua-

tion can occur in this manner (i.e. due to disambiguation by context), I will give a

recipe to construct (admittedly arti�cial) texts which exhibi t a previously given ambigu-

ity. Here I will make use of the fact that subsequent sentencescan be used to partially

disambiguate a preceding sentence. Given a piece of discoursewhich is ambiguous be-

tween some readingsP and some piece of subsequent discourse which excludes some

readings E ⊆ P, the entire discourse is then ambiguous between readingsP − E, i.e.

P has been partially disambiguated by excluding certain readings E. We can construct

these disambiguating discourses by using unambiguous paraphrases for readings. For

instance, consider sentence (1.1) again, repeated here as (3.24)

(3.24) Every child told two teachers some story

To paraphrase the(∃2∀) reading

(3.25) ∃y(story(y) ∧ two(z; teacher(z); ∀x(child(x) → told(x; y; z))))

we could use the sentence

(3.26) There is a story and two teachers such that every child told these teachers this

story.

We can also assume that a negated counterpart for every paraphrasecan be created by

pre�xing it with It is not the case that . . .. The negation of the reading (3.26) would

then be paraphrased by the sentence

(3.27) It is not the case that there is a story and two teachers such that every child told

these teachers this story.

In general, if e' is the natural language expression that is an unambiguous paraphrase

for some reading ' , then we let e' be the negated paraphraseIt is not the case that e' .

Then e' has the unambiguous meaning¬' .

We can make use of these negated paraphrases to stepwise cut outany unwanted mean-

ings from a set P of readings. Suppose for instance that we start with (3.24) which is
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ambiguous among the six readingsP listed in (1.7). Then the discourse (3.24) + (3.27)

is only ambiguous between the readings in

(3.28) P − {∃y(story(y) ∧ two(z; teacher(z); ∀x(child(x) → told(x; y; z))))}

P is partially disambiguated by excluding the (∃2∀) reading due to the addition of the

negated paraphrase (3.27) to (3.24). Through iteration of this proc edure and addition

of further negated paraphrases of other readings we can eventually cut out any subset

of readings from P.

In general, starting with an expression e that is ambiguous between some readings

P = {' 1; : : : ; ' n}, we can 'generate' any subsetP0 of readings by extending e with

the negated paraphrases corresponding to the readings inP − P0, i.e. by composing the

discourse

(3.29) e+ e 1 + : : : + e m

where P − { 1; : : : ;  m } = P0.

Using this recipe we are able to construct discourses which are ambiguous between the

readings of every possible partial disambiguation. Starting with an expression that is

ambiguous between alln! readings (given n scope taking elements) we can add negated

paraphrases until we exclude all unwanted readings. Therefore there is a discourse for

every possible set of readingsP, which exhibits exactly the ambiguity of P. Although

these constructed discourses sound arti�cial, underspeci�ed representation formalisms

must nevertheless be capable of representing their meaning, which is the ambiguity in P.

This further indicates that König and Reyle (1999) are right in assuming that expressive

completeness of underspeci�ed representation formalisms should be de�ned w.r.t. the

full set of possible partial disambiguations.

3.4 The Problem of the Missing Empirical Basis

In the previous section I have argued for a completely unconstrained de�nition of expres-

sive completeness, i.e. a de�nition with respect to all possibly occurring disambiguations.

It would be desirable to give this argumentation some empirical basis. Unfortunately an

empirical basis one could use to argue is non-existent9. What one would need is a

theory-independent corpus where sentences are annotated with the set of readings they

have in isolation as well as in the context they appear in the corpus.

9cf. (Poesio, forthcoming, Chapter 6)
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In fact, the only empirical/experimental work on scope ambiguit ies I am aware of con-

cerns determination of the underlying principles for scope preference, i.e. regarding the

question, which reading of an (scopally) ambiguous is preferred (see for instance Ioup,

1975; Kurtzman and MacDonald, 1993; Anderson, 2004). Although this work sheds

light on the psycholinguistic processes involved in human comprehension of scope am-

biguities, it does not say much about the mere availability of readings beyond extremely

simple cases. For instance, Kurtzman and MacDonald (1993) andAnderson (2004) limit

their investigation to simple 5- or 6-word sentences such as (3.30), which contain only

NPs of the form every N and a N and are hence two-fold ambiguous at most.

(3.30) Every kid climbed a tree.

Higgins and Sadock (2003) use hand-tagged data from the Wall Street Journal section of

the Penn Treebank to train classi�ers in a machine learning approach to modeling scope

preferences. However, in order to simplify the task, they only consider sentences with

two scope-taking elements. So although this data (893 sentences, annotated with Penn

Treebank parse trees and hand-tagged for the preferred scope reading or unambiguity)

is roughly of the type one would need to argue about available readings, it is of not

much use due to the restriction to only two scope-taking elements. Furthermore, the

sentences were tagged in isolation, such that no effects of contextual disambiguation

could be captured.

One problem in going from only two-fold ambiguous, simple sentences to more com-

plex ones is the necessity to control various properties of the sentences, for instance

equal plausibility of the different readings or other lexical or syntactic ambiguities10.

Furthermore, it is notoriously dif�cult to elicit precise judgem ents from human speakers

on complex ambiguous sentences, let alone entire discourses.Often enough, competent

speakers already have severe dif�culties in judging isolated sentences containing only

three quanti�ers, not to mention a sentence such as the following notorious standard

example for massive ambiguity.

(3.31) A politician can fool most voters on most issues most of the time, but no politi-

cian can fool all voters on every single issue all of the time.

I would be surprised if any competent speaker of English actually perceived any ambi-

guity when hearing (3.31), and I would be even more surprised if such a speaker could

explain what the actual readings of (3.31) are.

Some recent work aims at elucidating the necessary expressive power of underspeci-

�ed representations. Fuchss et al. (2004) evaluate the hypothesis (from Niehren and

Thater, 2003) that ' all linguistically relevant MRS expressions are nets', where nets are

10cf. (Kurtzman and MacDonald, 1993, p. 249)
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a restricted subclass of the expressions of Minimal Recursion Semantics. They use the

English Resource Grammar (ERG) (Copestake and Flickinger, 2000) to parse sentences

of the Redwoods Treebank (Oepen et al., 2002) and inspect the constructed representa-

tions of Minimal Recursion Semantics, which is the formalism used in the ERG. It turns

out that over 80% of the constructed MRS structures are indeed of the restricted net

form. Fuchss et al. (2004) go on to claim that '[f]rom a more abstract point of view, our

evaluation contributes to the fundamental question of whatexpressive power an underspec-

i�cation formalism needs.' (Fuchss et al., 2004, p.254). This result is cited in (Koller,

2004, p.127), where he claims that it 'provides substantial evidence that all correct under-

speci�ed descriptions should indeed be [. . . ] nets [...].'

However, these claims seem to be quite far-fetched. The resultof Fuchss et al. (2004)

only shows that a particular system (the ERG) based on a particular URF (MRS) produces

to a large extent structures of a certain form (nets) – nothing more and nothing less. In

particular, there is nothing substantial or fundamental about this result, because a single

natural language sentence that needs to be represented by a non-net is enough to refute

the net hypothesis. To illustrate this point, consider the discussion about the necessary

generative power of grammars to account for natural language. Nobody would claim

that the generative power of a context-free grammar11 is adequate for the analysis of

natural language, just because a large percentage of sentencesin a given corpus receive

adequate context-free analyses. Such claims have been refutedby careful linguistic con-

sideration, e.g. by Shieber (1985). The result of Fuchss et al. (2004) may be interesting

in practice12, but it cannot provide further insight into the necessary expressive power

of underspeci�ed representation formalisms.

Note that the net hypothesis (in particular the phrase 'all linguistically relevant MRS

expressions') implies the claim that MRS as such is suf�cient for the underspeci�ed rep-

resentation of natural language semantics13. But in order to evaluate such a claim em-

pirically, one would need to evaluate the constructed MRS representations against a

theory-independentcorpus re�ecting the ambiguity of natural language. In fact, I a rgue

below that MRS (and other formalisms) are not capable of properly representing the

meaning of ambiguous natural language sentences.

In the discussion about the empirical basis of expressive completeness, one is faced with

a dilemma. On the one hand, a corpus tagged with ambiguity information, in particular

for complex cases of ambiguity and contextual disambiguation, would be necessary to

give a precise, empirically grounded de�nition of expressive completeness and the no-

11or even a regular grammar, for that matter
12for instance for speeding up the constraint solution process, cf. (Fuchsset al., 2004)
13So does Conjecture 2 in (Koller, 2004, p.113) for dominance constraints: 'Every dominance constraint

that is needed for underspeci�ed semantics[. . . ]'.
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tion of linguistically adequate underspeci�ed representatio n formalism. But on the other

hand, human speakers do not seem to be capable of producing sucha corpus. Neverthe-

less, the discussion and the examples from the preceding section substantiate the claim

that in principle partial disambiguation is unconstrained.

3.5 A Formal De�nition

In this section I will aim at formalizing the intuitions on exp ressive completeness which

have been put forward above. According to the preceding discussion, an expressively

complete formalism must provide representations for all possible partial disambigua-

tions of the full set of possible readings for some given set ofscope taking elements. In

our approach scope taking elements are formalized as functors and readings as terms

over those functors. Consequently, the full set of possible readings for some given set of

scope taking elements corresponds to the set of terms which can be build from a given

multiset of functors. This latter set of terms I will call the term closure14.

De�nition 3.1
Let Σ be a signature. For some �nite multiset Γ ⊆ Σ the term closure[Γ] is de�ned as

(3.32) [Γ] = {f 1 · · · f n ∈ T� | f 1; : : : ; f n is an enumeration of Γ}

In other words, the term closure over some set of functorsΓ is the set of terms which can

be build according the rules in De�nition 2.1 by using each functo r in Γ exactly once. Of

course, one wants to allow for multiple occurences of the same functor, and so we take

Γ to be a multiset.

To illustrate the de�nition of term closure consider the signat ure Σ = {f 1; g1; x0} and the

multiset of functors15 Γ = {[f ; f ; g; x]}. Then the term closure is [Γ] = {ffgx ; fgfx ; gffx }
as this set consists of all the terms that can be build out of thefunctors according to the

rules for generating terms.

Note that if we let n = |Γ| be the number of elements inΓ, we obviously have that

(3.33) | [Γ] | ≤ n!

E.g. the case ofn! corresponds exactly to the worst case scenario of a sentence with

n quanti�ers, where each permutation of quanti�ers yields an actua l reading of the

14because it is the closure of some set of functors under the syntactic rulesfor generating terms
15I will use f[�]g brackets to indicate a multiset
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sentence. But given that functors may not only be unary, not every permutation on the

sequence of functors may actually be a term and thereforen! is only an upper bound.

Now we are able to give a formal de�nition of what it means for a URF to be expressively

complete. A URF has that property, if it provides a representation for every non-empty

subset of the term closure of any given (multi-)set of scope-taking elements.

De�nition 3.2 (Expressive Completeness)

An underspeci�ed formalism 〈U;L〉 over a signature Σ is expressively completeiff for

every multiset Γ ⊆ Σ it holds that for every non-empty subset P ⊆ [Γ] there is an

underspeci�ed representation u ∈ U such that L(u) = P.

This formalizes what König and Reyle (1999) had in mind. There must be a representa-

tion for every subset of readings of every possible full set of readings. According to this

de�nition it is enough to �nd one counterexample to show the expressive incompleteness

of a URF over some signatureΣ. If one can show that there is a (multi-)set of functors

Γ ⊆ Σ and a set of terms P ⊆ [Γ] of the term closure of Γ which the URF cannot li-

cense, then the URF does not ful�l the requirements for expressive completeness from

De�nition 3.2.

Due to the general and abstract approach I pursue here, the failure ofsome formalism

to license an abstract set of terms means the failure to represent an entire pattern of

ambiguity. To illustrate this, consider the set of terms P = {fghx ; hgfx }, which will be

shown to be not representable in Hole Semantics and Minimal Recursion Semantics in

the next chapter. So whenever we are faced with an isolated sentence or arrive at a point

in discourse where there is a two-fold ambiguity of three unary scope taking elements

such that in one reading the order of scope taking elements is the reverse of the other,

we know that this ambiguity cannot be represented by Hole Semantics and Minimal Re-

cursion Semantics, independent of the concretely involved scope taking elements. As

these scope taking elements comprise quanti�cational noun phrases, negation, modals,

opaque verbs, etc., this pattern of ambiguity may come about by partial disambiguation

of sentences such as the following ones (where the scope taking elements are under-

lined).

Every child told two teachers some story

Most man want to marry a supermodel

John probably didn't read two novels

I will not discuss the ambiguity of these sentences any further here. The crucial point

is that if any of these sentences is partially disambiguated in a way that leaves a two-

fold ambiguity between readings which can be encoded byP, then Hole Semantics and

Minimal Recursion Semantics cannot represent this ambiguity.
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3.6 Conclusion

In the sections above I have argued in line with K̈onig and Reyle (1999) that an un-

derspeci�ed representation formalism is only adequate for the representation of natural

language ambiguities, if it is capable of encoding any possible kind of ambiguity. This has

been formalized by a de�nition of expressive completeness which requires that, given

a multi-set of functors of some signature, every set of terms built out of these functors

needs to be licensed. Failure to license some set of terms amounts to the inability to

represent an entire pattern of ambiguity. Two instantiations of two patterns have been

given to motivate the de�nition of expressive completeness. Sentence (3.18) in Sec-

tion 3.3.1 from Park (1995) is an example of an isolated sentence with only four of �ve

potentially available readings. The contextually disambiguated chocolate company ex-

ample from section 3.3.2 illustrates how contextual information can be the source of a

partial disambiguation with only �ve instead of six potentia lly available readings. In the

following chapter, the formal de�nitions will be put to use in an investigation of different

approaches to underspeci�cation.



Chapter 4
Incompleteness Results

In this Chapter I will go into more formal detail about the discu ssion of expressive power.

As I have argued in the foregoing Chapter, expressive completeness needs to be de�ned

w.r.t. the set of all possible partial disambiguations.

In the following I will �rst investigate three of the variable/constraint approaches intro-

duced in Section 1.2 in detail, namely Normal Dominance Constraints, Hole Semantics

and Minimal Recursion Semantics. For each of the three formalisms I will answer the

question whether it is expressively complete according to De�nition 3.2. Unfortunately,

it turns out that the answer is negative in all three cases.

The three approaches above all have been construed to work with arbitrary object lan-

guages and therefore they �t well into the general and abstract view of URFs I put for-

ward in Chapter 2. Underspeci�ed Discourse Representation Theoryis more restricted

in this respect, as its underlying language is DRT, but as Hole Semantics is largely a

generalization of UDRT, the results of the former carry over to the latter. UDRT, as well

as some other approaches, will be discussed subsequently in Section 4.7.

As a �rst step towards a formal investigation I shall discuss variable/constraint ap-

proaches from a more abstract point of view in the following section.

4.1 Technical Preliminaries

In general, a URF 〈U;L〉 of a variable/constraint approach will have representations

U which are built on meta-variables V , some 'logical symbols'S and other symbols L

usually included or derived from the signature Σ of the underlying object language.

More precisely, U will be a formal language over the vocabulary (L ∪ S ∪ V ).

48
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In Section 1.3 I have already given an informal example of a variable/constraint ap-

proach: expressions of the underlying object languageFOLGQhave been taken apart and

enriched with meta-variables. Then the combinatorial possibilities for these parts have

been restricted by imposing constraints on meta-variables. In Example 2.9 the de�nition

of these parts over a general and arbitrary signature has been spelled out more formally.

As all approaches which will be investigated in this chapter de�ne parts in virtually the

same way as they have been de�ned in Example 2.9, I will repeat this de�nition here

and introduce some additional terminology which will be usefu l in the following inves-

tigation.

Given a signatureΣ and a set of meta-variablesV let

(4.1) P = {X : f (Y1; : : : ; Yn) | f n ∈ Σ; X; Y i ∈ V}

be the set of parts, which are built over the functors in Σ and the variables in V . In

order to restrict the combination of those parts, constraints are imposed. Constraints

are given asrelations on variables, which will be interpreted in a certain way de�ned

by the formalism. In general, an underspeci�ed representation of a variable/constraint

approach can be identi�ed with a tuple 〈P; C1; : : : ; Cn〉 consisting of a set of partsP ⊆ P
and relations Ci on the variables.

For an underspeci�ed representation u = 〈P; C1; : : : ; Cn〉 let Var(P) and Var(Ci ) be the

sets of variables which occur inP and the relations Ci , respectively. Let us write Var(u)
for Var(P) ∪ Var(C1) ∪ : : : ∪ Var(Cn), the entire set of variables occurring in an under-

speci�ed representation. Let us furthermore distinguish between the variables occurring

on the left hand side (i.e. at a labeling position) and the right hand side (i.e. at an argu-

ment position of a functor) of some part. Additionally, let Γ(P) ⊆ Σ be the (multiset of)

functors that occur in the parts P.

LVar(P) = { X | X : f (: : :) ∈ P }(4.2)

RVar(P) = { Y | X : f (: : : Y : : :) ∈ P }

Γ(P) = {[ f | X : f (: : :) ∈ P ]}

The left and right hand side variables will also be called labeling variablesand argument

variables, respectively. Often I will apply these functions to the underspeci�ed represen-

tation itself instead to just the set of parts, i.e. I will often use Γ(u) to actually mean

Γ(P), for instance.

One feature that is crucial to all these meta approaches to underspeci�cation is the

requirement, that meta-variables behave indeed as variables, i.e. that the licensing is ac-
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tually independent of meta-variable names. This means that renaming the meta-variables

consistently, the licensed set is not changed. In other words, if a representation uses

somek distinct meta-variables and licenses some setP of terms, then one could takeany

k meta-variables without changing the licensed set. The exactchoice of meta-variable

names does not matter.

In the approaches under investigation, constraints are interpreted conjunctively. If an

underspeci�ed representation licenses some termt, then t has to satisfyall constraints

(in a sense to be de�ned precisely for each formalism). Therefore, the addition of fur-

ther constraints to an underspeci�ed representation may rule out some of the terms that

have been licensed by the original representation. This propertyof an approach shows

the monotonicity of the licensing relation. A URF has a monotonic licensing relation if the

addition of further constraints only restricts the set of licensed terms further. Indepen-

dence of meta-variable names and monotonicity of the licensing relation are properties

that will be important in the following investigations.

4.2 Proving Incompleteness

Now we are prepared to carry out the incompleteness proofs. In order to establish the

expressive incompleteness of an approach we need to �nd a set ofterms which cannot

be represented by the approach. Of course it is not satisfactory toargue only informally

about the impossibility to �nd a representation for a given set . This inability may just

show the weakness of the author in �nding such a representation but not a limitation of

the approach itself. Therefore we need precise proofs which give the desired results.

For each of the three investigated approaches I will show incompleteness by deriving a

criterion that relates a set P of terms to the form of an underspeci�ed representation

which licensesP. Due to the similiarity of the URFs, the argument proceeds along the

same lines in all three cases.

1. First it is shown that the URF is independent of meta-variablenames and that the

licensing relation is monotonic.

2. Then a criterion is derived, that relates a set of termsP to the form of any potential

licenser, i.e. to the form of underspeci�ed representations of the URF that license

P. More speci�cally, the criterion states which constraints can at most occur in a

representation, if this representation is supposed to licenseP. In this statement

about the form, speci�c meta-variable names are used, but due to the indepen-

dence of the formalism, the statement holds in full generality (modulo renaming

of variables).
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3. It is shown that some speci�c counterexample set P cannot be licensed by the

approach. Starting from P, the criterion is used to determine the maximal set of

constraints C of any potential licenser representation. Then it is shown that this

set of constraints C is too weak to impose the proper restrictions on licensing.

More speci�cally, it is shown that C licenses a setP0 which is larger than P (i.e.

P ⊂ P0).

4. Monotonicity can be used to deduce that P does not have a licenser as follows.

Assuming that u is an underspeci�ed representation that licenses P, the crite-

rion from point 2. yields that u contains the constraints in C or less. Due to

monotonicity, the set licensed by u will either be the set P0 (licensed by C) or

larger. Therefore, the set licensed byu will be P0 or a superset thereof (i.e.

P0 ⊆ L(u)). This is a contradiction to the fact that u is assumed to licensesP,

becauseP ⊂ P0 ⊆ L(u) = P. Hence one must conclude that the assumption is

wrong and that P cannot be licensed by any underspeci�ed representation in the

formalism.

In each of the following three sections on Normal Dominance Constraints, Hole Seman-

tics and Minimal Recursion Semantics, the respective approachwill be de�ned formally

closely along the lines of the seminal publications, but couched in terms of the URF de�-

nition of Chapter 2. Then the form criterion and the incompleten ess will be derived and

discussed.

4.3 Normal Dominance Constraints

The �rst URF which I will investigated is the approach using Normal Dominance Con-

straints. This approach has been elaborated and investigated in a seriesof papers, which

focus on different variations on Dominance Constraints and their complexity properties

(Koller et al., 2000; Althaus et al., 2001; Erk et al., 2003). In (K oller et al., 2003) the

authors compare an approach usingNormal Dominance Constraintsto Hole Semanticsas

de�ned in (Bos, 2002). As a comparison of different approaches is one major goal of

this thesis, I will stick closely to the de�nitions in (Kolle r et al., 2003). This will enable

us to compare their results on expressive power to the result derived in this thesis.

4.3.1 Representations and Licensing

The underspeci�ed representations of the Normal Dominance Constraint approach are

based onDominance Constraints. The following de�nitions are slightly rephrased ver-

sions of the de�nitions given in (Koller et al., 2003).
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De�nition 4.1
Let V be a set of variables. A dominance constraint over a signatureΣ is de�ned as a

conjunction of dominance literals, inequality literals, and labeling literals,

(4.3) ' ::= X / � Y | X 6= Y | X : f (X 1; : : : ; X n) | ' ∧ ' 0

where f n ∈ Σ and X; Y; X 1; : : : ; X n ∈ V.

Dominance Constraints (DCs) can be straightforwardly identi�ed w ith a triple

〈P; C1; C2〉 consisting of a set of partsP and two relations on meta-variables C1 and

C2 as speci�ed above. Obviously, the set of labeling literals constitutes the set of parts

P. The set of dominance literals and the set of inequality literals of the DC constitute

the relations C1 and C2, respectively. The conjunction of literals is then left impli cit and

not expressed syntactically. In the following, I will often ma ke use of this and identify a

DC with the set of its literals.

Now that it is clear that labeling literals are actually the 'pa rts', we can talk about the

variables Var(' ), the left hand side (or labeled) variables LVar(' ), and the right hand

side variablesRVar(' ) of a DC' , as speci�ed in (4.2). Variables not in LVar(' ) are called

holesand variables not in RVar(' ) are called roots.

On the semantic side, meta-variables are interpreted as tree nodes of aΣ-labeled tree. A

dominance literal X / � Y, for instance, is intended to state that the node corresponding

to X must dominate the node corresponding to Y . The de�nition of the semantics of

dominance constraints runs via a notion of satisfaction, similar to the simpler de�nition

of satisfaction in Example 2.9.

De�nition 4.2
Let � = 〈D; ` 〉 be a Σ-labeled tree. Satisfaction of a dominance constraint' (over Σ) by a

tree � under an embedding

(4.4) � : Var(' ) −→ D

is written as � |=� ' and de�ned as follows:

� |=� X : f (X 1; : : : ; X n) iff � (X ) / i
� � (X i ) (1 ≤ i ≤ n) and `(� (X )) = f

� |=� X 6= Y iff � (X ) 6= � (Y )

� |=� X / � Y iff � (X ) / �
� � (Y )

� |=� ' ∧ ' 0 iff � |=� ' and � |=� ' 0
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A tree satis�es a constraint (written � |= ' ) and is called a solution if there is an embed-

ding � such that � |=� ' . A constraint is satis�able if it has a solution.

As in the case of Example 2.9, obviously every satis�able constraint has an in�nite num-

ber of solutions as additional nodes in the tree do not change satisfaction. Therefore we

restrict our attention to so-called constructivesolutions, which are solutions � , in which

every node in � is denoted by some labeled variable inLVar(' ). Formally, we have that

� |LVar(' ) is surjective for every constructive solution � of ' .

Unfortunately, general Dominance Constraints as de�ned above have bad computational

properties. Koller et al. (1998) show that the problem of testin g whether a dominance

constraint is satis�able is NP-complete. Therefore Koller et al. (2000) devise a restricted

variant of Dominance Constraints, which they call normal. They show that the satis-

�ability problem for Normal Dominance Constraints can be done in polynomial time.

Koller et al. (2003) de�ne normality as follows.

De�nition 4.3
A dominance constraint ' is called normal if it ful�ls the following conditions:

(N1) Every variable occurs in a labeling literal.

(N2) Every variable occurs at most once on the right-hand side andat most once on the

left-hand side of a labeling literal.

(N3) If X / � Y occurs in ' then X is a hole andY does not occur on the right-hand side

of a labeling literal.

(N4) If X and Y are different labeled variables then there is a constraintX 6= Y in ' .

This concludes the de�nition of Normal Dominance Constraints (NDCs), which are the

underspeci�ed representations in this approach. Let us useUNDC to denote the full set of

NDCs, i.e. the set of formulas which are built according to De�nitio ns 4.1 and 4.3.

Due to point (N4) of De�nition 4.3 of normality, we know that disti nctly labeled vari-

ables of an NDC will be mapped to distinct nodes in a solution. Formally speaking, we

have that � |LVar(' ) is injective for every solution of a NDC ' . Therefore � |LVar(' ) is a

bijection from labeled variables in LVar(' ) to tree nodes for every constructive solution

� of a normal dominance constraint ' . In other words, if we let Γ(' ) be the multiset

of functors occurring in labeling literals in ' , then every constructive solution � of ' is

in [Γ(' )]. This paves the way for a de�nition of the set of licensed terms of a normal

dominance constraint as the set of its constructive solutions:

(4.5) LNDC(' ) = {� | � is a constructive solution of ' }
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The underspeci�ed representation formalism N using NDCs is now given as

(4.6) N := 〈UNDC; LNDC〉 :

Example 4.4
To illustrate the NDC approach, let us use sentence 1.1 again, followed by another sen-

tence.

(4.7) Every child told two teachers some story. Days before, the children had been told

to think about their favourite fairy-tale and two teachers, they wanted to tell the

fairy-tale to.

The follow-up sentence serves the purpose of disambiguating the �rst. If every child told

its favourite tale, the wide-scope reading for some story is ruled out, as the stories vary

with the children. The same holds for two teachers, which also have to vary with the

children. Furthermore, as there is only one favourite fairy-tale mentioned, some story

cannot take scope below and vary with two teachers. The only remaining reading for

4.7 is therefore the (∀∃2) reading, where ∃ takes intermediate scope.

(4.8) ∀x(child(x) → ∃y(story(y) ∧ two(z; teacher(z); tell(x; y; z))))

Let us recur to the signature Σ = {a1; t 1; e1; x0} from Chapter 2, where a; t ; e, and x

stood for every child, two teachers, some story, and told .

∀x(child(x) → X 1)  a(X 1)(4.9)

∃y(story(y) ∧ X 3)  e(X 3)

two(z; teacher(z); X 4)  t (X 4)

told(x; y; z)  x

Furthermore let V = {X 0; X 1; : : :} be the set of meta-variables. Then

(4.10) ' = X 0 : a(X 1) ∧ X 2 : e(X 3) ∧ X 3 : t (X 4) ∧ X 5 : x ∧ X 0 6= X 2 ∧ X 0 6= X 3∧

X 0 6= X 5 ∧ X 2 6= X 3 ∧ X 2 6= X 5 ∧ X 3 6= X 5 ∧ X 1 / � X 2

is a normal dominance constraint (over Σ) that encodes the desired reading. First note

that all the requirements on normality from De�nition 4.3 are ful�ll ed:

(N1) Every variable occurs in a labeling literal.

(N2) Every variable occurs at most once on the right-hand side andat most once on the

left-hand side of a labeling literal.
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(N3) In X 1 / � X 2 it holds that X 1 is a hole (i.e. not in LVar(' )) and X 2 does not occur

on the right-hand side of a labeling literal.

(N4) For all different labeled variables X and Y there is a constraint X 6= Y in ' .

Concerning the set licensed by this NDC, we have to �nd trees suchthat there is an

embedding � for which � |=� ' holds. For the �rst literal X 0 : a(X 1) satisfaction comes

down to

(4.11) � |=� X 0 : a(X 1) iff � (X 0) / 1
� � (X 1) and `(� (X 0)) = a

In order for (4.11) to hold, � must have a node to whichX 0 is mapped, which is labeled

by a, and which has as the �rst daughter another node, to which X 1 is mapped. By

iterating this argument for the other labeling literals we can c onclude that � must have

at least four nodes which are labeled bya; e; t , and x. Furthermore the node labeled by

t must be the daughter node of the node labeled bye due to the shared variableX 3. As

we are only interested in constructivesolutions, we know that � has exactly four nodes,

as each node in� must be denoted by some labeling in' . Therefore, the only possible

solutions of the labeling literals are aetx and etax , just as in Example 2.9. In contrast to

this example however, ' contains additional literals. As an inspection reveals, the two

possible solutions also satisfy the inequality literals (because nodes with distinct labels

are necessarily distinct), which leaves the satisfaction of the dominance literal X 1 / � X 2:

(4.12) � |=� X 1 / � X 2 iff � (X 1) / �
� � (X 2)

This means that the node whichX 1 is mapped to (which is the daughter node of the node

labeled with a according to the information in the labeling literals) must dom inate the

node which X 2 is mapped to (which is the node labeled with e according to the labeling

literals again). This is not the case inetax , where the daughter of a only dominates itself

and is labeled with x. Thus the only remaining solution is aetx . Therefore LNDC(' ) =
{aetx } as desired.

4.3.2 Form Criterion

In this section I will show that NDCs are expressively incomplete, following the steps

indicated in Section 4.2.

Monotonicity and Variable-Name Independence. First note that the NDC approach

N has a monotonic licensing relation. This can immediately be seen in De�nition 4.2

of satisfaction. Due to the fact that all literals are interpreted conjunctively, additional
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literals only restrict the set of licensed terms further (see Lemma A.1 in the Appendix for

details).

Furthermore we can see from the de�nition of satisfaction, that N is independent of

variable names, i.e. that the exact naming of variables does notmatter w.r.t. licensing.

This gives us the freedom to choose meta-variable names freely when constructing a

constraint or to �x some meta-variable names without loss of generality (see Lemma A.2

in the Appendix for details).

In order to show the incompleteness ofN , it is suf�cient to �nd one counterexample, i.e.

some (multi-)set Γ ⊆ Σ and some set of termsP ⊆ [Γ] which cannot be represented. I

will make use of this and restrict the investigation to NDCs ' where each functor occurs

only once. This means that the functors form aset(rather than a multiset) Γ(' ).

The Form Criterion. As the proof schema in Section 4.2 indicates, a criterion relating

the solutions of a constraint to its form is the crucial part in prov ing incompleteness.

A �rst step towards such a criterion is the observation, that the meta-variables in any

constraint can be renamed in a systematic way. This is due to the restrictions imposed

by De�nition 4.3 of normality and the assumption that each funct or Γ(' ) occurs only

once.

Recall that for each constructive solution � of ' , the restricted embedding � |LVar(' ) is

a bijection from labeled variables in LVar(' ) to the tree nodes of � , each of which is

uniquely labeled with one functor in Γ(' ). Therefore there is a bijection between the

labeled variablesLVar(' ) and the functors in Γ(' ). This means that for every functor f

in Γ(' ) there is a corresponding labeling literal, which is uniquely labeled by a corre-

sponding variable X f .

Due to the normality conditions on the constraints, in particula r due to (N2), we know

that all the right hand side variables in RVar(' ) are distinct. In fact, a variable occurring

at the i th argument position of a labeling literal with functor f may either be a labeled

variable X g from some other labeling literal (with functor g), or some unique argument

variable X f
i . Eventually we end up with labeling literals of the form

(4.13) X f : f (v1; : : : ; vn) f n ∈ Γ

where eachvi is either of the form1 X g or X f
i .

According to (N1) of De�nition 4.3 of normality, we know that the l abeling literals alone

determine the set of variables in a constraint. Now (N3) tells us that every dominance

1Note that the X f
i are meta-variable names and thevi are variables over meta-variable names.
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literal in ' is of the form

(4.14) X f
i / � X g f; g ∈ Γ

and (N4) states that ' contains all inequality literals of the form

(4.15) X f 6= X g f; g ∈ Γ; f 6= g

In summary, we can rename the variables of a NDC' (where Γ(' ) is a set) as stated

above: the variable which labels a literal with functor f will be renamed to X f and all

remaining variables in argument positions to X f
i according to the functor and position

they occupy. The following Lemma summarizes these �ndings.

Lemma 4.5
Let ' be a NDC such that every functor occurs only once (i.e. whereΓ(' ) is a set). Then

the following holds (modulo naming of variables):

1. ' contains exactly the following labeling literals

(4.16) X f : f (v1; : : : ; vn) f n ∈ Γ(' )

where eachvi is either of the form X f
i or X g for some g ∈ Γ(' )

2. ' contains at least the following inequality literals

(4.17) X f 6= X g f; g ∈ Γ(' )

3. all dominance literals of ' are of the form

(4.18) X f
i / � X g f; g ∈ Γ(' )

Due to the independence of variables names this renaming procedure does not change

the set LNDC(' ) which is licensed by the constraint. So w.l.o.g. we can use the meta-

variable names given in Lemma 4.5 above whenever we have to dealwith an NDC

where each functor occurs only once.

Example 4.6
To illustrate these observations, let us take as an example theset of functors Γ =
{f 1; g2; x0; y0} and suppose that' is a NDC with constructive solutions in [Γ], i.e. with

Γ(' ) = Γ. Then we already know that ' contains – modulo variable naming – labeling
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literals of the form

(4.19) X f : f (v) X g : g(v1; v2) X x : x X y : y

where v is some labeled variable from LVar(' ) = {X f ; X g; X x; X y} or X f
1 , v1 is some

labeled variable or X g
1 , and v2 is some labeled variable different from v1 or X g

2 . For

instance, the labeling literals might be as follows:

(4.20) X f : f (X y) X g : g(X f ; X g
2) X x : x X y : y

Furthermore ' contains at least the following inequality literals due to co ndition (N4)

of the normality de�nition:

(4.21) X f 6= X g X f 6= X x X f 6= X y X g 6= X x X g 6= X y X x 6= X y

In addition to these, ' may contain further inequality literals and dominance literal s,

which however must relate holes to roots. For instanceX g
2 / � X x would be a possible

candidate.

This illustrates that we have been able to derive some general facts about the form of a

constraint by restricting ourselves to sets of functorsΓ.

If Γ(' ) is a set, �nding constructive solutions of a NDC is also easy. Recall that construc-

tive solutions were such that every node in a solution corresponds to a labeled variable

in the constraint. As there is exactly one labeled variableX f for every functor f , this

labeled variable must correspond to a unique tree noded which bears the label `(d) = f .

Therefore, in order to see whether some tree� is a solution to a NDC' with some set of

functors Γ(' ), we �rst have to check whether the tree � also contains exactly (tree nodes

labeled with) the functors Γ(' ). If this is the case, it is straightforward to check if all

the labeling, dominance and inequality literals are satis�ed . For instance, if ' contains

the labeling literal X a : a(X e), we only have to check whether a is the mother node of

e in � , i.e. whether a / 1
� e holds. For a dominance literal such asX a

1 / � X t , we have to

see whether the �rst daughter of a dominates t , i.e. whether it holds that e / 1�
� t . For an

inequality literal such as X t
1 6= X c we need to check whetherc is not the daughter of e,

i.e. whether e / 1
� c doesnot hold.

This shows that satisfaction of a constraint by a tree can be checked simply by inspection

of the variables and the tree relations without reference to an embedding. This �nding

can be straightforwardly extended to the entire set of solutions. If P is the set of terms

licensed by an NDC, then each of the terms can be checked for satisfaction in the above

manner. In conclusion, instead of inspecting each of the treerelations separately, we can
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use the intersections of the respective tree relations. Supposethat ' is an NDC (such

that each functor occurs only once) which licensesP. For instance, if ' contains the la-

beling literal X a : a(X e), then for each � ∈ P it holds that a / 1
� e. In other words, it holds

that 〈a; e〉 ∈
T

� 2 P / 1
� . Similar intersections can be used for dominance literals (intersec-

tion of i -descendances/ i � ) and inequality literals (intersection of the complements of

i -dominances/ i ; or complement of the union of i -dominances according to DeMorgan's

law). Let us abbreviate those general set theoretic constructions as follows:

/ i
P :=

\

� 2 P

/ i
�(4.22)

/ i �
P :=

\

� 2 P

/ i �
�

6=i
P :=

 
[

� 2 P

/ i
�

!

Combining the observations above with the results from Lemma 4.5amounts to the

following Form Criterion.

Form Criterion 4.7
Let ' be a normal dominance constraint which licenses a setP (where each functor in

Γ(' ) occurs only once). Then the following holds (modulo renaming of variables).

1. ' contains exactly the following labeling literals

(4.23) X f : f (v1; : : : ; vn) f n ∈ Γ(' )

where eachvi is either of the form X f
i or X g for some g ∈ Γ(' ). In the latter case

it holds that f / i
P g.

2. ' contains at least the following inequality literals

(4.24) X f 6= X g f; g ∈ Γ(' )

If in addition X f
i 6= X g or X g 6= X f

i is an inequality literal in ' then f 6=i
P g.

3. ' contains only dominance literals of the form

(4.25) X f
i / � X g f; g ∈ Γ(' )

and it holds that f / i �
P g.

Lemma A.3, Example A.4, and Proposition A.5 in the Appendix spellout and illustrate

these observations in detail.
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This gives us the criterion relating the form of a constraint to its licensed set. Note

that although the criterion (and the lemmata before) talk about certain variables, the

results remain true for a different choice of meta-variables due to the meta-variable

name independence of the approach.

In the following I will actually use the contraposition of the three statements about

the literals from the Form Criterion 4.7. Starting from a set P and assuming that P is

licensed by some constraint' we can reason as follows. For instance, ifP is such that

f / i �
P g doesnot hold, then ' cannot contain the dominance literal X f

i / � X g, according to

the contraposition of point 3. of the form criterion. This interrel ation of the tree relations

in P and the form of a NDC enables us to prove that some fairly simple sets do not have

licensing NDCs. One such set is used in the following section as a counterexample to the

expressive completeness ofN .

4.3.3 The NDC approach is Expressively Incomplete

Recall the contextually disambiguated sentence (3.22) from Section 3.3.2, repeated here

as 4.26. The discourse context given there was such that the sentence

(4.26) Every marketing manager showed �ve sales representatives a sample.

was only �ve-fold ambiguous despite the fact that it contain s three quanti�cational NPs

which could in principle interact freely. The context ruled out t he (∃5∀) reading such

that only the following �ve readings remained:

(4.27) {(5∀∃); (5∃∀); (∃∀5); (∀∃5); (∀5∃)}

To deal with this set formally, suppose that Σ is a signature containing three unary

functors and a constant. Let them beΓ = {e1; f 1; a1; s0}, resembling exists, �ve , all, and

show. Then the readings in (4.27) correspond to the terms

(4.28) P = {faes ; feas ; eafs ; aefs ; afes }

Note that the term efas (corresponding to the excluded (∃5∀) reading) is the only one

in [Γ] (corresponding to the full set of six readings) that is missing in P. Let us try to

�nd an underspeci�ed representation of N that encodes the ambiguity of (4.26) (i.e.

that licenses the setP).

As noted in the Form Criterion 4.7 inspection of the intersection of the respective tree

relations of P is enough to determine a potentially licensing constraint. The tree rela-

tions of i -dominance and i -descendance of the elements ofP are given in Figure 4.1. A
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/ 1
faes / 1

feas / 1
eafs / 1

aefs / 1
afes / 1�

faes / 1�
feas / 1�

eafs / 1�
aefs / 1�

afes

fa fa fa
fe fe fe fe fe

fs fs fs fs fs fs fs
af af af af af

ae ae ae ae ae
as as as as as as

ef ef ef
ea ea ea ea

es es es es es es es

Figure 4.1: Tree relations for P = {faes ; feas ; eafs ; aefs ; afes }

calculation of the corresponding intersection reveals that

/ 1
P = ∅(4.29)

/ 1�
P = {fs ; as; es}:(4.30)

6=1
P = {ff ; aa; ee; ss; sf ; sa; se}(4.31)

Now suppose that ' is a NDC which licensesP, i.e. LNDC(' ) = P. Using the Form

Criterion 4.7 we can derive the following results concerning the form of ' .

Labeling Literals. As the functors occurring in the terms in P are Γ = {f ; a; e; s}, '

must contain a labeling literal for each functor, i.e. ' must contain

(4.32) X f : f (: : :) X a : a(: : :) X e : e(: : :) X s : s

To determine the variables in the argument positions we recur to the �rst point

of the Form Criterion 4.7. This states that we can have a labeled variable X g

only as argument of those labeling literals for which there is a corresponding pair

of functors in / 1
P . However, as computed in (4.29), P is such that / 1

P = ∅. For

this reason none of the labeling literals can have a labeled variable in argument

position and the set of labeling literals in ' is

(4.33) X f : f (X f
1) X a : a(X a

1) X e : e(X e
1) X s : s

Dominance Literals. Concerning the dominance literals, we know that any dominance

constraint in ' is of the form X f
i / � X g. Using the contrapositions of the statements

in the Form Criterion 4.7, we can conclude that ' can only contain dominance liter-

als for each of the pairs in/ 1�
P . In (4.30) we have calculated that / 1�

P = {fs ; as; es}.
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Therefore ' can only contain the following dominance literals:

(4.34) X f
1 / � X s X a

1 / � X s X e
1 / � X s:

Inequality Literals. The second point of the Form Criterion states that ' contains in-

equality literals for any pair of labeled variables, i.e.

(4.35) X f 6= X a X f 6= X e X f 6= X s X a 6= X e X a 6= X s X e 6= X s

In addition, ' can contain inequality literals for each pair of functors in 6=1
P . As

6=1
P happens to be{ff ; aa; ee; ss; sf ; sa; se}, ' may contain any of the following

inequality literals:

X f 6= X f
1 X a 6= X a

1 X e 6= X e
1(4.36)

X f
1 6= X a

1 X f
1 6= X e

1 X a
1 6= X e

1

If we let L; D and I stand for the labeling literals, dominance literals and inequality

literals from (4.33), (4.34), and (4.35) together with (4.36), resp ectively, it holds that

' ⊆ (L ∪ D ∪ I ).

Considering these sets of literals, �rst note that the labeling literals L do not impose any

restrictions on dominance. This is due to the fact that the members of P do not have

any immediate dominance information in common (and hence / i
P = ∅). Concerning

dominance literals, the only common information about i -descendance, states that each

unary functor must dominate the constant functor. This imposes no real restriction

either as the constant functor has to be dominated by the unaryfunctors anyway. The

same vacuity we �nd in the inequality literals I , which only make statements about

inequalities that are satis�ed by any tree. A closer look reveals that all constraints on

the tree structure in (L ∪ D ∪ I ) are vacuous such that they are eventually satis�ed by

any tree. Thus it holds that LNDC(L ∪ D ∪ I ) = [Γ].

We can now make use of the monotonicity of the licensing relation of N . Recall that

more constraints impose more restrictions on the licensing and therefore less terms are

licensed (cf. Lemma A.1). As ' contains all the labeling literals L and at most the

constraints of D ∪ I (i.e. ' ⊆ (L ∪ D ∪ I ) ), we have LNDC(L ∪ D ∪ I ) ⊆ LNDC(' ). With

this we can eventually derive a contradiction.

(4.37) [Γ] = LNDC(L ∪ D ∪ I ) ⊆ LNDC(' ) = P ⊂ [Γ]

Therefore the initial assumption must have been wrong. There is no normal dominance
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constraint that licensesP. Hence it is impossible to encode the ambiguity of the contex-

tually disambiguated sentence (4.26) in the NDC approach. In fact, due to the abstract

approach adopted here, we can generalize this observation and note that the NDC ap-

proach cannot encode thepattern of ambiguity P, i.e. no matter how the functors in

Γ are instantiated. This means that the NDC approach is not capable of representing

the ambiguity of expressions containing three scope-taking elements which can interact

freely, such that one of the six theoretically possible readings is excluded.

For instance, we can produce the same setP with the recipe for using negated para-

phrases developed in Section 3.3.2. Suppose we start out with thesix-fold ambiguous

sentence (1.1), repeated here as (4.38):

(4.38) Every child told two teachers some story.

As argued in Section 3.3.2, adding a negated paraphrase for some reading provides a

disambiguating context such that this paraphrased reading is excluded. Let us add the

negated paraphrase for the(∃∀2) reading.

(4.39) Every child told two teachers some story.

But it's not the case that there is a story such for every child there are two

teachers such that each child told the story to the teachers.

The resulting discourse is ambiguous between the �ve remainingreadings

(4.40) { (∀2∃); (∀∃2); (∃2∀); (2∃∀); (2∀∃) }:

A closer look reveals that these readings parallel the ones in (4.27). Indeed they can be

described by the same setP which we used above. If we identify the quanti�ers with

functors as follows

∀x(child(x) → X 1)  f (X 1)(4.41)

two(z; teacher(z); X 2)  a(X 2)

∃y(story(y) ∧ X 3)  e(X 3)

told(x; y; z)  s;

then the set P = {faes ; feas ; eafs ; aefs ; afes } corresponds exactly to the remaining

readings (4.40) of the discourse (4.39). So the NDC approach cannotencode the am-

biguity of (4.39), because it cannot represent P as shown above. We can even push

this further and add another paraphrase to exclude another reading, namely the (2∀∃)
reading.
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(4.42) Every child told two teachers some story.

But it's not the case that there is a story such that for every child there are two

teachers such that each child told the story to the teachers.

And it's not the case that there are two teachers such that for every child there

is a story such that each child told that story to the teachers.

The remaining four readings correspond to a new setP0 = {faes ; feas ; eafs ; aefs }.

Unfortunately, this set cannot be represented by the NDC approacheither2.

Eventually we found fairly simple counterexamples to the completeness of N which

proves the following theorem.

Theorem 4.8
N is not expressively complete.

4.4 Hole Semantics

Hole Semantics was �rst introduced by Johan Bos in (Bos, 1995) as a general approach

to underspeci�cation. His formalism was inspired by the seminal work of Reyle (1993)

and is similar w.r.t. the interpretation of constraints, but inde pendent of a particular

object language. In (Bos, 2002) he gives a re�ned and streamlined de�nition, which I

will use here. The following sections are structured analogously to the preceding ones

for NDCs and the incompleteness proof runs similarly along the lines of the schema

indicated in Section 4.2. However, the de�nition of licensin g is different and not based

on a satisfaction relation, but on a pluggingoperation on underspeci�ed representations.

4.4.1 Representations and Licensing

The following de�nition of Hole Semanticsruns closely along the lines of (Bos, 2002),

but at some points I will motivate and comment on some differences to the original

de�nitions.

De�nition 4.9
Let Σ be a signature andV be a set of meta-variables. Then

(4.43) P = {l : f (h1; : : : ; hn) | f n ∈ Σ; l; h i ∈ V}

is the set of labeled formulas (overΣ).

2To see this, note that the intersections⊳1
P , ⊳1�

P , and 6=1
P remain the same for P 0. So the reasoning for

the non-representability of P 0 is exactly the same as forP .
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So labeled formulas are what have been called 'parts' in (4.1). Therefore the labeled

variables LVar(L ) (called labels) and the argument variables RVar(L ) (called holes) can

be straightforwardly de�ned as in (4.2) for some set of labeled fo rmulas L . Furthermore,

Γ(L ) denotes again the set of functors occurring inL .

De�nition 4.10
A pre-USR3 is a triple 〈⊤; L; C 〉, where L ⊆ P is a set of labeled formulas andC is a

�nite set of constraints of the form h ≤ l , where h ∈ RVar(L ) ∪ {⊤} is a hole including

⊤, the top hole, and l ∈ LVar(L ) is a label.

This de�nition is the �rst step towards a full de�nition of the u nderspeci�ed representa-

tions of the approach. The constraints relate holes to labels and will be taken to specify

that the hole h must 'dominate' the formula labeled by l. The ⊤ element is the top hole

and designates the 'highest' labeled formula w.r.t. this dominance. But yet additional

requirements on well-formedness need to be imposed4.

For a pre-USR〈⊤; L; C 〉, the relation of C-dominance/ C on meta-variables is de�ned as

follows. k / C k0 holds, if

1. k : f (: : : ; k0; : : :) ∈ L, or

2. k ≤ k0 ∈ C, or

3. there is a k00such that k / C k00and k00/ C k0.

Thus k C-dominatesk0 if k is a label of a labeled formula that contains k0as a hole (point

1), or there is a constraint k ≤ k0 in C (point 2). Furthermore, point 3. demands / C to

be transitively closed.

Bos (2002) gives three criteria for determining the well-formedn ess of pre-USRs: exis-

tence of a top hole, acyclicity, and well-namedness. The �rst two can be de�ned directly

on the C-dominance relation by stating that the (graph of the) relation must have a max-

imal element and be acyclic. The well-namedness requirement I propose here requires

all labels and holes to be distinct, which is a stronger requirement than the original one

in Bos (2002). I will discuss this point further in Section 4.4.4 .

3USR stands for UnderSpeci�ed Representation
4In the present de�nition, constraints are de�ned the other way aroun d as they are de�ned in Bos

(2002). There the constraint h � l is written as l � h. I adhere to the former convention as this corresponds
to the way I have de�ned tree relations. Furthermore, in Bos (2002) th e �rst component of a pre-USR triple
is a setof holes and labels (the domain) D, which comprises the top hole and all labels and holes fromL.
As the latter can be recovered fromL anyway, I prefer to state only the top hole in the �rst component.
Finally, the terminological distinction between 'pre-USR' vs. 'USR' as I de�ne them is expressed as 'USR' vs.
'proper USR' in Bos (2002).
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De�nition 4.11
Let 〈⊤; L; C 〉 be a pre-USR. We say that it isproper and call it a USRiff

1. ⊤ is the maximal element of / C (i.e. ⊤ / C k for all labels and holes k),

2. / C is acyclic (i.e. there is no k such that k / C k), and

3. all labels and holes are mutually different.

This concludes the de�nition of the underspeci�ed representat ions of the Hole Semantics

approach. Let us write UHS for the set of all USRs which adhere to De�nition 4.11. Note

that the correspondence to the general scheme for the variable/constraint approaches is

straightforward: a USR is a tuple 〈L; C 〉 consisting of a set of labeled formulasL and

only one relation C on the meta-variables.

Now the licensing relation needs to be de�ned. The basic idea of Bos (2002) is to

combine labeled formulas by 'plugging' labels into holes. Formally this is achieved by a

bijective mapping, called plugging.

De�nition 4.12
Let u = 〈⊤; L; C 〉 be a USR. Apluggingp for u is a bijection

(4.44) p: RVar(L ) ∪ {⊤} −→ LVar(L )

from holes (including the top hole) to labels.

Similar to C-dominance, the relation of p-Dominance/ p on meta-variables is de�ned as

follows. k / p k0 holds, if

1. k : f (: : : ; k0; : : :) ∈ L, or

2. p(k) = k0, or

3. there is a k00such that k / p k00and k00/ p k0.

Similar to the case of C-dominance, k p-dominates k0 if k is a label of a labeled formula

that contains k0 as hole (point 1), or the formula labeled k0 is 'plugged into' the hole k

(point 2). Again point 3. demands / p to be transitively closed.

De�nition 4.13
Let p be a plugging for some USR〈⊤; L; C 〉. p is admissibleif it respects the constraints

C, i.e. if

(4.45) C ⊆ / p:
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It immediately follows that / C ⊆ / p if p is admissible which illustrates that the domi-

nance relation induced by an admissible pluggingp is actually just a re�nement of the

dominance relation / C induced by the constraints.

Every plugging for some USR gives rise to a tree, as eventually all parts of the USR are

'plugged' together. Therefore we can de�ne a function � p for each plugging p for some

USR u, that yields the corresponding tree/term from [Γ(u)]. � p actually performs the

plugging on the term level and is applied to a hole to yield the term which is eventually

plugged in this hole by virtue of p. The following de�nition and a later example will

make things clearer.

De�nition 4.14
Let u = 〈⊤; L; C 〉 be a USR andp be a plugging for u. Then let

(4.46) � p : RVar(L ) ∪ {⊤} −→ [Γ(L )]

be de�ned as follows:

1. � p(h) = x iff p(h) = l and l : x ∈ L.

2. � p(h) = f (� p(h1); : : : ; � p(hn)) iff p(h) = l and l : f (h1; : : : ; hn) ∈ L.

We can now de�ne the set of licensed terms for a USRu = 〈⊤; L; C 〉 as follows:

(4.47) LHS(u) = {� p(⊤) | p is an admissible plugging for u}

Finally, the Hole Semantics approach to underspeci�ed representations can be spelled

out as the URFH in terms of the general De�nition 2.8:

(4.48) H := 〈UHS; LHS〉

I will illustrate the de�nitions above by a contextually disa mbiguated example of sen-

tence (1.1), which is repeated as (4.49) below. It is similar to t he one given for the NDC

approach in Example 4.4.

Example 4.15
Let us assume that your daughter told you at some day that she andeach of the other

kids had to think of some fairy tales for school. At some later day she says

(4.49) Today, every child told two teachers a story.

Without any context (4.49) would be six-fold ambiguous. Howe ver, you have additional

disambiguating knowledge from a preceding statement of your daughter. According to

this statement, each child thought about his/her own fairy tal es. This gives you the infor-
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mation that the stories varied with the children. Only those readings remain for (4.49)

where some story takes scope belowevery child. Thus the readings(∀∃2); (∀2∃); (2∀∃)
are the only ones that contribute to the ambiguity of (4.49).

More formally, let us use the signature from Example 4.4Σ = {a1; e1; t 1; c0} where a, t ,

e, and c stood for every child, two teachers, some story, and told , respectively. Then the

three remaining readings correspond to the termsP = {aetc ; atec ; taec }. As we will

see, the following triple is a USR which licenses the setP (assuming a suitable setV of

meta-variables).

(4.50) u =

*

⊤;

8
>>>><

>>>>:

l0 : a(h0);
l1 : e(h1);
l2 : t (h2);

l3 : c

9
>>>>=

>>>>;

;

8
>>>><

>>>>:

⊤ ≤ l0;

⊤ ≤ l2;

⊤ ≤ l3;

h0 ≤ l1

9
>>>>=

>>>>;

+

Note that u is indeed a proper USR in accordance with De�nition 4.11. First of all

it is well-named as all labels and holes are mutually different. It has a top ⊤ which

C-dominates each label (and hence each hole5) by virtue of the constraints, and it is

acyclic. These latter two requirements on C-dominance can be checked straightfor-

wardly by inspection of the following graph that illustrates th e constraints in C by solid

lines connecting labels and holes.

(4.51) ⊤

l0 : a(h0) l2 : t (h2)

l1 : e(h1) l3 : c

The information that some story takes scope belowevery child is encoded in the con-

straint h0 ≤ l1 and can be straightforwardly read off the tree.

For the pluggings, there are 4! = 24 possible bijections between holes and labels. For

5Actually, all the constraints of the form > � l for some label l only have to be included to ful�l this
well-formedness requirement. Strictly speaking, they – as well as the top itself – are super�uous and the
entire approach could be de�ned without reference to a top, similar to the NDC approach, which does not
appeal to such a device. However, as I want to stick closely to the original de�nitions, I will not alter the
de�nitions in this respect.
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instance, we could have a pluggingp that maps the holes to the labels as follows:

(4.52) p :

⊤ 7→ l0
h0 7→ l1
h1 7→ l2
h2 7→ l3

And indeed this plugging is admissible as, for instance,h0 / p l1 due to the fact that

p(h0) = l1. Then

(4.53) � p(⊤) = a_ � p(h0) = ae_ � p(h1) = aet _ � p(h2) = aetc

is one of the licensed terms ofu. In contrast to this, the plugging

(4.54) p0 :

⊤ 7→ l1
h0 7→ l2
h1 7→ l0
h2 7→ l3

is not admissible, because the pairh0 ≤ l1 is not in / p0. In short, the constraint h0 ≤ l1
requires a to dominate e in a term that corresponds to an admissible plugging. This is

not the case in � p0(⊤) = eatc and therefore this term is not among the licensed ones.

Eventually, only three of the 24 possible pluggings are admissible and we get accordingly

(4.55) LHS(u) = {aetc ; atec ; taec }:

Therefore the ambiguity of example (4.49) has been successfully encoded. That this is

not always possible will be proved in the following.

4.4.2 Form Criterion

Again I will �rst derive a criterion relating the form of a representat ion to its licensed

set, along the lines of the schema shown in Section 4.2.

Monotonicity and Variable Name Independence. First, the licensing relation of H
is monotonic. Adding further constraints of the form h ≤ l to a USR restrict the pos-

sible pluggings further and therefore may exclude some of the licensed terms. Second,

H is independent of meta-variable names. Renaming the meta-variables in a USR does

not affect the existence of a plugging but only the domain on which the plugging oper-

ates. Therefore, renaming of variables does not affect licensing. These observations are
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formally spelled out in the Lemmata A.6 and A.7 in the Appendix.

The Form Criterion. As with NDCs, we restrict ourselves to the special case of repre-

sentations where every functor occurs exactly once, i.e. where the functors Γ(u) form a

set instead of a multiset. At �rst, note that we can recur to the same strategy of indexing

meta-variables that we used in Lemma 4.5 to make some �rst observations on the form

of normal dominance constraints. Given a USRu we can use the fact that all holes and

labels must be mutually distinct (due to point 3 of De�nition 4 .11) to conclude that each

labeled formula occurring in u must be of the form

(4.56) l f : f (hf
1 ; : : : ; hf

n)

and that all constraints must then be either of the form ⊤ ≤ l f or of the form hg
i ≤ l f for

some functors f; g . Due to the independence of meta-variable names we can again use

those labels and holes to rename the meta-variables in a USRsu without changing the

set licensed byu. For instance, the USRu from Example 4.15 can be rewritten as

(4.57) u0 =

*

⊤;

8
>>>><

>>>>:

la : a(ha
1);

le : e(he
1);

l t : t (ht
1);

lc : c

9
>>>>=

>>>>;

;

8
>>>><

>>>>:

⊤ ≤ la;

⊤ ≤ l t ;

⊤ ≤ lc;

ha
1 ≤ le

9
>>>>=

>>>>;

+

in accordance with this new meta-variable scheme.

Recall that in the Form Criterion 4.7 of the NDC approach, various treerelations were

used to compare the literals to the respective (intersections of) tree relations. For

instance, dominance literals were compared to the intersection of corresponding i -

descendance relations to determine whether a tree could be licensed (or whether the

literal could be part of the constraint, in case of reasoning in the opposite direction).

We could do these straightforward comparisons, because dominance constraints were

interpreted directly by tree relations (see the De�nition 4.2 of sat isfaction).

In case of Hole Semantics licensing works more indirectly via pluggings and thus it is

not obvious, how and where tree relations could be compared to the constraints of a

USR. However, there is a simple way around this obstacle. We de�ne a new type of tree

relation that can be compared straightforwardly with the constraints. In fact, thi s new

tree relation will be a plugging dominance / p� for each tree � and it will be used to

restrict the set of constraints in the way it is indicated in De�ni tion 4.13 of admissibility.

To get a plugging dominance for some tree, we decompose the treesuch that every

node corresponds to a labeled formula with appropriate meta-variables according to the
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meta-variable scheme above. Then we de�ne a plugging on theselabeled formulas that

reverses the decomposition and plugs the labeled formulas backtogether such that we

get the tree we started from.

De�nition 4.16 (Plugging for a Tree)

Let Σ be a signature, Γ ⊆ Σ a set of functors, and � ∈ [Γ] a tree. The set of labeled

formulas corresponding to Γ is

(4.58) L � :=
n

l f : f (hf
1 ; : : : ; hf

n) | f n ∈ Γ
o

:

The plugging p� corresponding to � is de�ned on RVar(L � ) ∪ {⊤} as follows,

p� (⊤) = l ` (" )(4.59)

p� (hf
i ) = l ` (d_

f i ) ;

where df is the unique node in � which is labeled with f .

Let me illustrate this with an example. Suppose we start from the tree � = aetc . The

functors occurring in � are Γ = {a; e; t ; c}. Then we de�ne a set of labeled formulas L �

which have meta-variables according to the meta-variable naming scheme. In this case

we get

(4.60) L f a;e;t ;cg := {la : a(ha
1); le : e(he

1); l t : t (ht
1); lc : c}

Note that this set depends only on the set of functors and not onthe tree structure. Then

we de�ne a plugging p� , corresponding to the tree � , that plugs the labeled formulas in

L � back together.

(4.61) p� :

⊤ 7→ l ` (" ) = la

ha
1 7→ l ` (d_

a 1) = l ` (1) = le

he
1 7→ l ` (d_

e 1) = l ` (11) = l t

ht
1 7→ l ` (d_

t 1) = l ` (111) = lc

Obviously, p� plugs the labeled variables in a way that yields exactly� . For p� and L �

we have � p� (⊤) = � , i.e. applying the plugging yields indeed the original tree. So if we

happen to encounter a USRu = 〈⊤; L � ; C〉 with the labeled formulas L � such that the

tree plugging p� is admissible (i.e. such that C ⊆ / p� ), then � p� (⊤) = � and hence� is

licensed byu.

Reasoning in the opposite direction, if u is a USR that licenses some tree� (possibly

among others), then this is due to some admissible pluggingp such that � p(⊤) = � .
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Because of the unique functor/labeled formula-relationship it holds that p = p� (mod-

ulo renaming of variables), i.e. this plugging must necessarily be the tree plugging p�

corresponding to � . Hence, as in the case of the NDC approach, checking whether some

tree � is licensed by a USRu (where Γ(u) is a set), does not require a search for an

admissible plugging, but rather a test whether the plugging p� is admissible. To check

whether the plugging is admissible we just have to see whether C ⊆ / p� .

Now we are close to a form criterion. In order to check whether some tree is licensed by

a USR, we have to see if it contains the functors mentioned in thelabeling literals and

compare the constraintsC to the 'new type' tree relation / p� . As in the Form Criterion

for the NDC approach, we can extend this result to the entire licensed setP. For each of

the licensed trees� ∈ P, it holds that C ⊆ / p� and therefore we get C ⊆
T

� 2 P / p� .

This makes it possible to state the following Form Criterion which relates the form of a

USR to its licensed set.

Form Criterion 4.17
Let u = 〈⊤; L; C 〉 be a USR that licensesP (where each functor in Γ(u) occurs only

once). Then the following holds (modulo the renaming of variab les):

1. L = L �( u)

2. C ⊆
T

� 2 P / p�

Proof. As there is one labeled formula for each functor and as all labels and holes in some

USR are mutually different by de�nition, the claim about L follows straightforwardly.

Concerning the constraints, each� ∈ LHS(u) comes about by some admissible plugging

p which coincides with p� as discussed above. Due to the de�nition of admissibility,

C ⊆ / p� for all these p� .

This Form Criterion is much simpler than its NDC counterpart as we only have to deal

with one type of constraint (dominance) instead of two (inequa lity and dominance).

Furthermore, the NDC approach allowed sharing of meta-variables such that additional

restrictions could be placed by sharing variables in the labeling literals. In H this is not

possible as all labels and holes have to be mutually distinct(see however the discussion

of an extension Hshare of H below where sharing of meta-variables is allowed).

In the following section, the Form Criterion will be used to show the incompleteness of

the Hole Semantics approach.
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4.4.3 Hole Semantics is Expressively Incomplete

In showing the incompleteness of the Hole Semantics I will this time start with a more

abstract counterexample and move to more linguistically motivated examples later on.

Let Σ be a signature containing three unary functors and a constant. W.l.o.g. let them

be Γ = {f ; g; h; x}. Then there is no underspeci�ed representation of H that licenses the

set

(4.62) P = {fghx ; hgfx }:

In this set, the sequence of functors (i.e. quanti�ers) in one term (i.e. reading) is the

reverse of the sequence of the other term.

Assume that there is a USR〈⊤; L; C 〉 of H such that LHS

�
〈⊤; L; C 〉

�
= P. According to

the Form Criterion 4.17, the set of labeled formulas L coincides with L � :

(4.63) L = L � =
�

l f : f (hf
1); lg : g(hg

1); lh : h(hh
1); lx : x

	

Concerning the constraints C, we �rst need to compute the plugging dominances cor-

responding to the elements of P. Let us �rst compute the pluggings pfghx and phgfx

corresponding to the elements ofP as detailed in the preceding section.

pfghx phgfx

⊤ 7→ l f ⊤ 7→ lh

hf
1 7→ lg hh

1 7→ lg

hg
1 7→ lh hg

1 7→ l f

hh
1 7→ lx hf

1 7→ lx

From this plugging we have to compute the corresponding plugging dominance relations

/ pfghx and / phgfx according to De�nition 4.16. Intersecting these plugging domin ances

yields the following.

\

� 2 P

/ p� =
� 


l f ; lx
�

;


hf

1; lx
�
; 〈lg; lx〉 ;



hg

1; lx
�
;


lh; lx

�
;


hh

1; lx
�
;(4.64)



⊤; l f

�
;


⊤; hf

1

�
; 〈⊤; lg〉;



⊤; hg

1

�
;


⊤; lh

�
;


⊤; hh

1

�
; 〈⊤; lx〉;



l f ; hf

1

�
;


lg; hg

1

�
;


lh; hh

1

� 	

Note that only some of the pairs in the intersection can correspond to actual constraints
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of the representation, because according to De�nition 4.10 constraints must be of the

form h ≤ l such that h is a hole and l is a label. Let us write CP for those pairs, which

have been underlined in the listing above.

(4.65) CP =
�

hf
1 ≤ lx; hg

1 ≤ lx; hh
1 ≤ lx; ⊤ ≤ l f ; ⊤ ≤ lg; ⊤ ≤ lh; ⊤ ≤ lx

	

Although CP looks fairly complex at �rst sight, all constraints are vacuous w.r.t. the

elements of [Γ] as the following graph of CP indicates:

(4.66) ⊤

l f : f (hf
1) lg : g(hg

1) lh : h(hh
1)

lx : x

The constraints of the form h ≤ lx do not impose any proper restriction asx is a constant

and must therefore be dominated by every other functor of a term in which it occurs.

Neither do the constraints of the form ⊤ ≤ l rule out any plugging because ⊤ is the

top hole which dominates all other labels by de�nition of USRs . Therefore we have that

CP ⊆ / p� for any tree � ∈ [Γ]. This means thatLHS

�
〈⊤; L � ; CP 〉

�
= [Γ] as every plugging

p� is admissible.

Recall that according to the form criterion, CP is the maximally possible set of con-

straints for potential licensers of P, i.e. it holds that C ⊆ CP . Analogously to the case of

NDCs we can use the monotonicity of the licensing mapping (cf.Lemma A.6) to derive

the following contradiction:

(4.67) [Γ] = LHS

�
〈⊤; L � ; CP 〉

�
⊆ LHS

�
〈⊤; L � ; C〉

�
= P ⊂ [Γ]

This is an obvious contradiction as P is a proper subset of [Γ]. Hence the initial as-

sumption was wrong, and there is no USR of Hole Semantics that licensesP. The only

constraints that both elements of P have in common are too weak to impose any proper

restriction and therefore classify all pluggings as admissible. This counterexample im-

mediately shows the incompleteness ofH.

Theorem 4.18
H is not expressively complete.

Note that we can use the same reasoning to show thatH cannot license P0 =
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{gfhx ; hfgx } and P00 = {ghfx ; fhgx }. These sets parallelP in that the sequence of

functors in one term is reversed for the other term.

Due to the fact that the intersectionof plugging dominances / p� limits the set of con-

straints, adding further terms to P can only make the intersection smaller. As the in-

tersection for P is too small in the sense that it contains only vacuous constraints, this

holds for any superset ofP (except for the entire set of possible readings[Γ]). Hence,

none of these supersets can be represented inH either. This result is generalized and

made precise in Proposition A.8. H fails not only to provide a representation for P; P0

and P00but for any of their supersets (except [Γ]).

Two Linguistically Motivated Examples. One of those supersets whichH cannot rep-

resent is the set

(4.68) Q = {fghx ; fhgx ; hgfx ; ghfx ; hfgx };

because it comprisesP (and P00). In fact, Q is a set of terms that correspond to the

�ve remaining readings of the contextually disambiguated chocolate company example

(3.22) from Section 3.3.2, which has been used in Section 4.3.3 to show the incomplete-

ness of the NDC approach. Therefore Hole Semantics has the same weakness as the NDC

approach w.r.t. this contextually disambiguated example.

Even worse, Hole Semantics cannot represent the ambiguity of the individual sentence

example (3.18) from Park (1995), repeated here as (4.69).

(4.69) Two representatives of three companies saw most samples.

As has been pointed out in Section 3.3.1, Park (1995) argues that this sentence is only

ambiguous between the four readings in (3.21), repeated here as (7.17).

(4.70) two(x; three(y; comp(y); rep of(x; y)); most(z;samp(z); saw(x; z)))
three(y; comp(y); two(x; rep of(x; y); most(z;samp(z); saw(x; z))))
most(z;samp(z); two(x; three(y; comp(y); rep of(x; y)); saw(x; z)))
most(z;samp(z); three(y; comp(y); two(x; rep of(x; y)); saw(x; z)))

Concerning the more abstract term representations we use, note that two has to be

construed as a binary functor t in this case. In the �rst argument (the restrictor) there

is an interaction with the quanti�er threeand in the second argument (the nucleus) with

most. The latter quanti�ers threeand mostcan be encoded as unary functors6 d and mas

in the preceding cases, because their restrictor position is always �lled by comp(y) and

6Unfortunately, two and three start with the same letter, so I uset to encode two and d to encode three.
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samp(z), respectively. Using the constantsr and s to stand for rep of(x; y) and saw(x; z),
respectively, the readings in (7.17) are eventually encoded in the following set R of

terms (using parentheses to enhance legibility).

(4.71) R = { t (d(r ); m(s)); d(t (r ; m(s)); m(t (d(r ); s)); m(d(t (r ; s))) }

Intersection of the corresponding plugging dominances and selection of the well-formed

constraints gives the following set CR of constraints that any potential licenser of R can

maximally have.

(4.72) CR = { ht
1 ≤ l r ; ht

2 ≤ ls; hd
1 ≤ l r ; hm

1 ≤ ls;

⊤ ≤ l t ; ⊤ ≤ ld; ⊤ ≤ lm; ⊤ ≤ l r ; ⊤ ≤ ls }

Again these constraints are vacuous w.r.t. the elements in[{t ; d; m; r ; s}] as the graph of

CR indicates.

(4.73) ⊤

ld : d(hd
1) l t : t (ht

1; ht
2) lm: m(hm

1)

l r : r ls : s

Assume now that 〈⊤; L; C 〉 is a licenser for R. Using the Form Criterion 4.17 we can

conclude that L = L f t ;d;m;r ;sg and C ⊆ CR . Hence we get a contradiction similar to

(4.67) (where we let Γ = {t ; d; m; r ; s} denote the set of functors)

(4.74) [Γ] = LHS(〈⊤; L � ; CR〉) ⊆ LHS(〈⊤; L � ; C〉) = R ⊂ [Γ]

So we must conclude that the assumption was wrong and thatR cannot be represented

in H. Therefore H is not capable of representing the ambiguity of a simple sentence such

as (4.69). In particular, the unwanted reading corresponding to d(m(t (r ; s))) cannot be

ruled out.

Some Combinatorics. To get some idea of the magnitude of the inexpressivity result,

note that P has 24 − 1 = 15 supersets, excluding[Γ] but including P itself. The same is

true for P0 and P00. In order to get the total number of non-representable sets, we need

to take care to avoid counting some sets more than once.
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For instance,{fghx ; hgfx ; gfhx ; hfgx } is a subset of bothP and P0. Overall, there are 9
such shared supersets7.

In conclusion, H does not provide representations for3(24 − 1) − 9 = 36 potential sets of

readings. Comparing this to the maximal number of possible sets of readings for three

quanti�ers 23! = 64, we see thatH does not provide representations for more than half

of the potential ambiguities.

(Bos, 2002, p. 38) is also aware of the limited expressive powerof his approach as he

states (without proof) that Hole Semantics8 is not able to represent the entire range

of subsets of readings. Bos neither discusses this fact any further nor does he seem to

regard it as a problem for the Hole Semantics approach. However, Ishowed above that it

is indeed problematic as Hole Semantics fails to provide underspeci�ed representations

for contextually disambiguated as well as isolated sentences. Therefore it is legitimate

to say that Hole Semantics is not expressively complete.

4.4.4 Shared Meta-Variables in Hole Semantics

In this section I shall brie�y add the missing explanation for strengthening the well-

namedness requirement to the one given in De�nition 4.11.

In (Bos, 2002, De�nition 6, p. 30) a pre-USR is de�ned to be well-namediff each meta-

variable except the top occurs in a labeled formula and each label occurs only once.

Now (Koller et al., 2003, footnote 1) note that this well-name dness requirement is too

weak to really rule out unwanted pre-USRs. For instance, consider a USR with two

labeled formulas that sharea meta-variable. First suppose that the shared meta-variable

occurs as a hole in both labeled formulas, i.e. there are two labeled formulas of the

form l : f (: : : h : : :) and l0: g(: : : h : : :). Then this shared holeh has two distinct mothers

(because the two labeled formulas will have distinct labels and therefore be plugged

into different places), which obviously cannot lead to a proper tree-shaped structure.

Furthermore, labeled formulas of the form l : f (: : : l : : :) need to be excluded. Such a

formula would specify that the hole l is its own mother which again cannot be the case in

a tree and therefore needs to be ruled out. The only possibility ofshared meta-variables

that we could allow is the case of a label of some labeled formula that occurs as a hole

in some other labeled formula, i.e. we could allow for two label ed formulas of the form

l : f (: : : h : : :) and h : g(: : :). This would specify that g needs to occur as daughter off

exactly as in the case of the NDC approach. Eventually we could de�ne well-namedness

as follows.
7For P and P 0 the three common supersets areP [ P 0, P [ P 0[ f ghfx g, and P [ P 0[ f fhgx g and similar

for P and P 00, and P 0 and P 00.
8Bos (2002) talks about PLU, which is Hole Semantics applied to First Order Logic as object language.
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(∗) If a variable occurs more than once in the set of labeled formulas

then it occurs exactly once as a label and once as a hole of two distinct

labeled formulas.

Unfortunately, (∗) is not straightforwardly compatible with the remaining de�niti on

of pluggings9 in Bos (2002). So we are faced with two options. The �rst one is to

strengthen the well-namedness de�nition of Bos (2002) to the one of mutual distinct-

ness in De�nition 4.11 while keeping the original de�nitions of pluggings as in De�nition

4.12. I have taken this option in the preceding sections, which resulted in the approach

H. The second option is to adopt the alternative well-namedness de�nition in (∗) and

to change the de�nition of a plugging accordingly. I will take this option in the follow-

ing, which will result in a different formalism Hshare , that resemblesH but additionally

allows for shared meta-variables.

For the amended de�nition of pluggings, suppose that k is such a shared meta-variable of

two labeled formulas l : f (: : : k : : :) and k : g(: : :). Then any USR containing these labeled

formulas should be interpreted in a way that ensures that g ends up as daughter off

in the corresponding licensed term. To achieve this, the De�nition 4.12 of a plugging

needs to be changed to include the speci�cation that

(∗∗) p(k) = k, if k ∈ RVar(L ) ∩ LVar(L ).

This ensures that labels are plugged into the corresponding shared holes. All other

de�nitions (in particular that of licensing) can then remain u ntouched. Let us write

Hshare for the URF that arises when point 3 of De�nition 4.11 and De�nition 4.12 are

modi�ed by (∗) and (∗∗), respectively. Hshare is then like H with the exception that

shared label/hole meta-variables are allowed. Those are interpreted in the same way as

shared meta-variables in labeling literals in the NDC approach.

Concerning the necessary amendment of the form criterion, the �rst point of the Form

Criterion 4.17 re�ects the fact that all labels and holes had to be mutually different. If

we allow for shared meta-variables in label/hole positions, the set of labeled formulasL

of some USRu will not coincide with L �( u) in the general case. Therefore, we can only

make the following weaker statement in this case instead of the �rst statement in the

Form Criterion 4.17:

10a. L =
�

l f : f (v1; : : : ; vn) | f n ∈ Γ(m)
	

where eachvi is either of the form hf
i or lg for some g ∈ Γ(u)

9Actually one would have to change the de�nition of USRs in Bos (2002) altogether, as there the holes
and labels are collected in a set (the domain, cf. footnote 4 on p. 65) which makes it impossible to
distinguish label from hole occurences of the same meta-variable. As I have de�ned (pre-)USRs slightly
differently my de�nitions don't run into this problem.
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10b. If l f : f (v1; : : : ; vn) ∈ L and vi is of the form lg for some g ∈ Γ(u), then

〈f; g 〉 ∈
\

� 2L HS(u)

/ i
�

These two points correspond exactly to the �rst points in Lemma 4.5 and Form Criterion

4.7, which make statements about the labeling literals of an NDC. This is no suprise, as

labeling literals of the NDC approach allow for shared variables in the same way as the

labeled formulas of Hshare . Therefore Hshare can be identi�ed with normal dominance

constraints without inequality literals.

Concerning the expressive completeness ofHshare , note that the counterexample set

P = {fghx ; hgfx } from the preceding section cannot be licensed either. Assume that

〈⊤; L; C 〉 is a USR ofHshare which licensesP. In this case we cannot straightforwardly

conclude that L = L � as some of the meta-variables may be shared. But we can observe

that
T

� 2 P / 1
� = ∅. Using the variant 10 of the Form Criterion we can therefore conclude

that there is no pair 〈f; g 〉 such that some labeled formula is of the form l f : f (: : : lg : : :).
Hence we deriveL = L �( u) from the fact, that there are no common mother-daughter

relations in the terms of P. Eventually we can reason as in the case ofH above which

proves the incompleteness ofHshare .

Theorem 4.19
Hshare is not expressively complete.

In particular, Hshare also fails to provide representations for the ambiguity of the contex-

tually disambiguated chocolate company example and the isolated sentence example of

Park (1995) from Sections 3.3.2 and 3.3.1, respectively. ThatHshare is in fact more ex-

pressive thanH will be shown in Chapter 5, where the expressive power of the different

formalisms is compared.

4.5 Minimal Recursion Semantics

Minimal Recursion Semantics (MRS) is the last approach in the family of vari-

able/constraint approaches which I shall investigate in detail. The exposition I will

give here sticks to the presentation in Copestake et al. (1999). In this paper, the authors

de�ne the MRS approach on top of FOLGQas object language, but they explicitly men-

tion that MRS can be de�ned over arbitrary object languages10. However, this is not

straightforward as they make use of a method of sharing labels to represent conjunction.

10(Copestake et al., 1999, p. 2)
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Clearly, this is a problem if the object language does not provide for anything similar

to conjunction. Therefore I will de�ne the MRS approach without t hose conjunctions

and discuss this issues in a separate section in more detail at the end. I will �rst give

a formal de�nition of the representations of the approach that is more explicit in some

points than the rather informal presentation in (Copestake et al., 1999).

4.5.1 Representations and Licensing

The de�nitions of the basic building blocks of MRS are similar t o the ones of Hole Se-

mantics. Again there are parts and constraints, which are de�ned over a signature Σ
and a set of meta-variablesV .

De�nition 4.20
Let Σ be a signature andV be a set of meta-variables. Then

(4.75) P = {l : f (h1; : : : ; hn) | f n ∈ Σ; l; h i ∈ V}

is the set of elementary predicates (EPs).

Elementary predicates are exactly what has been called 'labeled formulas' in Hole Se-

mantics or 'parts' in (4.1). In MRS, the meta-variables are called handles. Again the

labeled variables LVar(E ) (again called labels), the argument variables RVar(E ) (again

called holes), and the set of functors Γ(E ) are de�ned exactly as in (4.2) for some set

of elementary predicatesE . Furthermore, MRS makes use of a top hole as well, which

serves the same purpose as the top hole in the USRs of Hole Semantics. Constraints are

de�ned exactly as in Hole Semantics, relating a hole to a label.

De�nition 4.21
A constraint (over a set E of elementary predicates) is an equation of the form h =q l

where h ∈ RVar(E ) ∪ {⊤} is a hole including the top holeand l ∈ LVar(E ) is a label.

In order to de�ne the basic underspeci�ed representations, some auxiliary de�nitions

are needed �rst. An important concept is the outscopesrelation, which is actually just a

simple dominance relation on the handles occurring in some set of EPs. Again I will use

the terminology of the original paper.

De�nition 4.22
For a set of EPsE the outscopesrelation / E is de�ned as follows. k / E k0 holds iff

1. k : f (: : : ; k0; : : :) ∈ E, or
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2. there is a k00such that k / E k00and k00/ E k0

One of the most important differences between MRS and other approaches to underspec-

i�cation is a subdivision of the functors of the signature into �oating-scopal and �xed-

scopalfunctors. In order to illustrate the difference, assume that l : f (: : : h : : :); l0: g(: : :)
are two labeled formulas of some USRu of Hole Semantics andh ≤ l0 is a constraint

restricting their composition. This constraint is then interpre ted such that only those

terms occur in LHS(u) in which f dominates g, disregarding any functors that may pos-

sibly occur betweenf and g. For instance, if h is another unary functor and c a constant

of some labeled formula, then the set of terms licensed byu is {fghc ; fhgc ; hfgc }.

In MRS however, a similar constraint h =q l0 requires that f dominates g, but with the

additional requirement that all functors in between f and g are �oating-scopal. There-

fore, if h happens to be �oating-scopal the MRS representation corresponding to u will

license the same set{fghc ; fhgc ; hfgc }. If h is construed as�xed-scopal however, the

term fhgc will not occur in the set of licensed terms, as hereh 'intervenes in the con-

straint'. Thus the MRS constraint h =q l0 requires dominance of f over g but without

intervening �xed-scopal functors. In Copestake et al. (1999) the most prominent ex-

amples of �xed-scopal functors are sentential adverbs (such asprobably) whereas all

quanti�ers are taken to be �oating-scopal functors. The latter de�nition motivates their

choice to call the requirement of a constraint equality modulo quanti�ers, abbreviated as

qeq11.

In order to account for these speci�cations formally, the foll owing de�nition de�nes

what it means for a relation on handles to be insensitive to �oa ting-scopal functors,

but sensitive to �xed-scopal ones. Given some relation on handles R, the qeq-restriction

Rqeq of R �lters out those pairs 〈k; k0〉 ∈ R which are not connected by �oating-scopal

functors only, i.e. which are connected such that there is an intervening label that labels

a �xed-scopal functor.

De�nition 4.23
The qeq-restrictionRqeq of a relation R on handles w.r.t. a set of elementary predicates

E is de�ned as follows:

Rqeq =
�

〈k; k0〉 | k R k0 and if there are labels l1; : : : ; lnsuch that(4.76)

k R l 1 R · · · R ln R k0 then k; l1; : : : ln label

�oating-scopal functors in E
	

As a �rst step towards the de�nition of the underspeci�ed represen tations, MRS struc-

11although it is rather dominance modulo �oating-scopal functors
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tures are de�ned as triples consisting of a top hole, a set of EPs and a set of constraints

together with some well-formedness requirements.

De�nition 4.24
An MRS structurem is a triple 〈⊤; E; C 〉, where ⊤ is the top handle, E is a set of elemen-

tary predicates andC is a set of constraints, which satis�es the following conditi ons:

1. There is no handleh such that h / E ⊤.

2. The outscopes-relation respects the constraints, i.e. for every constraint h =q l ∈
C, which is non-trivial (i.e. for which h 6= l ) the following holds:

(a) It is not the case that l / E h and

(b) if h / E l then h / qeq
E l

3. All labels of the EPs inE are mutually distinct.

Point 2. of the MRS structure de�nition actually expresses that the constraints are

not contradicted: Let h =q l be a constraint in C. According to the de�nition of qeq-

constraints in Copestake et al. (1999), h must be (equal to) l or there must be a chain

of �oating-scopal EPs E1, . . . En such that h is (equal to) the label of E1 and l is (equal

to) a hole in En and for all pairs E i ; E i +1 the label of E i +1 is (equal to) a hole in E i .

Note that the �rst case (equality of h and l) is a special case: ifh actually is l then the

constraint would be of the form h =q h and thus meaningless. Therefore the second

case is the interesting one. Ifl and h do not stand in the / E relationship in either way,

the constraint is not ful�lled yet, but it is not contradicted ei ther – it may be ful�lled by

a further re�nement of the MRS structure. However, it is clearly not ful�lled if l / E h

so this case (a) has to be ruled out. In case (b) whereh outscopesl (h / E l ), it is not

ful�lled if one of the intervening quanti�ers in the chain (whi ch causesh and l to stand

in the outscope relation) is a �xed-scopal one. So this secondcase has to be ruled out as

well.

The third point is a well-namedness requirement that rules out shared labels between

EPs. These shared labels have been utilized by Copestake et al. (1999) in order to

form EP conjunctions. In a separate section below I will show why EP conjunctions are

problematic for a general investigation which is independent of the underlying object

language. Nevertheless MRS allows for other shared meta-variables. For instance, there

may be labels which occur as holes at the same time. In this respect MRS behaves like

Hshare or N .

MRS structures as de�ned above are not yet the underspeci�ed representations of Mini-

mal Recursion Semantics. Only those structures which can be re�ned to MRS structures
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that represent trees/terms of the object language are legitimate representations. The

way to re�ne MRS structures is to successively identify some handle with some other

handle while taking care not to violate any constraint. This process is repeated until

every label has been identi�ed with a hole in the set of EPs and thus the EPs have been

'plugged' together. Different ways of identifying labels and holes lead to different result-

ing MRS structures. Those resulting MRS structures uniquely correspond to a tree/term

and are calledscope-resolved. MRS structures that can be re�ned such that they result in

a scope-resolved structure are then calledwell-formed. Well-formed MRS structures are

the underspeci�ed representations of the MRS approach. Let us write UMRS for the set of

all well-formed MRS structures.

In the following I will illustrate these concepts with an exam ple. The formal details are

spelt out in the Appendix in Section A.3.1.

Example 4.25
Let us look at Example 4.15 from Hole Semantics again, where the sentence

(4.77) Every child told two teachers a story.

has been disambiguated by context in a way that restricted the readings to those in which

every child takes scope overa story. Hence only the three readings(∀∃2); (∀2∃); (2∀∃)
remained and the set P = {aetc ; atec ; taec } was the corresponding set of terms that

needed to be licensed. The following MRS structure serves this purpose.

(4.78) m =

*

⊤;

8
>>>><

>>>>:

l0 : a(h0);
l1 : e(h1);
l2 : t (h2);

l3 : c

9
>>>>=

>>>>;

;
n

h0 =q l1
o

+

Obviously, this is an MRS structure according to De�nition 4.24. It resembles closely the

USRu from Example 4.15. There are several ways in which the handles of theEPs can

be identi�ed. In the following, one such sequence of identi� cations of handles is shown,

where h 7→ l stands for the identi�cation of h with l (renaming h to l). The resulting

MRS is shown to the right.

h0 7→ l2 〈⊤; { l0 : a(l2); l1 : e(h1); l2 : t (h2); l3 : c } ; {l2 =q l1}〉

h2 7→ l1 〈⊤; { l0 : a(l2); l1 : e(h1); l2 : t (l1); l3 : c } ; {l2 =q l1}〉

h1 7→ l3 〈⊤; { l0 : a(l2); l1 : e(l3); l2 : t (l1); l3 : c } ; {l2 =q l1}〉

⊤ 7→ l0 〈l0; { l0 : a(l2); l1 : e(l3); l2 : t (l1); l3 : c } ; {l2 =q l1}〉
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In the last MRS structure each hole (including the top hole) has been identi�ed with a

label. Therefore this MRS structure is scope-resolved and corresponds to the tree/term

atec in a straightforward manner. Concerning the original constraint h0 =q l1, that

demanded a to dominate e, we can see that in the resulting term atec the functor

t intervenes in the dominance as it occurs in betweena and e. This should only be

possible if t is a �oating-scopal functor.

First note that the constraint h0 =q l1 has changed tol2 =q l1. Starting with the second

MRS structure it holds that l2 / E l1 (due to the presence of l2 : t (l1) in the set of EPs).

Furthermore, if and only if t is construed as a �oating-scopal functor, it holds that l2 / qeq
E

l1. Thus the constraint l2 =q l1 is only ful�lled if t is �oating-scopal. So the triples given

above are MRS structures only ift is �oating-scopal, otherwise they violate point 2(b) of

De�nition 4.24. Assuming that t is �oating-scopal, this illustrates that the original MRS

structure is well-formed as we could arrive at a scope-resolved structure by successive

identi�cation of handles.

To illustrate another effect of the qeq-constraint h0 =q l1, consider the following identi-

�cation of the top hole with the label l1 for e.

⊤ 7→ l1 〈l1; { l0 : a(h0); l1 : e(h1); l2 : t (h2); l3 : c } ; {h0 =q l1}〉

Now consider the identi�cation of h1 with l0. This would lead to the following triple

h1 7→ l0 〈l1; { l0 : a(h0); l1 : e(l0); l2 : t (h2); l3 : c } ; {h0 =q l1}〉

We can read off from the EPs that l1 outscopes l0 and l0 outscopesh0 and hence l1
outscopesh0 due to the transitive de�nition of the outscopes relation. But the fact that

l1 / E h0 con�icts with the qeq-constraint h0 =q l1. Therefore this latter triple is not a

MRS structure in the sense of De�nition 4.24 as the constraint is explicitly contradicted

thus violating 2(a). Therefore the identi�cation of h1 with l0 is ruled out at this point.

Considering all possible sequences of identi�cations that lead to MRS structures, we see

that we can arrive only at those scope-resolved MRS structures thatcorrespond to the

set of terms P = {aetc ; atec ; taec } as desired.

The following translation � of scope-resolved MRS structures into terms is the MRS

counterpart of De�nition 4.14 of Hole Semantics.

De�nition 4.26
Let m = 〈⊤; E; C 〉 be a scope-resolved MRS structure. Then

(4.79) � : RVar(E ) ∪ {⊤} −→ [Γ(E )]
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is de�ned as follows:

1. � (h) = x iff h : x ∈ E

2. � (h) = f (� (h1); : : : ; � (hn)) iff h : f (h1; : : : ; hn) ∈ E

Obviously, by de�nition of � , every EP in a scope-resolved MRS structurem corresponds

to exactly one node in � (m). If we let Γ(m) again denote the multiset of functors oc-

curring in EPs in m, all terms � (m) will be in [Γ(m)]. The set of licensed terms of a

well-formed MRS structure m can then be de�ned as follows.

De�nition 4.27

(4.80) LMRS(m) = {� (⊤) | m ⊑ m0; m0 is scope-resolved with top⊤}

Finally the MRS approachM can be de�ned along the lines of De�nition 2.8 as

(4.81) M := 〈UMRS; LMRS〉

4.5.2 Form Criterion

Similar to the NDC approach and Hole Semantics we can derive analogous results con-

cerning monotonicity and independence of meta-variable names which are elaborated

in Lemma A.13 and Lemma A.14 in the Appendix. Therefore we can makeuse of the

indexing scheme for renaming meta-variables we have used before.

The formally spelled out derivation of the actual Form Criterion i s rather tedious as the

process of successive identi�cation of handles is a cumbersome method of plugging EPs

together. It should be clear however, that in the end this process achieves the same as

a plugging in the sense of Bos (2002) for Hole Semantics. Thisis proven in Section

A.3.2 in the Appendix and used in the derivation of the Form Criterion for MRS. Again

I restrict my attention to sets Γ, i.e. to well-formed MRS structures where each functor

occurs only once.

Form Criterion 4.28
Let m = 〈⊤; E; C 〉 be a well-formed MRS that licensesP such that Γ(m) is a set. Then

the following holds (modulo renaming of variables):

1. E =
�

l f : f (v1; : : : ; vn) | f n ∈ Γ(m)
	

where eachvi is either of the form hf
i or lg for some g ∈ Γ(m)
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2. If l f : f (v1; : : : ; vn) ∈ E and vi is of the form lg for some g ∈ Γ(m), then

〈f; g 〉 ∈
\

� 2 P

/ i
�

3. If C0 are the non-trivial constraints in C, then

C0 ⊆
\

� 2 P

/ qeq
p�

Compare this result to the Form Criterion 4.17 of Hole Semantics andits variant with

shared meta-variablesHshare . As has been mentioned before, MRS allows for shared

meta-variables like the N and Hshare . Therefore the statement about the form of E (1.)

resembles the corresponding statements for these approaches. If some hole in the i th

argument position of an EP is actually a label, then this imposes a requirement on the

i -dominance relations of the licensed terms (2.).

Concerning the set of constraints, Hole Semantics and MRS make virtually identical

statements (3.): the pluggings corresponding to the licensed terms restrict the form of

the constraints. However, as constraints are interpreted differently from Hole Semantics

(by distinguishing �xed and �oating functors), only the qeq-restrictions of the actual

pluggings have been taken into account. In summary, one may say that MRS is Hshare

with the additional �xed-/�oating-scopal functor distinct ion.

4.5.3 MRS is Expressively Incomplete

Before we can think of a counterexample to the expressive completeness of Minimal

Recursion Semantics, we are faced with two options. In the de�nition of terms and sig-

natures in De�nition 2.1, nothing has been said about �oating-s copal and �xed-scopal

functors. Indeed this distinction is irrelevant for the Normal Do minance Constraint ap-

proach and Hole Semantics as they evaluate constraints on the basis of the tree rela-

tions without consideration of the very nature of the involved f unctors. This is different

in MRS where the �oating/�xed scopal distinction is crucial to th e evaluation of con-

straints.

The choice we are faced with is whether to assume this distinction to be given a priori ,

i.e. in the very de�nition of the signature, or whether we grant ou rselves the freedom to

specify, which functor we want to regard as �oating or �xed-sco pal. The �rst option is

linguistically the more plausible one. Whether a functor is � oating-scopal or �xed-scopal

may be simply a linguistic fact. For instance, in Copestake et al. (1999) sentential ad-

verbs are assumed to correspond to �xed-scopal functors, whereas all other scope taking
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elements (quanti�ers in particular) correspond to �oating-scop al functors. However, the

authors do not discuss or give a decisive argument that speci�es when some scope taking

element should be construed as �xed- or �oating-scopal. In fact, all examples involving

instances of �xed-scopal functors in Copestake et al. (1999)could be modi�ed to work

without the �xed/�oating distinction. So from a linguistic po int of view it is unclear why

there should be such a distinction anyway.

From the formal language point of view however, it is interestin g to see whether this

distinction actually increases the expressive power. In thiscase the second option to

freely specify the nature of the functor seems to be the more reasonable one. If we are

interested in decisive statements about the expressive powerof the formalism as such,

we should go for the option which maximizes the expressive power. For this reason I

will choose the second alternative and assume that – given a signature – we are free to

treat a functor as �xed-scopal or �oating-scopal.

For the case of �nding a counterexample, using this second option means that we have

to ensure that the counterexample remains one forany selection of �xed-scopal functors.

Such a counterexample is not hard to �nd. Supposing an appropriate signature, recall

the counterexample (4.62) for Hole Semantics, which is repeated here:

(4.82) P = {fghx ; hgfx }

The reasoning for showing that P cannot be licensed byM is very similar to the case

of Hole Semantics (in particular Hshare) due to the resemblance of the two form cri-

teria. Assume that there is an MRS structurem = 〈⊤; C; E 〉 that licenses P. Setting

Γ = {f ; g; h; x}, the set of EPs looks as follows, according to the �rst point of the Form

Criterion 4.28.

E =
�

l f : f (v1) | f ∈ Γ
	

where v1 is either of the form hf
1 or lg for some g ∈ Γ

The question, which of the EPs has argumentsv1 of the form lg can be settled by applying

the second point of the criterion. We only need to compute the intersection of the i -

dominances. Obviously we have

(4.83)
\

� 2 P

/ 1
� = ∅:

With the second point of the Lemma we can now conclude that none of the v1 can be

of the form lg. Thus E = E � is the set of EPs, where all holes and labels are mutually

distinct.
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Concerning the constraints, we have shown in Section 4.4.3 on theincompleteness of

Hole Semantics that the intersection of plugging dominancesin (4.64) is such that the

maximal set CP of constraints (4.65) in this intersection is as follows:

(4.84) CP =
�

hf
1 ≤ lx; hg

1 ≤ lx; hh
1 ≤ lx; ⊤ ≤ l f ; ⊤ ≤ lg; ⊤ ≤ lh; ⊤ ≤ lx

	

Note that the constraints of Hole Semantics are of the same form as the constraints of

MRS (relating a hole to a label) and thus the setCP is the maximal set of constraints for

both approaches. Unfortunately this set of constraints is alsovacuous for MRS, i.e. the

constraints are ful�led by any term in [Γ]. Therefore we have againLMRS(〈⊤; E � ; CP 〉) =
[Γ].

Recall that the qeq-restriction of a relation is just a subset of the original relation. In

particular, this holds for the intersection of the plugging do minances and thus we have

(4.85)
\

� 2L MRS(m)

/ qeq
p�

⊆
\

� 2L MRS(m)

/ p�

for any choice of �xed-scopal functors (where equality holds i f none of the functors is

�xed-scopal). Therefore we can conclude that C ⊆ CP . Applying the monotonicity

Lemma A.13 we get the same contradiction as in the case of Hole Semantics.

(4.86) [Γ] = LMRS(〈⊤; E � ; CP 〉 ⊆ LMRS(〈⊤; E � ; C〉) = P ⊂ [Γ]

Hence we can conclude that there is no underspeci�ed representation of M that licenses

P, which proves the expressive incompleteness of the MRS approach.

Theorem 4.29
M is not expressively complete.

Again, the same reasoning can be applied to show that the corresponding sets P0 =
{gfhx ; hfgx } and P00= {ghfx ; fhgx } cannot be licensed in M. Furthermore we can

derive the same result concerning the supersets ofP. Adding additional terms would

only make the involved intersections smaller. As
T

� 2 P / 1
� = ∅ already and CP is vacuous

w.r.t. the entire set of terms in [Γ] the addition of further terms to P would not change

this. Therefore no superset ofP (and P0 and P00) except for [Γ] can be licensed byM.

As in the case of Hole Semantics (cf. Section 4.4),M fails to provide representations

for more than half of the sets of readings with functors Γ. In particular, MRS also

fails to provide a representation for the �ve readings of the cont extually disambiguated

chocolate company example (3.22) from Section 3.3.2. Recall that this set of readings
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was encoded by the set of terms

(4.87) Q = {fghx ; fhgx ; hgfx ; ghfx ; hfgx };

which comprisesP (as well as P00). Furthermore, M cannot license the setR encoding

the four readings of sentence (4.69) from Park (1995)

(4.88) R = { t (d(r ); m(s)); d(t (r ; m(s)); m(t (d(r ); s)); m(d(t (r ; s))) }:

This can be seen straightforwardly by inspection of the maximal set of constraints CR

which have been shown to be vacuous w.r.t. the elements of[Γ] in Section 4.4.3. Again

we found fairly simple counterexamples to expressive completeness of the approach

under investigation.

4.5.4 EP Conjunctions in MRS

Copestake et al. (1999) devise a method for grouping EPs together by allowing them

to share the same label. Those so-calledEP conjunctionsare translated using the FOL

conjunction connective ∧. For instance, the MRS structure from (Copestake et al., 1999,

p.6, (18b))

(4.89) 〈⊤; {h1 : every(x; h3; h5); h3 : dog(x); h7 : white(y); h7 : cat(y);

h5 : some(y; h7; h4); h4 : chase(x; y)}; ∅〉

is taken to stand for the FOLGQexpression

(4.90) every(x; dog(x); some(y; white(y) ∧ cat(y); chase(x; y)))

representing the universal wide scope reading ofEvery dog chases some white cat.The

EPsh7 : white(y) and h7 : cat(y) share the same labelh7 and are translated using the

conjunction ∧.

In this section I will show how this extension can be incorporated into the formal de�n-

itions of the preceding sections and discuss problems with EP conjunctions that cannot

be easily reconciled with a general approach of underspeci�cation of arbitrary object

languages.

First, I will generalize the translation of Copestake et al. (1999) somewhat and de�ne

that those EPs with shared labels will be interpreted via some binary functor ⊗ of the

signature Σ. For instance if l : f (: : :) and l : g(: : :) share the same labell , they will be

taken to represent f (: : :) ⊗ g(: : :) (using in�x notation). Therefore, the translation of
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a scope-resolved MRS structure will yield a tree in[Γ(E ) ∪ {⊗; : : : ; ⊗}], i.e. a tree that

consists of the functors mentioned in the EPs and some additional number of the bi-

nary 'conjunction' functor ⊗, due to possibly occurring EP conjunctions/shared labels.

The translation � of scope-resolved MRS structures into terms of the object language in

De�nition 4.26 can be adapted as follows to cope with EP conjunctions.

De�nition 4.30
Let m = 〈⊤; E; C 〉 be a scope-resolved MRS structure and let⊗ be that functor in Σ that

is used to interpret EP conjunctions. Then

(4.91) � : RVar(E ) ∪ {⊤} −→ [Γ(E ) ∪ {⊗; : : : ; ⊗}]

is de�ned as follows:

1. � (h) = x iff h : x ∈ E

2. � (h) = (f 1 (� (h11); : : : ; � (h1m1 )) ⊗ : : : ⊗ f n (� (hn1); : : : ; � (hnm n )))

iff h : f i (hi 1; : : : ; him i ) ∈ E (1 ≤ i ≤ n)

I deliberately phrased the translation of EP conjunctions without any particular bracket-

ing of the ⊗ to indicate the nondeterminism that is involved here.

As has been pointed out above, EP conjunctions cause certain problems. The �rst con-

cerns the dominance relation and the constraints. As EP conjunctions are translated

using a binary functor ⊗ by � , the dominance relations of the resulting tree will look

different from what can be read off the MRS structure. This poses a problem in eval-

uating constraints as follows: Take an MRS structure containingtwo EPs l : f (: : : h : : :)
and l : g(: : : h0: : :) sharing the same labell and the constraint12 l =q h. Considered sepa-

rately, the �rst EP ful�ls the constraint and the second EP does not, becausef but not g

dominates h. However, technically speaking the constraint is ful�lled b y the second EP

as well just because it shares its label with the �rst EP. What basically happens by form-

ing EP conjunctions, is a transition from two separate EPsl : f (: : : h : : :) and l : g(: : : h0: : :)
to one new, complex EPl : ⊗ (f (: : : h : : :); g(: : : h0: : :)). In EP conjunctions such as this

one, there is therefore no possibility to restrict dominance for the conjuncts separately

but only for the entire conjunction. This is one unattractive f eature of EP conjunctions.

But there is still a more substantial problem. The translation of EP conjunctions using

a binary functor ⊗ is dependent on the interpretation of ⊗ in the object language: the

operation denoted by ⊗ has to be associativeand commutative, i.e. it has to hold that

certain expressions are somehow regarded asequivalenton the object level. To see why

12As constraints are of the form hole =q label we have to assume thatl occurs also as a hole andh as a
label in some other EPs. This has no impact on the presented argument.
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this is indeed important, consider an EP conjunction of three EPsl : x, l : y, and l : z. As

indicated above, this EP conjunction will be translated using the binary functor ⊗. But

there are several ways to do so: the EP conjunction could be translated as ((x ⊗ y) ⊗ z),
or as ((y ⊗ x) ⊗ z)), or as (x ⊗ (y ⊗ z)), etc. This means that there are several translations

in the object language for one expression of the meta-language. Strictly speaking, this

means that the MRS meta-language isambiguous. This of course is unacceptable for

a formal representation language. We can only overlook this shortcoming, if we know

that those expressions are somehow regarded as equivalent on theobject level, i.e. if ⊗
is associative and commutative. In this case, we could freelychoose any order of the

EPS and any bracketing of the⊗ terms, knowing that all terms are equivalent in some

respect.

Copestake et al. (1999) do not encounter this problem as they use FOLGQ as object

language. They translate EP conjunctions usingFOL conjunction ∧ which is indeed as-

sociative and commutative according to the standard semantics of FOL. But as this is

clearly a very strong dependence on the object language13, sharing labels and EP con-

junctions can hardly be reconciled with the general view of abstract signatures pursued

in this thesis. For this reason EP conjunctions have been set aside in the discussion about

MRS.

4.6 The Unbound Variable Constraint

In this section I shall brie�y discuss a type of general and implicit constraint that may

be employed to restrict the set of represented readings further. It can be termed the

Unbound Variable Constraint(cf. Park, 1995) and has been discussed �rst in Hobbs and

Shieber (1987). As Hobbs and Shieber (1987) point out, the naive permutation of

quanti�ers for a sentence with embedded NPs such as (3.18) (repeated here as (4.92))

generates a logical formula (4.93), in which a variable occurs free.

Two representatives of three companies saw most samples.(4.92)

two(x; rep of(x; y); most(z;samp(z); three(y; comp(y); saw(x; z))))(4.93)

In the formula above the �rst occurence of y in rep of(x; y) is free as the corresponding

quanti�er three takes scope belowmost. For this reason, it has to be ensured that these

kind of illicit formulas are not produced in the course of the construction of the inter-

mediate logical representations. For instance, Cooper Storage in its original formulation

(Cooper, 1983) suffered from this problem which was the reason for Keller (1988) to

13in fact on the interpretation of the language
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extend Cooper Storage with nested storage structures.

For underspeci�ed representation formalisms this imposes an extra requirement on li-

censing. It has to be ensured that no readings are licensed that contain unbound vari-

ables. In Minimal Recursion Semantics this constraint is explicitly mentioned in Copes-

take et al. (1999) and formalized in the version of MRS de�ned in F uchss et al. (2004).

For each variablex occurring in some EPl : f (: : : x : : :), there must be an EPl0: Qx (h1; h2)
corresponding to a quanti�er Q binding x such that this latter EP dominates the former.

If this information is made explicit in the MRS structure, for ins tance as a new type

of 'binding constraint', the licensed formulas would indeed be ensured to exhibit only

bound variable occurrences.

Although this requirement may be important in practice, it is less important in the con-

text of the discussion on expressive power as it affects all formalisms alike. For instance,

one could simply realize the unbound variable constraint as an additional �lter on the

readings that are licensed by each formalism. Given a de�nition of the licensing relation

L of some formalism one could de�ne a re�ned version L0 that rules out terms with

unbound variable occurrences.

(4.94) L0(u) = {� | � ∈ L(u) and � does not contain unbound variables}

Even more important for the present discussion is the fact that the unbound variable

constraint does not help to achieve expressive completeness for any of the formalisms

discussed above. Recall that none of the formalisms provided arepresentation for the

set

(4.95) Q = {fghx ; fhgx ; hgfx ; hfgx ; ghfx }

corresponding to the readings of the contextually disambiguated chocolate company

example (3.22) from Section 3.3.2 (repeated here as 4.96)

(4.96) Every marketing manager showed �ve sales representatives a sample.

First note that 4.96 is a simple sentence containing a ditransitive verb and three quan-

ti�cational NPs that provide the arguments of the verb. In partic ular, there are no em-

bedded NPs that caused the problems in the case above. Thereforethere is no way that a

formula containing an unbound variable could be generated. In this example, unbound

variables occur only in the representationshowed(x; y; z) of the verb. But due to the fact

that all involved NPs are arguments to this verb, this representation must necessarily be

dominated by all quanti�ers (in different orders). This can be rea d off the abstract term

representation as well. There are three unary functorsf , g, and h but only one constant
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x, which therefore must necessarily be dominated by all those functors.

Due to the abstract approach I pursued here, it is not even necessarythat f , g, and h

correspond to quanti�ers as they can be seen as abstract representations of any other

unary scope taking element such as negation, modalities, etc. As I have pointed out in

Section 3.5, an abstract set of terms such asQ above stands for an entire pattern of

ambiguity, for instance for some set of readings of a sentencesuch as (4.97) (where the

unary scopal elements have been underlined).

(4.97) John probably did not want to leave.

For instance, identifying f with probably, g with not, h with want and x with leave, the

term fghx stands for the reading

(4.98) probably(¬want(j; leave(j)))

There is no quanti�cation involved in this case and hence the readings of this sentence

are not subject to the unbound variable constraint. The failure to license a set of terms

(such asQ above) proves the lack of a formalism to represent an entire class of readings,

only some of which may contain quanti�cational elements. He nce the unbound variable

constraint does not have an impact on the discussion on expressive completeness.

4.7 Other Approaches

After the detailed investigation of three variable/constraint approaches in the preced-

ing sections, I shall brie�y discuss the expressive completeness of a few other under-

speci�cation formalisms in this section. First, I will discus s Underspeci�ed Discourse

Representation Theory (UDRT) which I also counted among the variable/constraint ap-

proaches. However, due to its close resemblance to Hole Semantics, the investigation

of its expressive power can be held rather short. Furthermore, I will informally discuss

three approaches that differ in basic concepts from the variable/constraint approaches,

namely the tree description approaches of Kallmeyer (1999) and Muskens (2001) and

the Glue Semantics approach employed in LFG.

4.7.1 UDRT

Underspeci�ed Discourse Representation Theory (UDRT; Reyle, 1993) was one of the

�rst approaches to underspeci�ed representations. As the name indicates, the UDRT

formalism constrains the combination of Discourse Representation Structures (DRSs)
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(Kamp and Reyle, 1993) and is hence con�ned to the language of DRT as object lan-

guage. Therefore my general de�nition of expressive completeness is not straightfor-

wardly applicable to UDRT. However, with respect to the de�niti on and interpretation

of the constraints, UDRT is similar to Hole Semantics.

The constraints utilised for underspeci�cation in UDRT are of th e form l ≤ l0, expressing

the requirement that the DRS labeled with l has to be subordinate to the DRS labeled

with l0. Reyle (1993) requires the set of labels to form an upper semi-lattice with top

element under ≤. This corresponds to the de�nition of the ≤ constraints in Hole Seman-

tics. In fact, Bos (1995) illustrates Hole Semantics' independence of an object language

by using the language of DRT as object language. With respect tothe constraints and

their interpretation, the resulting formalisms (which he calls DRT Unplugged) resembles

closely the original UDRT de�nition from Reyle (1993).

The following example illustrates a UDRS representation that represents the entire set

of six possible readings for the sentence

(4.99) Every marketing manager showed �ve sales representatives a sample.

The representation consists of tree components: an empty top DRS with a label l0 that

serves as the top element of the constraint lattice14, a set of labeled DRS conditions

that describe the involved DRSs, and the set of constraints, whereI only state those

subordination constraints that are not implicit in the DRS condit ions or the transitive

closure. For instance, it also holds thatl2 ≤ l1 as the DRS labeledl2 is subordinate to

the DRS labeledl1, because it occurs as the premise of the complex conditionl2 ⇒ l6 of

l1.

〈l0; { l1 : l2 ⇒ l6; l2 : x; l2 : manager(x); l3 : Y; l3 : salesrep(Y ); l3 : l4 ⇒ l7);(4.100)

l4 : y; l4 : y ∈ Y; l8 : z; l8 : sample(z); l5 : show(x; y; z) };

{ l1 ≤ l0; l3 ≤ l0; l8 ≤ l0; l5 ≤ l6; l5 ≤ l7; l5 ≤ l8 } 〉

This UDRS example becomes more perspicuous when illustrated graphically as in Figure

4.2.

Due to the equivalence of the≤ constraints and their interpretations in both approaches,

UDRT suffers from the same weakness w.r.t. expressive power, i.e. itfails to represent

certain patterns of ambiguity. For instance, the set of �ve readings of the contextually

disambiguated chocolate company example from section 3.3.2 cannot be represented

by the UDRT approach, as the subordination information common tothe DRT represen-

tations of these �ve readings is not suf�cient to rule out the un wanted reading. More

14In Reyle (1993) the top element is not explicitly stated as a separate component, but can be recovered
from the constraint lattice.
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l0:

l1:

l2:

x

manager(x)
=⇒

l6:

l3:

Y

salesrep(Y )
|Y | = 5

l4:

y

y ∈ Y
=⇒

l7:

l8:

z

sample(z)

l5:

show(x; y; z)

Figure 4.2: Graphical illustration of (4.100)

precisely, UDRS allows for sharing of meta-variables (i.e. DRS labels) and hence it is

equivalent in expressive power toHshare if we restrict ourselves to the object language

of DRT. Therefore the UDRT approach fails to provide UDRS representations for the

same sets of readings that are problematic forHshare .

4.7.2 Tree Description Approaches

(Kallmeyer, 1999). In (Kallmeyer, 1999) a (model-theoretic) description-based ap-

proach to underspeci�cation is pursued. Tree Description Grammarsshare the view that

the linguistic objects under consideration are to be describedin some logical language,

i.e. that they are the models of formulas stated in some logic15. Kallmeyer chooses a

quanti�er-free �rst order logic for describing trees, where the lan guage contains (among

other non-logical constants, e.g. for attributes and values) the predicate symbols/ (for

immediate dominance), / � (for dominance), ≺ (for precedence), ≈ (for equality) for

talking about the con�guration of nodes in a tree (cf. Kallmeyer, 1999, pp.159f). Fur-

15Prominent proponents of description-based approaches to syntax includeVijay-Shanker (1992) and
Rogers (1994), for instance.
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thermore, Kallmeyer uses complex attribute-value structures as labels of the trees. Sat-

isfaction is then de�ned w.r.t. labeled trees (Kallmeyer, 1999, De�nition 7), where the

free variables of the formulas are implicitly existentially bou nd.

The language is de�ned over the logical connectives∨, ∧, ¬. However, although she

de�nes the semantics and a calculus for the full language, the de�nition of a description

' used in a tree description grammar is restricted such that '' does not contain any nega-

tions or any disjunctions' (Kallmeyer, 1999, p. 172, De�nition 20, item 3.). Disregarding

the formulas talking about the complex labeling of the trees, this restricts the available

tree descriptions to conjunctive formulas over the predicate symbols /; / � ; ≺, and ≈.

Due to the restriction of descriptions to only positive and conjunctive information it

seems that this approach runs into the same problems as all the other approaches dis-

cussed above. For instance, as I have shown in Section 4.3, thedominance information

common to the trees in P = {faes ; feas ; eafs ; aefs ; afes } is not enough to rule out

the term efas . In other words, a positive, conjunctive formula that re�ects o nly the

dominance information about / , / � , etc. common to the elements in P cannot exclude

the term efas as this term also shares this information. Note that the additional rela-

tion of precedence≺ does not help here, as the common precedence information is nil.

Using the notation from Section 4.3, ≺� = ∅ for each � ∈ P and hence≺P = ∅. There-

fore P constitutes a counterexample to the expressive completenessof the approach of

Kallmeyer (1999).

Muskens (2001) de�nes another tree description approach that resorts to a full �rs t-

order language16, extending the earlier versions in (Muskens, 1995) and (Muskens,

1999). As means for talking about the structure of trees, Muskens (2001) employs

dominance (/ , / + , / � ) and precedence predicates≺. Due to the presence of disjunction,

it is in principle possible to achieve expressive completeness, although Muskens (2001)

neither elaborates on underspeci�cation beyond a very simple example nor discusses

constraints on readings at all. I will not go into further detail about the approach, but

defer a discussion of expressively rich languages to Chapter 7, where another �rst-order

system for underspeci�cation, namely the PTCT approach of Fox and Lappin (2005a,b),

is investigated thoroughly.

16In particular, it contains an axiomatization of trees close to the one of Backofen et al. (1995)
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4.7.3 Glue Semantics

Crouch and van Genabith (1999) show how the Glue Semantics approach of LFG natu-

rally leads to underspeci�cation 17. In Glue Semantics, the assembly of semantic meaning

representations is controlled by formulas of linear logic, the glue language(Dalrymple

et al., 1995). Dalrymple et al. (1997) show how different readings o f scopally ambigu-

ous sentences can be assembled through different derivations from the same set of glue

language premises. As Crouch and van Genabith (1999) elaborate, the order in which

meaning representations of quanti�cational NPs are used in the derivation process cor-

responds to the order in which they take scope in the �nal meaning representation of the

sentence. Therefore, imposing constraints on the possible derivations (i.e. on the order

in which the NP meanings are used) is a means to constrain the generated readings.

Whether this leads to an expressively complete formalism hinges on the choice of con-

straints on derivations. For instance, Crouch and van Genabith(1999) mention that one

could translate the glue language derivation node orderings into UDRS label orderings,

which has been realised in (Crouch et al., 2001). However, this would not lead to an

expressively complete formalism, but to one which is restricted in expressive power in

the same way as UDRT (and henceHshare , cf. Section 4.7.1).

4.8 Summary

In this chapter I have discussed the expressive incompleteness of various underspec-

i�ed representation formalisms. In particular, the four promine nt variable/constraint

approaches introduced in Section 1.2 have been shown to be incapable of representing

certain patterns of ambiguity.

All four approaches fail to provide representations for the contextually disambiguated

chocolate company example, which has been used in Section 3.3.2 to illustrate patterns

of ambiguities that may arise due to contextual disambiguation. Furthermore, Hole Se-

mantics H (and its variant Hshare with shared meta-variables) and Minimal Recursion

SemanticsM cannot represent the isolated sentence example of Park (1995) from Sec-

tion 3.3.1. In fact, there is a whole range of non-representable patterns for H and M,

namely the supersets ofP = {fghx ; hgfx } (excluding the full set of possible readings

[{f ; g; h; x}]).

This settles the so-far open question18 about the expressive completeness of these for-

malisms. At the same time it raises questions about their adequacy as representation

17see e.g. (Dalrymple, 2003) for a recent introduction to LFG and Glue Semantics
18cf. König and Reyle (1999)
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approaches. I will take up this question after elucidating the relationships of the vari-

able/constraint formalisms w.r.t. expressive power in the next chapter.



Chapter 5
A Comparison of Expressive Power

In this chapter I will investigate the relationship between t he variable/constraint for-

malisms that have been investigated in the preceding chapter. Due to the resemblance

of the de�nitions of labeled parts and constraints on one side, and the different ways of

evaluation of those constraints on the other, the results of a comparison are not obvious.

However, from the discussions of the preceding chapter one mayhave some intuitions.

The Hole Semantics formalismH seems to be the simplest approach, allowing for only

one type of constraint, interpreted by dominance. Its cousinHshare seems more powerful

as it allows for shared meta-variables in the labeled formulas.Shared meta-variables are

also allowed for in the NDC approachN and Minimal Recursion SemanticsM, but each

of these two formalisms brings in some additional feature. N employs a second type of

constraint, interpreted as inequality of tree nodes, so it is reasonable to assume that it

is more powerful then H and Hshare . M employs a more re�ned version of dominance,

namely qeq-dominance. Therefore it may be more powerful then H and Hshare although

it is not obvious how it relates to N . Finally, as I have argued in Section 4.7.1, UDRT

is restricted to DRT as the underlying object language but has in principle the same ex-

pressive power asHshare due to the identical interpretation of the constraints. Therefo re

I will not go into further detail about UDRT in the following inv estigation.

In the subsequent sections I will give formal proofs that theseintuitions are correct by

elucidating the relations between the formalisms in detail. More precisely, I will de�ne

a translation from one formalism (e.g. H) into another formalism (e.g. N ) and show

that this translation preserve licensing. So for each USR ofH that licenses some set, the

translation of the USR is a NDC which licenses the same set inN . This shows that N is

at least as expressive asH, because it can license at least the sets that are licensed byH.

Note that this translation is actually enough for deriving the expressive incompleteness

99
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of H once the expressive incompleteness ofN is established. IfN is expressively incom-

plete and fails to license some setP, then H also fails to licenseP, as otherwise the USR

of H for P could be translated into an NDC for P. However, such a reduction argument

would give us only the statement of incompleteness and no precise result about the set

of readings which cannot be licensed byH. In addition to the translations, such results

are necessary to show thatN is strictly more expressive thanH. A counter-example set

that can be licensed byN , but that cannot be licensed by H will prove this. For this

reason, separate Form Criteria have been derived for each of the three formalisms in the

preceding Chapter.

5.1 Translating Hole Semantics into NDCs

In order to compare Hole SemanticsH to the NDC approachN I will give a translation

† from USRs, the Hole Semantics representations, to normal dominance constraints, the

representations of the NDC approach. After showing that† preserves the licensed sets

we are able to investigate the relationship betweenH and N more closely.

Let us start with the translation of the labeled literals and the constraints of Hole Seman-

tics. As the labeled literals of the form l : f (h1; : : : ; hn) correspond exactly to the labeling

literals of the NDC approach, these can be reused without any change. The same is true

for the constraints h ≤ l , which correspond exactly to dominance literals (changing ≤ to

/ � only).

(5.1) (h ≤ l)y = h / � l

However, we have to take special care of the top hole, which mayoccur in some of those

constraints. Luckily, we do not need the top hole in the resulting NDC and thus we can

omit it together with any constraint in which it occurs.

Therefore, the translation of a set {f 1; : : : ; f n} of labeled formulas and of a set

{c1; : : : ; cn} of constraints of Hole Semantics into corresponding literals isgiven as fol-

lows, where the c1; : : : ; cm are those constraints among thec1; : : : ; cn that do not contain

the top ⊤.

{f 1; : : : ; f n}y = f 1 ∧ : : : ∧ f n(5.2)

{c1; : : : ; cn}y = cy
1 ∧ : : : ∧ cy

m

For the translation of a full USR 〈⊤; L; C 〉 of Hole Semantics we need to conjoin the trans-

lations of the labeled formulas and the constraints. However, we are not �nished yet.
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Consider De�nition 4.3, the de�nition of the normality of domin ance constraints again.

Obviously, points (N1)–(N3) will be ful�lled in the resultin g dominance constraint due

to the de�nition of USRs. What still needs to be ful�lled is (N4 ), which demands the

existence of appropriate inequality literals for all labeled variabels, i.e. labels. Therefore

we simply add the inequality literals 1

(5.3) NL :=
^

l;l 02 LVar(L );l6= l0

l 6= l0

to the conjunction of translated labeled formulas and constraints. The translation of a

full USR of H is then as follows.

(5.4) 〈⊤; L; C 〉y = L y ∧ Cy ∧ NL

Example 5.1
The translation can be illustrated with a simple USR, that has been used in Example 4.15

already:

(5.5) u =

*

⊤;

8
>>>><

>>>>:

l0 : a(h0);
l1 : e(h1);
l2 : t (h2);

l3 : c

9
>>>>=

>>>>;

;

8
>>>><

>>>>:

⊤ ≤ l0;

⊤ ≤ l2;

⊤ ≤ l3;

h0 ≤ l1

9
>>>>=

>>>>;

+

First note that the additional conjunction of inequality lit erals NL is

(5.6) NL = l0 6= l1 ∧ l0 6= l2 ∧ l0 6= l3 ∧ l1 6= l2 ∧ l1 6= l3 ∧ l2 6= l3

because the set of labels isLVar(u) = {l0; l1; l2; l3}. Then the full translation of u is as

follows:

(5.7) uy = l0 : a(h0) ∧ l1 : e(h1) ∧ l2 : t (h2) ∧ l3 : c ∧ h0 / � l1 ∧ NL

This translation preserves licensing, i.e. it holds that LHS(u) = LNDC(uy). The formally

spelled out proof shows how pluggings of H correspond to embeddings of N and is

given in Proposition A.18 in the Appendix.

The translation together with the preservation result shows that N is as least as ex-

pressive asH in the sense it has been de�ned in De�nition 2.10: Each underspeci�ed

representation of H can be translated into an equivalent underspeci�ed representation

of N .
1Obviously, we could leave out the symmetric counterparts of each pair, e.g.l0 6= l. when we already

have l 6= l0 in principle.
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To see thatN is strictly more expressive thanH consider the setP = {fghx ; hgfx } from

Section 4.4.3 again, where it has been shown thatP cannot be licensed by any USR

of H. However, P can be licensed byN as the following NDC shows (using variables

different from the standard naming scheme for simplicity):

' := X : f (X 0) ∧ Y : g(Y 0) ∧ Z : h(Z 0) ∧ U : x(5.8)

∧ X 6= Y ∧ X 6= Z ∧ X 6= U ∧ Y 6= Z ∧ Y 6= U ∧ Z 6= U(5.8a)

∧ Y 0 6= U ∧ X 0 6= Z ∧ Z 0 6= X(5.8b)

A closer inspection of' shows that indeedLNDC(' ) = P. Note that the inequality literals

in the second line (5.8a) have to be introduced to ful�l point (N 4) of the normality

De�nition 4.3, demanding that for each two distinct labeled va riables a corresponding

inequality literal must be present in the constraint. The actually restrictive literals are

the inequality literals in the third line (5.8b) that rule out the unwanted terms and leave

only those in P as constructive solutions.

Another example from Section 4.4.3 is the set

(5.9) R = { t (d(r ); m(s)); d(t (r ; m(s)); m(t (d(r ); s)); m(d(t (r ; s))) }

Recall that R encodes the four readings of sentence (4.69) from Park (1995), repeated

here as 5.10.

(5.10) Two representatives of three companies saw most samples.

The NDC which licensesR is the following

 := X : t (X 1; X 2) ∧ Y : d(Y 0) ∧ Z : m(Z 0) ∧ U : r ∧ V : r(5.11)

∧ X 6= Y ∧ X 6= Z ∧ X 6= U ∧ X 6= V ∧ Y 6= Z ∧ Y 6= U ∧ Y 6= V

∧ Z 6= U ∧ Z 6= V ∧ U 6= V

∧ X 1 / � U ∧ X 2 / � V ∧ Y 0/ � U ∧ Z 0/ � V

∧ Y 0 6= Z

Again, the inequality literals in the second and third line need to be included to ful�l

point (N4) of the normality de�nition. The fourth line contain s the dominance literals

that have been computed in Section 4.4.3 already. The graph illustrating these con-
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straints is repeated here:

(5.12) ⊤

Y : d(Y 0) X : t (X 1; X 2) Z : m(Z 0)

U : r V : s

Taking only these literals,  would license the entire set of �ve readings in [{t ; d; m; r ; s}].
The crucial literal at this point is the additional inequality literal Y 0 6= Z in the �fth

line, which states that d cannot be the mother of m. This excludes the unwanted term

d(m(t (r ; s))) and hence the following unwarranted reading.

(5.13) three(y; companies(y); most(z;sample(z);

two(x; representativeof(x; y); saw(x; z))))

and leaves only the desired four terms inR. It is striking that in ' and  above only in-

equality literals have been used to achieve this, which illustrates nicely that they indeed

increase the expressiveness of the formalism with respect toH, where no such means is

available.

Strengthening the result about expressiveness from above, we �nally get

Theorem 5.2
H @N

This concludes the discussion of the expressiveness ofH vs. N . The approach using

Normal Dominance Constraints is strictly more expressive than Hole Semantics.

5.2 Translating Hole Semantics into MRS

Translating the representations of Hole Semantics into the MRS structures of Minimal

Recursion Semantics is not too dif�cult if we grant ourselves the freedom to decide,

whether a functor is �oating scopal or �xed scopal 2. Comparing the second point of

the Form Criterion 4.17 for Hole Semantics with the third point of t he Form Criterion

4.28 for MRS, it is clear that we only have to assume that all functors are actually

2cf. the discussion in Section 4.5.3
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�oating scopal functors. In this case the qeq-restriction of any relation on meta-variables

coincides with the original relation itself. In particular, th e qeq-restriction of the plugging

dominances/ qeq
p� coincide with the plugging dominances / p� and hence MRS constraints

are evaluated the same way as Hole Semantics constraints. If wefurthermore restrict

ourselves to MRS structures in which all labels and handles are mutually different, then

the second point of the Form Criterion 4.28 does never apply and hence it coincides with

the Form Criterion 4.17 of Hole Semantics.

The following simple translation ] and the succeeding proposition make use of these

observations. The only necessary translation concerns constraints and changes≤ to =q:

(5.14) (h ≤ l)] = h =q l

Besides that, the translations leaves everything else (labeled formulas, the top hole)

untouched. On full USRs it is de�ned componentwise and elementwise on the set of

constraints:

(5.15) 〈⊤; L; C 〉] =
D

⊤; L; C ]
E

This translation preserves licensing again as the following Proposition states.

Proposition 5.3
Let u be a USR ofH. If all functors Γ(u) are considered �oating scopal in M, then

LHS(u) = LMRS(u] ).

Proof. As noted above, if all functors are considered �oating scopal, then / qeq
p� = / p� .

Furthermore, as all labels and holes are mutually distinct in u (and hence in u] ) accord-

ing to the de�nition of USRs, Form Criterion 4.28 coincides with Fo rm Criterion 4.17.

HenceLHS(u) = LMRS(u] ).

This immediately implies that H ⊑ M, i.e. that MRS is at least as expressive as Hole

Semantics. However, similar to the case of NDCs, there is an example that shows that

MRS is actually strictly more expressive than Hole Semantics. Consider the following set

of terms:

(5.16) S = {fghx ; hfgx }

In the terms of this set, f dominates g and h takes widest or narrowest scope, but not

intermediate scope. In other words h does not intervene in the dominance of f and g.

The problem for the Hole Semantics approach is that there is no means of preventing h

from intervening between the dominance of f and g and thus the unwanted term fhgx
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is among the licensed ones. This is shown in detail in Proposition A.19 in the appendix.

In the MRS approach, this of course calls for a de�nition of h as �xed-scopal functor.

Specifying that h is �xed-scopal, we can take the translation 〈⊤; L; CS〉] , which does

licenseS in the MRS approach due to the more re�ned evaluation of the constraints. To

see this, note thatCS ⊆ / qeq
p� holds for � = fghx and � = hfgx , but not for � = fhgx . In

the former two cases theqeq-restrictions on the plugging dominance / qeq
p� coincide with

the plugging dominances / p� while this is not the case with fhgx . Therefore we have

LMRS(〈⊤; L; CS〉] ) = {fghx ; hfgx }.

This example additionally illustrates, that it makes a diffe rence if we grant ourselves

the freedom to choose functors to be �xed- or �oating-scopal. I f we didn't have this

choice and h had been �oating scopal by some a priori de�nition, than we could not

have gone the way above. In this case, theqeq-constraint between f and g would have

been insensitive to any intervention of h leading to the same way of reasoning as in the

case of Hole Semantics.

However, in this particular case, we still would have another option. Note that we can

make use of the fact that meta-variables can be shared in MRS structures. As the terms

in S are the only two terms in [Γ] in which f immediately dominates g, the following

MRS structure does the job equally well:

(5.17)


⊤;

�
l f : f (lg); lg : g(hg); lh : h(hh); lx : x

	
; ∅

�

In this MRS structure the hole in the EP labeled byl f is the label lg. This causesg to

appear as daughter of f in all licensed terms. As the set of constraints is empty and

therefore poses no additional restriction on the terms, we haveLMRS( (5.17) ) = S as

desired.

These two options show that these two mechanisms – the use ofqeq-constraints vs.

sharing of meta-variables – independently increase the expressive power of an approach.

In any case they show that MRS is strictly more expressive than Hole Semantics as we

have found a set that can be licensed byM but not by H. Together with the existence

of a translation we get

Theorem 5.4
H @M
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5.3 MRS and NDCs

In this subsection I shall �nally discuss the relationship between MRS and the NDC

approach w.r.t. expressive power. As the heading already indicates, there is no interesting

relationship – neither approach is more or less expressive than the other. I will again

show this by way of example.

Recall that we have already come across a set that cannot be licensed by MRS but by the

NDC approach, namely

(5.18) P = {fghx ; hgfx }:

At the end of Sections 4.4 and 4.5, this set has been used as a counterexample to the ex-

pressive completeness of Hole Semantics and MRS, respectively. In Section 5.1 however,

the NDC approach has been shown to provide an underspeci�ed representation for this

set. We can hence conclude that MRS isnot as expressive asthe NDC approach.

On the other side we can �nd a set which can be licensed by an MRS structure but

not by any NDC. This set has to look more intricate than the previous example sets for

particular reasons. First note that M and N do not differ in the way they treat shared

meta-variables, i.e. meta-variables that occur both in a hole and label position. Those

shared variables specify the mother-daughter relations of the involved functors in both

approaches. Therefore, this feature cannot be the source of a possible difference in

expressive power. At second, note that the NDC approach cansimulate qeq-constraints

in a limited way by means of inequality literals. To see this, assume that there are three

unary functors f ; g, and h and consider aqeq-constraint f =q g where h is a �xed scopal

functor. This setting prevents h from intervening the dominance of f and g in MRS.

However, we can simulate this effect in the NDC approach by requiring h not to occur

as daughter of f . We would do this with the inequality literal hf
1 6= lh, which would give

us the same result. Alternatively, we could require h not to occur as mother of g with

hh
1 6= lg, which would again have the same effect. Therefore, in order to construct an

example that cannot be licensed by an NDC but by an MRS structure, we have to resort

to more complex terms which make it impossible to use inequalities in this way.

The terms of the counterexample setT are built on �ve unary functors and one constant

such that the functors constitute the set Γ = {f 1; g1; h1; i 1; j 1; x0}. Before I give the set

of terms, let me �rst give the MRS structure m which licensesT:

(5.19) m =
D

⊤;
n

l f : f (hf
1); lg : g(hg

1); lh : h(hh
1); l i : i (hi

1); l j : f (hj
1)

o
;
�

hf
1 =q lg

	 E

Let us take a closer look atm �rst. We start by specifying that h is a �xed scopal functor.



5.3. MRS and NDCs 107

Then the three functors f ; g and h are as mentioned in the preceding paragraph: f qeq-

dominates g, but h is such that it does not intervene in this dominance, i.e. there is a

qeq-constraint hf
1 =q lg and h is a �xed scopal functor. The functors i and j however are

�oating scopal functors and free to take scope even in betweenf and g.

Then entire set T licensed bym is as follows:

(5.20) T = { hfgijx hfigjx ; hfijgx ; hifgjx ; hifjgx ; hijfgx ;

ihfgjx ; ihfjgx ; ihjfgx ; ijhfgx ; ijfghx ; ifjghx ;

fijghx ; ifgjhx ; figjhx ; fgijhx ; ifghjx ; fighjx ;

fgihjx ; fghijx ; hfgjix ; hfjgix ; hfjigx ; hjfgix ;

hjfigx ; hjifgx ; jhfgix ; jhfigx ; jhifgx ; jihfgx ;

jifghx ; jfighx ; fjighx ; jfgihx ; fjgihx ; fgjihx ;

jfghix ; fjghix ; fgjhix ; fghjix }

Note that the terms of T are those terms of[Γ] in which

1. f occurs before/dominates g,

2. h does not occur betweenf and g, and

3. i and j occur at any possible place.

Now suppose we want to simulate this behaviour in the NDC approach and consider

the term fihjgx =∈ T. In this term h intervenes the dominance of f and g and thus it

is not licensed by m. But note that h is neither the daughter of f , nor the mother of g

and thus specifying corresponding inequality literals as mentioned above would not rule

out this term in the NDC approach. So we may be inclined to state similar inequality

literals stating that h may not occur as the daughter ofi or the mother of j . This would

certainly rule out this term, but also other terms such as ihfgjx or ifghjx , which are in

T, i.e. licensed bym. Either way, it is not possible to simulate the qeq-dominance in this

case andT cannot be licensed by any NDC. This is shown formally by using the Form

Criterion for NDCs in Proposition A.20 in the Appendix.

As MRS provides a representation forT, we can conclude that the NDC approach isnot

as expressive asMRS. Together with the observations from exampleP above this gives

us the following result.

Theorem 5.5
N 6⊑ M and M 6⊑ N .

There are sets of tems which show that the NDC approach and the MRS approach are

incomparable w.r.t. their expressive power.
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5.4 The Common Sub-Formalism

In this section I will �nally focus on the common core of all thre e formalisms. Let us

therefore take a closer look at Hshare again, which extends H by allowing for shared

meta-variables as discussed in section 4.4.4.

Concerning the relation between H and Hshare it seems clear that Hshare is more ex-

pressive thanH as it adds an additional mechanism of sharing meta-variables which has

been shown in Section 5.2 to increase the expressive power. Notethat the MRS structure

(5.17) from that section (repeated below)

(5.21) u =


⊤;

�
l f : f (lg); lg : g(hg); lh : h(hh); lx : x

	
; ∅

�

is also a well-formed USR ofHshare . If we use the adapted de�nitions for licensing for

Hshare from Section 4.4.4 we see immediately that u licenses the setS = {fghx ; hfgx }.

This set has been shown to be not representable inH (see Proposition A.19) and there-

fore we have

Theorem 5.6
H @Hshare

Again we see that sharing of meta-variables properly increases the expressive power of

a formalism.

Concerning the comparison ofHshare with N we get the same result as forH. Because

the NDC approach also allows for shared meta-variables, we can re-use the transla-

tion †, which translates USRs ofH into normal dominance constraints. Furthermore,

Proposition A.18 showing that † preserves licensing remains valid. HenceN is at least

as expressive asHshare . On the other side, recall that Hshare can not license the set

P = {fghx ; hgfx } (see Section 4.4.4), which can be represented by the NDC in (5.8).

Altogether we get that N is strictly more expressive thanHshare .

Theorem 5.7
Hshare @N .

The comparison ofHshare with MRS is also straightforward. Here, the translation ] and

the Proposition 5.3 showing that licensing is preserved can be reused as well. Further-

more, Hshare cannot license the setT from the preceding chapter asT could not even be

licensed by the more powerful N . Therefore M is strictly more expressive thanHshare .

Theorem 5.8
Hshare @M.
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A closer look at the Form Criteria of Hshare and N shows that if we restrict the latter

formalism to labeling and dominance literals only (i.e. if we do not allow for inequality

literals) then the resulting variant of N is as expressive asHshare . The same holds for

a restricted version of M if we drop the �xed-/�oating-scopal distinction. Therefore

Hshare can be regarded as the formalism both approaches have in common.

5.5 Conclusion

5.5.1 Related Work

Koller et al. (2003) compare Hole Semantics to Normal Dominance Constraints and

claim that H and N are equivalent (their Theorem 4). As we used the exact same de�ni-

tion for NDCs as Koller et al. (2003), Theorem 5.2 from above provestheir result wrong

as we found sets that could be licensed byN but not by H. To save the equivalence

between Hole Semantics and Normal Dominance Constraints, Koller (2004) changes the

de�nition of normality such that an inequality literal X 6= Y occurs in a normal domi-

nance constraint if and only if X and Y are distinct labeling variables (Koller, 2004, p.

75, De�nition 5.4). Essentially, this deprives N of the possibility of constraining rep-

resentations by inequalities as those are completely determined by the labeling literals

according to the amended de�nition. As inequality literals we re the decisive feature

that allowed us to establish the difference between N and H, it is not surprising that

this restriction of the normality de�nition works towards establ ishing the equivalence

of the two formalisms. In fact, as I have pointed out in the preceding section on the

common sub-formalism, the equivalence actually holds between N without inequalities

and Hshare (instead of H) due to the fact that N allows for shared meta-variables.

In Niehren and Thater (2003) the authors compare a restricted version of MRS to the

approach using Normal Dominance Constraints. They restrict the de�nition of MRS such

that it does not make use of EP conjunctions and interpretsqeq-constraints as standard

dominance constraints, i.e. without distinguishing �xed from �oating scopal functors.

The focus of the work in Niehren and Thater (2003) lies in the ide nti�cation of sublan-

guages of MRS and NDCs (callednets) such that the solutions of the two approaches

correspond in certain respects. In this Chapter, I was rather interested in the expressive

power of the language of MRSwith the qeq-distinction 3. The results above show that this

distinction actually yields an increase in expressive power, but that it can be simulated

in the NDC approach (with proper inequality literals) to a certain limited extent.

3but without EP conjunctions
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5.5.2 Summary

In the foregoing section I have derived several Theorems comparing three prominent

approaches to underspeci�cation. The formalisms which have been investigated are the

following:

M Minimal Recursion Semantics4

N Normal Dominance Constraints5

H Hole Semantics

Hshare Hole Semantics with shared meta-variables

The results can be summarized graphically as in Figure 5.1, where the different ap-

proaches are ordered with respect to their expressive power with the more expressive

ones on top. I have been able to derive that Hole SemanticsH is strictly less expressive

M N

Hshare

H

Figure 5.1: Comparing the Expressive Power of URFs

than Minimal Recursion SemanticsM and Normal Dominance ConstraintsN . The latter

two are incomparable w.r.t. expressive power as neither of them ismore or less expres-

sive than the other approach. I furthermore identi�ed a common 'c ore' URF: This URF

can either be de�ned by extending Hole Semantics such that it allows for the sharing

of meta-variables in the 'parts' (Hshare); or by restricting Minimal Recursion Semantics

such that constraints are interpreted as 'standard' dominance constraints insensitive to

intervening functors; or by restriction of the NDC approach such that no inequality lit-

erals are used. This shows, that all these features (sharing of meta-variables/sensitivity

of constraints to intervening functors/inequality constraints ) independently increase the

expressive power of a URF and that neither can be 'simulated' byany of the others. It

furthermore shows that the different modes of evaluation – satisfaction vs. plugging

parts vs. equating variables – are essentially the same.

4without EP conjunctions
5with proper inequality literals
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5.5.3 Discussion

Considering the differences in expressive power of the formalisms discussed above, one

may wonder which one is best suited for the underspeci�cation of the scope ambigui-

ties of natural language. As I have argued in Chapter 3, none of them is due to their

expressive incompleteness.

In Chapter 4, I have given examples of fairly simple patterns ofambiguities that cannot

be represented by some formalisms. Those examples have been strikingly simple, as vir-

tually all of them contained only three unary functors, i.e. scope-taking elements. Hole

Semantics and MRS (and even NDCs in their restricted version without inequalities)

have been shown to be incapable of representing more than half ofthese simple sets of

readings involving three scope-taking elements. Bos (2002) is aware of this limitation

of his formalism as he states that

'However, neither PLU [Predicate Logic Unplugged—CE] nor any of the

constraint-based formalisms is able to representany subset of readings.'

(Bos, 2002, p.38, Bos' italics)

He continues with an example that essentially corresponds to the counterexample set

P = {fghx ; hgfx }, but does not discuss the limitation of his system any further. Other

approaches do not touch the issue of expressive completeness at all.

The question that arises is:

Why is the failure to license certain sets of readings so little of a problem that

it does not need to be discussed or solved?

Due to the lack of answers, I can only speculate about potentialones.

A: The ambiguities encoded in those sets cannot occur in naturallanguage.

Q: Then, what are the sets that actually do occur? As I have pointed out in Chapter 3,

this answer implies the claim that natural language is so well-behaved that certain

ambiguities cannot be produced, i.e. neither by isolated sentences nor by entire

discourses. Why should discourse be so well-behaved? What are the regulating

factors that restrict disambiguation in context that support such a claim?

A: The underlying factors are not clear yet, but there is empirical evidence because no-

body has ever encountered these 'weird' patterns of ambiguity.

Q: As I have mentioned in 3.4, I am not aware of any considerable empirical work on

the actually occurring patterns of ambiguity. Without such work , how could one

talk about never encountering certain patterns of ambiguity?
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A: For instance, large-scale grammar systems have been devised that provide full-�edged

analyses for a wide range of natural language expressions. A careful study of these

analyses shows that only certain patterns of ambiguity arise.

Q: The semantics component of such large-scale grammar systemsis surely based on

some formalism. Obviously, the system will therefore never produce any pattern

of ambiguity that cannot be licensed by that formalism. More to the point, one

cannot evaluate the formalism by looking at it alone without re ference to some

independentlygathered data, nor can one derive any results about the actually

occurring patterns of ambiguity within an expressively incomplete formalism6.

There is another way of answering the initial question above.

A: The ambiguities encoded in those sets actually occur, but aredealt with differently in

systems for computational semantic analysis.

B: How would one detect that such a case arises, i.e. that the sentence under consid-

eration is ambiguous between readings that cannot be represented? For instance,

consider a system which is based on MRS and assume that it receives Park's sen-

tence (3.18) as input.

(5.22) Two representatives of three companies saw most samples.

Most likely, it will not stop with an error but silently produce t he wrong result,

namely an MRS licensing the entire set of �ve readings (of which actually only

four are available, as Park (1995) argues). How could this case be distinguished

from one where this �ve-fold ambiguity actually occurs?

Yet another objection is the following.

A: Patterns of ambiguity for sentences are simpler and can be represented by the for-

malisms. Disambiguation by discourse or context is a different matter and does not

involve the representations.

Q: The �rst part of the �rst sentence of this answer may well be true . As I have

pointed out in 3.3.1, the patterns of ambiguity arising from isola ted sentences may

indeed be restricted due to systemic restrictions such as scope island constraints,

etc. Nevertheless, this leaves the question what the actually occurring patterns

of ambiguity for isolated sentences are. For instance, Park'sexample (3.18) is an

isolated sentence, which needs to be represented.

Furthermore, to have yet another mechanism for disambiguation is a strange thing,

conceptually speaking. In such an architecture there would be three distinct levels.

6Cf. my criticism of Fuchss et al. (2004) in Section 3.4.
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The object-level of meaning representation, a meta-level of underspeci�ed repre-

sentations of ambiguities of isolated sentences, and a meta-meta-level to accom-

plish disambiguation in discourse. Why is it a better choice to have such a third

level? Moreover, what does this third level yield as result? As it does not yield

underspeci�ed representations, does it result in an enumeration of the readings

that are left after disambiguation? How could this be reconciled with the idea of

avoiding enumeration of readings and dealing with underspeci� ed representations

instead? In conclusion, if disambiguation does not operate on the underspeci�ed

representations formalism, not very much is left of its initial m otivation.

Obviously, this �nal section of the chapter raises more questions than it answers. Its

main point is to highlight the importance of a discussion about expressive completeness.

Any of the obvious objections to the de�nition or assumption on expressive complete-

ness above immediately raises further questions, which themselves have only non-trivial

answers and implications. Eventually, it is supposed to showthat it is crucial for pro-

posals of underspeci�ed representation formalisms to engage insuch a discussion and

provide answers to the questions above, in particular to the initial one.



Chapter 6
Compactness and Complexity

In Chapter 4, it has been shown that all three investigated formalisms are expressively

incomplete. The obvious question is now what a complete formalism would look like. In

the following I will discuss the naive proposal from Section 1.1.2, where a set of readings

was used to represent itself, and a straightforward expressively complete extension of

the NDC approach. At both proposals I will illustrate that their e xpressive completeness

immediately leads to a problem with the compactnessrequirement. These observations

will be used to locate the source of this problem in the Montagovian and underspeci�-

cation frameworks from Chapter 2. The following sections will t hen elaborate on these

�ndings, formalize the notion of compactness and derive a result relating it to expressive

completeness.

6.1 Two Expressively Complete Formalisms

A Naive Proposal First recall that I have already presented an expressively complete

formalism, namely the naive proposal from Section 1.1.2. There it has been proposed to

use the entire set of readings{' 1; : : : ; ' m } as an underspeci�ed representation for a set

of readings ' 1; : : : ; ' m . This formalism is obviously expressively complete: for everyset

of readings (of some term closure) there is an underspeci�ed representation licensing it

– namely the set itself. But as I have brie�y pointed out in Section 1.1.2 the reason this

approach seems so naive is its inability to avoid the combinatorial explosion problem.

The underspeci�ed representations obviously do not save any 'space' compared to a

mere listing of the readings ' 1 to ' m . Therefore the construction of the underspeci�ed

representations would take as many 'steps' as listing the entire set of readings and hence

suffer from the combinatorial explosion problem as the Montagovian/Cooper Storage

114
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approach of computing all readings separately.

Although this approach to underspeci�cation is so blatantly absurd, it illustrates one

important point. A formalism that simultaneously encodes readings does not per sedo

any better than a Montagovian/Cooper Storage. In order to evaluate whether a URF

actually solves the combinatorial explosion problem we have to compare the size of

the representationsand hence the cost of their constructionwith the cost of listing the

readings.

Adding Disjunction to N Let me illustrate this point at another example which ex-

tends the NDC approach. Taking a closer look at the incompleteness results in Chapter

4, we can identify the source of the incompleteness of the investigated approaches. All

formalisms interpret constraints conjunctively. Each tree that is licensed by some repre-

sentation must simultaneously satisfy all constraints of the representation. As a conse-

quence, each constraint is satis�ed by all of the licensed trees. This results in problems

if the trees are such that they do not have any property in common that could be spec-

i�ed by constraints. For instance, information about the domi nance of tree nodes can

be speci�ed in Hole Semantics by means of the≤-constraints. However, the information

about dominance which is common to the two terms fghx and hgfx (namely that f , g,

and h dominate x) is not enough to rule out any other term, which happens to share the

same dominance information.

A straightforward solution to this problem seems to be the introduction of disjunctive

information. Take the NDC approach, for instance, and suppose that it is extended

with a further disjunctive connective ∨ for conjoining literals. With the straightforward

extension of satisfaction

(6.1) � |=� ' ∨ ' 0 iff � |=� ' or � |=� ' 0

we get an expressively complete formalismN_ . To illustrate this, consider the contextu-

ally disambiguated chocolate company example from Section 3.3.2 again.

(6.2) Every marketing manager showed �ve sales representatives a sample.

In Section 4.3.3 it has been shown that the setP of readings in (4.28) (repeated here as

(6.3)) cannot be represented in N , the standard NDC approach.

(6.3) P = {faes ; feas ; eafs ; aefs ; afes }

However, this set can be represented inN_ by forming a disjunction of the complete

speci�cations for the terms of P. For instance, the termfaes can be completely speci�ed
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by labeling constraints which share meta-variables in a way that only licenses faes .

(6.4) L faes = X : f (Y ) ∧ Y : a(Z ) ∧ Z : e(V ) ∧ V : s

For the entire set P we only need to form a disjunction of the labeling literals L � for all

� in P. Finally, we arrive at the following dominance constraint.

' P =
�

(X : f (Y ) ∧ Y : a(Z ) ∧ Z : e(V ) ∧ V : s)(6.5)

∨ (X : f (Z ) ∧ Y : a(V ) ∧ Z : e(Y ) ∧ V : s)

∨ (X : f (V ) ∧ Y : a(X ) ∧ Z : e(Y ) ∧ V : s)

∨ (X : f (V ) ∧ Y : a(Z ) ∧ Z : e(X ) ∧ V : s)

∨ (X : f (Z ) ∧ Y : a(X ) ∧ Z : e(V ) ∧ V : s)
�

Clearly, this dominance constraint licensesP. As we can adopt this strategy of disjoining

complete tree speci�cations for any given set,N_ is expressively complete.

However, if we contrast ' P with the representation of the naive proposal from above, it

is obvious that ' P is actually a worse representation than the setP itself as it consists

of elements of decomposed versions of the terms inP. Therefore one cannot avoid

the combinatorial explosion problem in computing ' P as the representation itself is so

complex.

6.2 Combinatorial Explosion and Complexity

To illustrate the crucial point of this discussion, consider the two processing frameworks

from Chapter 2 again. In the Montagovian framework (see Figure 1.1), ambiguity re-

ceives a syntactic treatment via the Quantifying In approach (cf. Section 3.1.1). As-

suming that the syntactic analyses and the translations into the logical formulas can be

performed ef�ciently, the combinatorial explosion problem nev ertheless arises due to

the fact that these two operations have to be repeated a possibly huge number of times.

In contrast to this, only one syntactic analysis needs to be computed in the Underspec-

i�ed Processing framework (see Figure 1.2). Then the underspeci�ed representation is

constructed from this analysis. However, at this point the sameproblem arises if the

resulting underspeci�ed representation is so complex that its construction cannot be

performed more ef�ciently than the overall process of computing t he entire set of read-

ings. Therefore we may say that the combinatorial explosion problem is implicit in the

Montagovian framework due to the very design of the framework, whereas it may occur

in the Underspeci�ed Processing approach due to the de�nition of the formalism itself.
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The naive proposal and the dominance constraint' P of the disjunctively extended ap-

proach N_ are examples that cause problems in this respect. Of course there may be

'simpler' representations than ' P that license P. The question is whether it is always

possible to �nd such simple representations. In other words, the interesting quest is

not only the search for an expressively complete formalism (just take the naive pro-

posal or add disjunction to your favourite formalism) but for an expressively complete

formalism that does not suffer from the combinatorial explosion problem. So in order

to see whether a URF actually solves the combinatorial explosion problem we need to

investigate the complexity of the involved processes.

Previous Work on the Complexity of URFs Work on the complexity of underspeci�ed

representation formalisms has focussed on thesatis�ability problem of the representa-

tions, i.e. on the question about the ef�ciency of determining whether an underspeci�ed

representation licenses any term/tree at all. For instance, in Koller et al. (1998) it has

been shown that for the language of dominance constraints this problem is NP-complete.

Willis (2000) criticized the general approach to underspeci�ca tion of Koller et al. (1998)

and devised a more restrictive formalism to underspeci�cation based on the theory of

scope availability of Park (1995). Willis (2000) showed that for his approach the satis-

faction problem can be solved in polynomial time1. However, in (Althaus et al., 2001)

it has been shown how the dominance constraints can be restricted to normal domi-

nance constraints (as they have been discussed in this thesis) such that the satis�ability

problem is also polynomial.

As pointed out above, I am interested in a rather different problem, namely the problem

of ef�cient constructionof underspeci�ed representations in the light of expressive com-

pleteness. Given that the generation of readings from an underspeci�ed representation

is the process that one would like to avoid as much as possible, it is somewhat surprising

that the satis�ability problem has received so much attention , while at the same time the

construction procedure has been virtually neglected. In fact, the latter seems the more

natural process to consider if one is interested in avoiding combinatorial explosion, as

a statement about polynomial satis�ability of a representatio n does eventually not say

much if the representation itself is of exponential size w.r.t. the number of scope-taking

elements in the natural language input.

The only work on the ef�ciency of the construction process I am aware of is (Dörre,

1997). Dörre deals with the concrete problem of constructing underspeci�ed semantic

representations from parse forests and criticizes earlier work from Schiehlen (1996) on

the grounds that 'his method, however, may take time exponential w.r.t. sentence length.

1see also Willis and Manandhar (1999a,b)
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Already the semantic representations it produces can be exponentially large[. . . ] It is

therefore an interesting question to ask, whether we can compute compact semantic

representations from parse forests without falling prey to exponential explosion.' (D örre,

1997, p. 386).

The question I raised above is similar: is there an expressively complete formalisms

which does not fall prey to exponential explosion? In the foll owing sections I will give

a negative answer to this question. In other words, I will show that an expressively

complete formalism cannot satisfy the compactness requirement and hence avoid com-

binatorial explosion.

6.3 Technical Preliminaries

Before I come to a formal de�nition of the compactness requirement I will brie�y state

some fairly standard technical preliminaries, mainly to �x the n otation and introduce

the terminology.

As this chapter is about compact representations, we need to talk about the complexity of

these representations and the processing of them in some way, and this complexity needs

to be measured in someunits. Representations will simply be regarded as expressions

of some formal language. Let us specify that the symbols/lettersof the languages are

the units used for measurement. So we can measure the size of a natural language

expression in the same way. For instance, the english sentence

(6.6) This sentence has 27 units.

has 27 units (including spaces and the full-stop) and we shall say that it is of size 27.

The following USR of Hole Semantics

(6.7)


⊤; {l : f (h); l0: x}; {h ≤ l0}

�

is of size 24. Let us write |e| for the size of any expressione of some language.

Processes may operate on the expressions of these languages. For instance, the process of

Parsingin the Montagovian framework of Figure 1.1 (as well as in the Underspeci�cation

framework of Figure 1.2) can be seen as a process that maps an expression of natural

language to an expression of a formal language, which representsthe syntactic analysis.

And the process of Construction takes one formal language expression (the syntactic

analysis) to another (the underspeci�ed representation). In general, a process will map

an expression from one formal language to another. This mappingwill require a number

of stepsto be performed.
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At this point I will not specify what a stepis. The only crucial assumption I will make is

that it takes onestep to read or output oneunit. So for instance, if the Parsingprocess

takes (6.6) as its input, it will take at least 27 steps to perform the parsing. And if we

know that the result of the Constructionprocess yields (6.7), we know that the construc-

tion needs at least 24 steps. In other words, the inputs and outputs of the processes are

lower boundson the number of steps they need in order to perform their mapping.

Actually we are not interested in the concrete number of steps ittakes to process a given

input, but only in the worst casenumber of steps it takes to process inputs of a given size.

For instance, if the Parsingprocess takes 100 steps to compute the syntactic analysis for

all inputs of length 30 except for one input of that length, fo r which it needs 500 steps,

then 500 is the worst case number of steps for inputs of size 30.If we write TP (n) for the

worst case number of steps needed by a processP on inputs of length n in general, then

we have Tpars(30) = 500 in this particular case. The observations from the preceding

paragraph can now be stated as follows. As a process needs at least n steps for reading

an input of size n, we have TP (n) ≥ n for all n and processesP. The same holds for

the outputs of size m that the process computes for inputs of sizen, for which we have

TP (n) ≥ m.

As it is common practice we are not interested in the concreteTP , but only in their

asymptotic behaviour, which is usually given in terms of the big-O notation. The big-

O is used to de�ne a class of functions as follows (wherec is a real and n0; n natural

numbers):

(6.8) f ∈ O(g) iff ∃c > 0 ∃n0 > 0 ∀n ≥ n0 f (n) ≤ c · g(n)

For instance, 3n4 + 2n + 1 ∈ O(n4). If f is in O(n); O(nc); O(cn) or O(n!) for some

constantc > 1 we say that f is of linear, polynomial, exponential and factorial growth (or

complexity), respectively. Note furthermore that if two functio ns f; g are of polynomial

growth, then their composition (f ◦ g) is also of polynomial growth.

It is commonly assumed that an algorithm or process is feasibleif and only if it is of (at

most) polynomial complexity. In particular, processes which need a number of steps of

exponential (or even factorial) growth are usually regarded as infeasible. So the class

of functions with polynomial complexity will play an importan t role in the following

investigation.

One important observation is still missing, concerning the relation between an input

of size n and the number of scope-taking elements it can possibly contain. Again we

shall consider the worst case, which means that given an expression of size n we shall

assume the maximal number of scope-taking elements it may possibly have. I claim that
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this number is linearly dependent on the n. To see this, consider the following series of

sentences:

(6.9) Every woman watched a movie.

In three cities, every woman watched a movie.

In four countries, in three cities, every woman watched a movie.

On two days, in four countries, in three cities, every woman watched a movie.

In the sentences above, I added prepositional phrases to a core sentence. Each occurence

of such a PP introduces another scope-taking element which contributes to the ambiguity

of the sentence. The important point is that this procedure of pre�xing PPs can be

iterated to introduce more and more scope-taking elements. Witheach addition of a PP,

the sentence grows in size by some number of symbols. If we letp be the minimal such

number (i.e. the size of a PP that can be repeatedly added to a coresentence in order

to increase the number of scope taking elements), a sentence of size n will have at most

n=p scope-taking elements. Therefore a sentence of lengthn will contain O(n) scope

taking elements in the worst case.

6.4 A Formal De�nition of Compactness

Let us now investigate the cost of computing the entire set of readings of an ambiguous

expression more closely. First consider the Montagovian strategy as illustrated in Figure

1.1. Here each of the readings of an ambiguous expression was derived by a different

syntactic analysis by means of the Quantifying In operation (cf. Section 3.1.1). Recall

that in the worst case of n scope-taking elements, there weren! different permutations

and hence n! different readings. As de�ned above, let us use Tpars(|e|) to denote the

time needed to analyze an expressione of length |e| syntactically. In the next step this

analysis is translated into a reading (i.e. into an expression of some intermediate logical

language). Let Ttrans (x) denote the time that it takes to translate a syntactic analysis of

size x in the input to an expression of the intermediate logical language. Then in the

worst case the overall cost to compute the entire set of readings{' 1; : : : ; ' n!} is

(6.10) n! · (Tpars(|e|) + Ttrans (Tpars(|e|)))

The input to the translation is the output of the syntactic anal ysis process. As has been

pointed out in the preceding section the size of this output is bound by the stepsTpars(|e|)
which are needed for the syntactic analysis. The term in (6.10) spells out the criticism

of the Montagovian approach in a bit more detail. Usually we can assume that Tpars

and Ttrans can be computed ef�ciently. First of all, it is commonly assumed that natural

language is such that its sentences can be analyzed syntactically in polynomial time
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of the input length. Polynomial recognition is one of the de�ni ng features of mildly

context-sensitive languagesand this class of languages seems to be a good candidate to

locate natural language in (cf. Joshi, 1985). Furthermore it is reasonable to assume

that the translation can be performed ef�ciently, polynomially in the input for instance.

Then the time needed for analyzing and translating one single reading of an ambiguous

expression e (of size |e|) is polynomial in |e|. However, if e contains n scope taking

elements, there still is the additional factor n! which makes the entire term in (6.10)

factorial. Recall that in the preceding section I have argued that n ∈ O(|e|), i.e. that the

number of scope-taking elements is linear in |e| in the worst case. Making use of this

observation, (6.10) eventually reduces to

(6.11) O(|e|)! ·
�

O(|e|c) + O
�

O(|e|c)c0
��

= O(|e|!):

This factorial growth introduced by the enumeration of all readin gs is what combinator-

ial explosionrefers to.

Considering a framework for underspeci�ed processing as illustrated in Figure 1.2,

things look different. As there is no enumeration of all readings, no n! factor is in-

troduced. Basically we end up with the following term for the ov erall processing costs of

deriving the underspeci�ed representation, where Tconstr denotes the time to construct

the underspeci�ed representation out of a syntactic analysis.

(6.12) Tpars(|e|) + Tconstr (Tpars(|e|))

Here we assume that the complexity for the syntactic analysis isthe same as in the

Montagovian approach. Therefore the time complexity Tconstr of the construction of the

representation is crucial in the comparison of the underspeci�ed processing framework

to the Montagovian approach.

As a bad example consider the naive proposal from Section 6.1 above. It has been

designed so that the construction must enumerate alln! readings given that the input

expression hasn scope-taking elements. Then the output representations of(Tconstr ◦
Tpars) is of factorial size in n! for some n!-fold ambiguous input expressione. As detailed

above, the size of the output gives a lower bound on the complexity of the entire process

and hence we have.

(6.13) Tconstr (Tpars(|e|)) = O(n!)

If we use the observation that n ∈ O(|e|) and make use of the assumption thatTpars is of
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polynomial complexity, we get the following.

(6.14) Tconstr (O(|e|c)) = O(|e|!)

This implies in turn that Tconstr cannot be of polynomial growth and is hence infeasible.

Overall this means that the processing costs are not any better than in the Montagovian

approach and that in particular the combinatorial explosion pro blem is not avoided.

The crucial difference is that the exponential growth is not an obvious feature of the

underspeci�ed processing framework, but hidden in the construction operation of the

formalism.

On these grounds it seems reasonable to demand from underspeci�ed representation

formalisms to have polynomial construction procedures. This in turn means that the

underspeci�ed representations themselves cannot be of exponential or factorial length,

which is exactly what the requirement of compact representationis about. The de�nition

of compactness states that the maximal length� (n) of a representation needed to encode

a set of readings with n scope taking elements must be polynomial inn.

De�nition 6.1
Let U = 〈U;L〉 be an underspeci�ed representation formalism. Then � U is de�ned as

follows:

(6.15) � U(n) = max{|u| | |Γ| = n and L(u) ⊆ [Γ]}

An underspeci�ed formalism is compactiff

(6.16) � U(n) = O(nc) for some c ∈ N:

� U(n) denotes the maximal length of a representation of U , that licenses a set of terms

built from n scope taking elements. This number poses a lower bound on thecomplexity

of Tconstr , as it takes at least� U(n) steps to output the representation. As above (and

under the assumption that Tpars is of polynomial growth), we can conclude that if � U

is exponential/factorial in n, the complexity of the construction Tconstr will be at least

exponential/factorial, too. For this reason we require � U to be of polynomial growth.

Note that this does not guarantee that Tconstr is polynomial as well. The construction

may be very involved and it may nevertheless take exponentially many steps to construct

compact representations. To rule this case out, we could de�ne that Tconstr needs to be

polynomial, too. Unfortunately such a de�nition would not be o f much use in the context

of this thesis, as I am only interested in the representational aspects of underspeci�ed

representation formalism. Reasoning about the construction process itself would lead
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too far astray from what I am concerned with. For this reason I will stick to De�nition

6.1, which can still be used to derive lower bounds on the complexity of the construction

process. The following example illustrates an application of the De�nition.

Example 6.2
De�nition 6.1 classi�es the naive approach as not compact. To see this consider any

number n and any selection Γ of n functors. Following the naive proposal, the repre-

sentation licensing some setP ⊆ [Γ] is just P itself. Concerning the 'size' (or 'length')

of the representation P we may just take the length of the string we get after listing th e

elements of P. So for instance, if P = {fghx ; hgfx } then |P | is the length of the string

'fghx hgfx '. Hence, if P hasm elements we have|P | = m ·n+(m−1) (m terms of length

n and (m − 1) spaces in between). For� (n) we are interested in the representation of

maximal size. This will be the case ifP is the entire set of terms [Γ] and hencem = n!.
Then � (n) = n!·n+(n−1) and thus � (n) = O(n!). Therefore � (n) is of factorial (and not

of polynomial) complexity, which shows that this proposal is n ot compact. This example

illustrates further that the details of the output representati ons are not important. We

took a string of terms with intervening spaces, but we could have added curly brack-

ets, commas, etc. without changing the result. Eventually only the dominating factor

n! introduced by the number of elements in P is important in the determination of the

proposal's non-compactness.

In the following section I will show that there is a problematic interdependence between

the requirement of expressive completeness and compactness asde�ned above.

6.5 Compactness and Expressive Completeness

A problem for underspeci�ed representation formalisms arises dueto the fact that there

is an interdependence between this compactness requirement and the expressive com-

pleteness requirement. The �rst requires the representations to bereasonably short and

the second requires there to be enough of them to represent all possible sets of readings.

Recall that by de�nition of expressive completeness, every expressively complete for-

malism must provide 2n! different representations for each n in order to underspeci�ed
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every possible subset of readings. The following table illustrates the rapid growth of 2n!.

n n! 2n!

1 1 2
2 2 4
3 6 64
4 24 16777216
5 120 1; 329 · 1036

6 720 5; 516 · 10216

7 5040 1; 553 · 101517

8 40320 3; 384 · 1012137

For instance, a sentence with5 scope-taking elements may be 120-fold ambiguous in the

worst case. Therefore, a URF needs to provide representations for all of the 1; 329 · 1036

subsets of readings in order to be expressively complete. On theother hand, these

representations should be not any longer than a mere listing of the 120 readings. The

overall problem here is that the number of distinct representations which are within

the limit imposed by the compactness requirement is much smaller than the required

number of representations for all subsets of readings.

To �esh this out assume that some signatureΣ is given and let us take a languageG,

which models a very general formal representation language2. As indicated in Section

4.1, variable/constraint approaches are based on languages over a�nite set of 'logical

symbols' S, an in�nite set of meta-variables V and an in�nite set of other symbols F

derived from the functors of Σ. Now let GS;V;F = (S ∪ V ∪ F )� be simply the entire set

of all strings over the combined set of symbols fromS; V; and F . For instance, if

(6.17) S = {/; ∧} V = {x1; x2; : : :} F = { : f; : g; : : :}

then

(6.18) ∧x3x1 : f / x 2 : g and x1 : fx 2 ∧ x3 : g ∧ x2 / x 3

are in GS;V;F . Suppose further that there is some mapping

(6.19) L : GS;V;F −→ Pow(T� )

which assigns a set of terms to each string inGS;V;F . Then G = 〈GS;V;F ; L〉 is an under-

speci�ed representation formalism according to De�nition 2.8. In the following I will

often drop the subscript on GS;V;F .
2henceG for 'general'
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Because of the fact that in the construction of the strings inG in�nitely many variables

and derived symbols are involved, the number of different strings of a given length is

in�nite, too. Therefore, under the naive assumption that each of these strings licenses

a different set, the number of licensed sets of strings of a given length would be in�nite

again.

However, �rst of all we can make the reasonable assumption that a string licenses only

those terms that contain the functors that are mentioned in the derived symbols. For

instance, if S; V and F are as in (6.17), then the terms licensed by ∧x3x1 : f / x 2 : g

or x1 : fx 2 ∧ x3 : g ∧ x2 / x 3 contain exactly the functors f and g. In other words, the

licensed terms do not contain additional material not mention ed in the string, nor do

they ignore any of it. Let us call such a licensing mappingconstructive3. An inspection

of the licensing mappings of the investigated variable/constraint approaches shows that

they are indeed constructive in this sense.

Furthermore, the exact naming of meta-variables should not matter for licensing, i.e.

approaches should beindependent of meta-variable names. This has also been shown to

be true for the investigated variable/constraint approaches from Chapter 3 (cf. Lemmata

A.2, A.7, and A.14).

The constructiveness and the independence of meta-variable names are the crucial fea-

tures that limit the number of different licensed sets of string s of a given length. If the

actual naming of the variables in a representation does not matter for licensing, the num-

ber of different licensed sets is �nite even for the in�nite nu mber of strings of a given

length that exist. Let us assume in the following that G is constructive and independent

of meta-variable names.

Now suppose we are givenn scope-taking elementsΓ. In order to achieve expressive

completeness we must �nd representations (here: strings) for each set P ⊆ [Γ]. As we

assumed constructiveness, those strings must contain exactly n derived symbols corre-

sponding to the functors in Γ. Hence each such string must at least be of sizen. To

those n derived symbols we can add further logical symbols fromS and variables from

V, such that we arrive at a string of length l ≥ n.

In order to correlate expressive completeness and compactness we must relate the size

of representations to the number of sets they can license. So, how many different sets

P ⊆ [Γ] over the n given functors Γ can be licensed by strings of lengthl? Let us be

generous and assume thateverystring of length l licenses some different setP ⊆ [Γ].
Hence, we only need to count the number of different strings of length l in order to

get the number of different licensed sets. As the strings underconsideration consist

3reminiscent of the notion of constructive solutionin the NDC approach.
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of l letters, we can choose one of then derived functor symbols, a symbol from S, or

a variable for each letter. As the string must contain all n derived functor symbols,

l − n variables can maximally occur in the string. Due to the fact that we assumed

independence of variable names we can �x a set ofl − n variables as any other choice of

variable would not change the licensed set. Therefore we have the following.

Lemma 6.3
For a given set Γ of n functors, the number of sets P ⊆ [Γ] which are licensed by

representations ofG of length l ≥ n does not exceed(|S| + l)l .

Proof. Assuming generously that each string licenses a different set,we only need to

count the number of different strings which are built on n derived symbols, l − n vari-

ables, and the symbols inS to derive the desired upper bound. For each letter of the

string, we can either choose a symbol inS, one of the n derived symbols or one of the

l − n variables, i.e. we have(n + |S| + (l − n)) choices for each of thel letters.

Now assume thatG is expressively complete. Then for a given numbern of scope-taking

elements,G needs to license2n! different sets. What can we say about the length of the

representations, which license those sets? In favour ofG let us assume, that we can use

all strings of length n, all strings of length (n + 1), and so on, up to some maximal string

length � G(n) to license these sets. This is a very generous (and unreasonable) view, but

it helps to keep � (n) small4. Then due to Lemma 6.3,G can license at most

(6.20)
� (n)X

i = n

(|S| + i )i

sets with representations up to length� (n). Let us again be generous and go to the much

higher number � (n) · (|S| + � (n))� (n) . As we assumed the expressive completeness ofG,

this number has to be equal (or greater) 2n!. Thus the following inequality holds, if G is

expressively complete.

(6.21) � (n) · (|S| + � (n))� (n) ≥ 2n!

This inequality relates the length of representations of G to the number of sets, which

have to be licensed. Now we can solve the inequality for� (n) to get some result about

the maximal length of a representation which is needed to license all 2n! sets of terms

for n scope-taking elements. Application oflog2 gives

(6.22) log � (n) + � (n) · log(|S| + � (n)) ≥ n!
4I will drop the subscript G on λG(n) from now on.
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Considering the asymptotic behaviour on both sides, the left hand side of the inequality

is in O(� (n) · log � (n)) whereas the right hand side is in O(n!). Now it is obvious that

� (n) has to grow more than polynomially with n to satisfy the inequality for growing n.

Therefore we get the following result for G.

Proposition 6.4
If G is expressively complete, it is not compact.

Proof. Let G be expressively complete and assume it is compact, i.e.� G(n) = O(nc) for

somec ∈ N. Then the left hand side of the inequality in (6.22) is in O(nc log n) which is

a contradiction as the right hand side is in O(n!). Thus the assumption was wrong and

henceG is not compact.

Let me paraphrase this result. It basically says that the number of representations which

is needed in order for the formalism to be expressively completeis much larger than the

number of 'short' representations. So necessarily some 'long' representations have to be

used to make up for the lack of 'short' representations. Here 'long' means exponentially

long in the number of scope taking elements.

This is bad news forG as a URF, if it is supposed to be expressively complete. Proposition

6.4 says that the maximal length � G(n) of a representation which underspeci�es a set

of readings of n scope taking elements cannot be polynomial inn for large n. This in

turn means that the construction operation, which constructs this underspeci�ed rep-

resentation from a syntactic analysis, cannot perform its task in polynomial time in n

as has been detailed above. Thus the construction operation for G is infeasible. Hence

this URF would not perform much better than a straightforward Monta govian/Cooper

Storage approach to ambiguity.

As G is based on a very general formal language, we can conclude that any other URF

that shares the same basic features performs even worse. Recall that the representations

of GS;V;F are all possible strings over the vocabulary(S ∪ V ∪ F ). In more realistic

URFs such as the investigated ones from the preceding chapter, the strings of the rep-

resentation language are much more restricted by basic de�nitions and additional well-

formedness restrictions. For instance, in the Hole Semantics URFH, the representations

are expressions over the vocabulary with logical symbolsS =
�

〈; 〉; {; }; ≤; ','
	

, derived

symbols F = { : f | f ∈ Σ} and meta-variables (holes and labels)V . But instead of all

possible strings ofGS;V;F only those strings UHS ⊂ GS;V;F are taken as representations

(i.e. USRs) which adhere to De�nitions 4.9–4.11. Therefore the number of well-formed

USRs of a given length is much smaller than the number given in Lemma 6.3.

Second, more realistic URFs usually have synonyms w.r.t. licensing, i.e. expressions of
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the representation language which license the same set of terms. For instance, in an Hole

Semantics USR the exact order in which the labeled formulas andthe constraints is listed

is not important for licensing. So the USRs〈⊤; {l : f (h); l0: x}; ∅〉 and 〈⊤; {l0: x; l : f (h)}; ∅〉
license the same set of terms, irrespective of the order in which the labeled formulas are

listed. This reduces the number of sets further, which can be licensed by USRs of given

length.

Due to these two points, together with the fact that we have taken rather coarse upper

bounds at some points above, the actual number of different sets licensed by represen-

tations of size less than� (n) is much smaller then the bound given in (6.21). Therefore

we can generalize the result from Proposition 6.4 to all URFs which are constructive and

independent of meta-variable names.

Theorem 6.5
Every URF that is constructive and independent of meta-variablenames is either expres-

sively incomplete or not compact.

In other words, either the URF is expressively incomplete, i.e. it misses out on some

sets of readings which it should be able to represent, or it is notcompact, i.e. there are

representations which are too complex for the construction operation to be feasible.

Note that Theorem 6.5 immediately applies to any extension of the investigated vari-

able/constraint approaches, which may be aimed at achieving expressive completeness.

As long as the basic characteristics of constructiveness and independence of variable

names are not touched, it is impossible to have such an extension without creating a

non-compact formalism.

6.6 Conclusion

In this Chapter I have brie�y illustrated two expressively comp lete formalisms – a naive

proposal where all sets of readings represent themselves and an extension of the NDC

approach with disjunction. A closer investigation of both proposals hinted at a problem.

Although they were expressively complete they seemed to be notcompact.

To elucidate this problem further I have formalized the requirement for compact rep-

resentations of underspeci�ed representation formalisms. The de�nition is motivated

by the fact that URFs are supposed to solve the combinatorial explosion problem from

which approaches suffer that compute all possible readings. In order to avoid combi-

natorial explosion, URFs must provide feasible construction procedures. Given that fea-

sibility is identi�ed with polynomial complexity, this led t o a de�nition of compactness
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which classi�es a formalism as compact if the representations for ambiguities involving

n scope taking elements are of polynomial size inn.

Using both the formal de�nition of compactness and expressivecompleteness I derived

the result that both requirements are incompatible. A formalism can be either expres-

sively complete or compact, but it cannot simultaneously ful�l both requirements. This

is a rather disappointing result as it tells us that we can call off the search for an under-

speci�ed representation formalism that is both expressively complete and compact. On

the other hand, it is not very surprising. If ambiguity introduce s considerable complex-

ity, why should it be possible to fully account for the phenomenon at hand while at the

same time avoiding this complexity?

The vast majority of work on underspeci�cation has focussed on ef�cient processing and

made avoidance of combinatorial explosion its major theme. This is presumably due

to the fact that the seminal work has been carried out in the context of computational

semantics. Somewhat surprisingly however, it seems that thereis no elaborate discussion

on what combinatorial explosion actually refers to, beyond the informal statement that

one should avoid the full enumeration of readings. As I have pointed out in Section

5.5.3, the discussion on expressivity and adequacy has been unjustly neglected at the

same time. Theorem 6.5 actually brings out the tension between the two requirements,

which is the tension between expressive power and the cost of achieving it.



Chapter 7
Expressively Rich Formalisms

Yet there is another view on underspeci�cation, namely from the point of formal se-

mantics. Formal semantics has often ignored complexity issues in favour of expressively

adequate theories, such as higher-order logics which are even beyond recursive enumer-

ability. From this point of view, one would make expressive completeness and the abil-

ity to formulate linguistically adequate descriptions of dis ambiguation the major topic,

thereby making complexity issues a secondary theme.

In this Chapter I will discuss two very recently proposed strategies for underspeci�cation

which take this route. The �rst is an ambiguity packingapproach of Crouch (2005) that

aims at representing fully scoped readings simultaneously in one packed structure. The

other is the underspeci�cation approach in the PTCT system of Fox and Lappin (2005a).

7.1 Packing vs. Procrastination

Crouch (2005) describes a system that maps text to knowledge representations. In this

system, text is parsed and semantically interpreted in the Glue Semantics theory1, result-

ing in fully-scoped higher-order intensional logical forms. These logical forms are then

�attened and packedtogether. Finally, these packed semantic structures are translated

in packed knowledge representation structures. As Crouch (2005)points out, packing

differs from underspeci�cation in that it delivers a structure tha t records all completely

assembled analyses. In other words, individual analyses can beread off the structure

straightaway, without the need to combine parts of an object language subject to the

satisfaction of certain constraints on the combination. Crouch (2005) contrasts this with
1Dalrymple (2003), cf. also Section 4.7.3

130
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underspeci�cation as a form of procrastination, where the evaluation of constraints is

deferred to a later stage with the hope that this increases ef�ciency.

Obviously, this approach does not avoid combinatorial explosion at the present stage, as

all fully-scoped logical forms have to be computed prior to the � attening and packing

process. Concerning packed representations, Crouch (2005) acknowledges that 'it is

important to pull disjunctions of meanings out into the choice space, and not to represent

them explicitly [. . . ] within the semantic representation. The latter approach tends to

multiply out the size of representations[. . . ].'(Crouch, 2005, Section 2.2). This argument

goes along the lines of the discussion on the size of representations above: one can in

principle have richer representation languages to achieve expressive completeness (e.g.

by adding disjunction), but then the representations become too large to be handled

ef�ciently.

Unfortunately a precise de�nition and evaluation of packed st ructures vs. underspeci�ed

representations is dif�cult to give at the present stage due to the lack of explicit literature

on the subject2. Yet some questions (and doubts) come to mind when packed structures

are concerned.

First (and even disregarding expressive completeness for a moment), how ef�cient can

the construction of such packed structures be for massive scopal ambiguities? In the case

of syntactic ambiguity, the construction of a correspondingly packed semantic structure

from a parse forest can be easily done, as e.g. Ramsay (1999) argues3. This is not

surprising as all the work of detecting and representing ambiguity has been done by the

parser during the construction of the parse forest already4. However, one may wonder

how the construction would work for a case of massive scope ambiguity such as in case

of the notorious sentence

(7.1) A politician can fool most voters on most issues most of the time, but no politician

can fool all voters on every single issue all of the time.

Ramsay (1999) concedes that in constructing the packed structures for scope ambigui-

ties, one cannot use the packing implied by the parse forest. Then, assuming that (7.1)

receives only one single syntactic analysis (i.e. the parse 'forest' reduces to a single tree),

one may wonder how ef�cient one can perform the construction of m ore than ten thou-

sand fully-scoped readings in form of a packed structure. Again itseems, that a source

of infeasibility is lurking in the construction process, altho ugh the details depend on an

exact de�nition of the approach, of course.

2'Packing has been relatively and unjustly neglected', as (Crouch, 2005, Section 2.2) puts it.
3His system is essentially a �rst-order language where only the ambiguous information is expressed by

disjunction.
4cf. Dörre (1997) for a discussion of ef�cient construction of underspeci�ed re presentations form parse

forests
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Second, what effect does disambiguation of readings have on the packed structure?

Recall that one decisive feature of underspeci�ed representations was the ability to add

disambiguating information by some monotonic operation, e.g. the addition of further

constraints (cf. Alshawi and Crouch, 1992). One may wonder in which way a packed

structure needs to be altered in order to represent a subset of the initial set of readings

and whether this operation can be performed ef�ciently. Furtherm ore, it seems that this

cannot be realized as a simple monotonic operation and that some possibly involved

restructuring on packed structure is required.

7.2 PTCT

In Chapter 8 of (Fox and Lappin, 2005a) and in (Fox and Lappin, 2005a) the authors

de�ne an approach to underspeci�cation as part of the Property Theory with Curry Typ-

ing (PTCT) model for the computational semantics of natural language. Fox and Lappin

(2005a) propose a rich �rst-order language which contains a sublanguage of terms and a

sublanguage of types that yield a Curry-typed� -calculus when combined with an appro-

priate proof theory. The terms of the � -calculus are used to represent the interpretations

of natural language expressions, while another part of the language (the well-formed

formulas (wffs)) is used to formulate type judgements and truth c onditions for those

terms that are judged to be of propositional type. For instance, the term

(7.2) t = ∀̂x�B (man(x) →̂ ∃̂y�B (woman(y) &̂ loves(x; y)))

is a representation of the universal wide scope reading for the sentence Every man loves

a woman. B is constant which stands for a basic type. Note that thê on top of some

constants of the term language serves to distinguish them from respective logical con-

stants of the wffs. A wff expressing the type judgement, that t is of propositional type,

is of the form t ∈ Prop. An example for a typing rule is

(7.3) t ∈ Prop & t0 ∈ Prop → (t &̂ t) ∈ Prop;

stating that (t &̂ t0) is of propositional type if both t and t0are. The truth of t is expressed

by the wff > (t), which will be true if the proposition represented by t is true. An example

for a rule that governs the truth conditions for terms of propositi onal type is e.g.

(7.4) t ∈ Prop & t0 ∈ Prop →
�

> (t &̂ t) ↔> (t) & > (t0)
�

;

saying that a term (t &̂ t0) represents a true proposition, iff the subterms t and t0 repre-

sent true propositions (given they are of propositional type).
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I will not go into further detail about the technical basis of t his system, but focus on

the part where underspeci�cation comes in. In the following I wi ll discuss the PTCT

approach to underspeci�cation in detail, sketch an extension and give an elaborate dis-

cussion on the issue of de�ning �lters as a means to achieve disambiguation. Finally, I

will discuss some advantages as well as disadvantages concerning the issues discussed in

this thesis. To make the formulas more perspicuous, I shall drop theˆ and return to the

standard �rst-order notation which has been employed throughout the thesis, instead of

using the actual term language syntax of PTCT.

7.2.1 Underspeci�cation and Permutations

An underspeci�ed representation in the PTCT system as de�ned in (Fox and Lappin,

2005b) is based on a pair〈 〈Q1; : : : ; Qk〉 ; R 〉, consisting of ak-tuple of generalized quan-

ti�ers 5 〈Q1; : : : ; Qk〉 and a relation R. For instance, the pair for representation of the

readings of

(7.5) Every marketing manager showed �ve sales representatives a sample.

is given in (7.7) with the generalized quanti�ers abbreviated as in (7.6).

Q1 = �P: ∀x(manager(x) → P(x))(7.6)

Q2 = �P: �ve (x; salesrep(x); P(x))

Q3 = �P: ∃x(sample(x) ∧ P(x))

(7.7)



〈 Q1; Q2; Q3 〉 ; �x�y�z: show(x; y; z)
�

Note the obvious similarity of these pairs with the storage structures of Cooper Storage

(cf. Section 3.1.1), where a core component (the relation expressed by the verb) has

been paired with a set of quanti�ers. Let us call those pairs QRk -pairs in the following.

In order to access single readings in these structures, functions perms scopek for each

k are de�ned, which are applicable to QRk -pairs. The result of an application of

perms scopek is a k!-tuple, where each component is a QRk -pair consisting of a permu-

tation of the k quanti�ers and the relation with its lambda-pre�x permuted acco rdingly.

5Pairs and tuples in general are de�ned in PTCT via product types. Generalized Quanti�ers can be
represented in PTCT due to an incorporation of a number theory in the system. See again (Fox and Lappin,
2005a), in particular Chapter 6, for the details.
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For instance, for the QR3-pair in (7.7) we get

(7.8) perms scope3
� 


〈 Q1; Q2; Q3 〉 ; �x�y�z: show(x; y; z)
� �

=

 


〈 Q1; Q2; Q3 〉 ; �x�y�z: show(x; y; z)
�
;



〈 Q2; Q1; Q3 〉 ; �y�x�z: show(x; y; z)

�
;



〈 Q1; Q3; Q2 〉 ; �x�z�y: show(x; y; z)

�
;



〈 Q2; Q3; Q1 〉 ; �y�z�x: show(x; y; z)

�
;



〈 Q3; Q1; Q2 〉 ; �z�x�y: show(x; y; z)

�
;



〈 Q3; Q2; Q1 〉 ; �z�y�x: show(x; y; z)

� �

The selection of components of a k-tuple is then accomplished by functions

project scopek , which take a number i and a k-tuple of the form of (7.8) and return

the i -th component of the k-tuple. For instance, an application of project scope6 to the

number 4 and the structure in (7.8) yields the fourth component, i.e. the QR 3-pair

(7.9)



〈 Q2; Q3; Q1 〉 ; �y�z�x: show(x; y; z)
�

Finally, an additional operation applyk takes such a pair and applies the generalized

quanti�ers successively to the relation in the reverse order they appear in the k-tuple.

For instance, the application of apply3 to the QR3-pair in (7.9) yields the (5∃∀) reading,

i.e.

(7.10) �ve (y; salesrep(y); ∃z(sample(z) ∧ ∀x(manager(x) → show(x; y; z))))

Note that the application of the GQs is performed from right to lef t such that a GQ Qi

outscopes a GQQj iff i < j , where i; j are the respective indices of the GQs in the

k-tuple.

In (Fox and Lappin, 2005b) the perms scopek functions are de�ned along the lines of

(Campbell, 2004). This method assigns a unique numerical index between 1 and k! to

each permutation of k elements, which can be used to recover the permutationwithout

the need to enumerate all permutations. Therefore it is possibleto de�ne a function

permutek(i ) that combines the functionality of perms scopek and project scopek!(i ). For

instance, applying permute3(4) to (7.7) directly results in (7.9).

An Extension to Nested Structures. So far it seems that PTCT accomplishes not much

more than Cooper Storage. In fact, a QRk -pair only contains one relation around which

the k quanti�ers can take scope. This however is not suf�cient to account for the scopal

possibilities of more complex sentences, for instance for (3.18), repeated here as (7.11)
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(7.11) Two representatives of three companies saw most samples.

In the determination of the readings of this sentence, two relations are involved6, namely

rep of and saw. In the restrictor of the determiner meaning (corresponding to two ) there

is an interaction with the GQ three companiesw.r.t. the relation rep of while in the scope

there is interaction with the GQ most samplesw.r.t. saw. This seems to call fornested

structuresas they have been proposed by Keller (1988) for Cooper Storage and by Willis

(2000), directly implementing the scope theory of Park (1995). For instance, the initial

representation of (7.11) could be construed as nested QR2-pairs. Due to the structure of

the sentence, those pairs would need to include not only generalized quanti�ers, but also

other objects such as determiner meanings. This is an extension that would be called for

anyway, as one would like to include other scope-taking elements such as negation to be

involved in these representations. For the sentence in (7.11) the scope-taking elements

would be the following:

D two = �Q�P: two(x; Q(x); P(x))(7.12)

Qthree = �P: three(x; comp(x); P(x))

Qmost = �P: most(x; samp(x); P(x))

The nested QR2-pair would hence look as follows.

(7.13)
� D 


〈D two ; Qthree〉 ; �x�y: rep of(x; y)
�
; Qmost

E
; �x�y: saw(x; y)

�

The QR2-pair in (7.13) consists of the usual two components as de�ned above: a2-tuple

and a relation ( �x�y�z: saw(x; y; z)). The new feature is, that the 2-tuple in the �rst

component contains another QR2 pair, which has been underlined above. Abbreviating

this embedded pair with P and the outermost pair with Q, the QR2-pair from (7.13)

simpli�es to

P =



〈 D two ; Qthree 〉 ; �x�y: rep of(x; y)
�

(7.14)

Q =



〈 P; Qmost 〉 ; �x�y: saw(x; y)
�

If we permute both pairs independently we get

P1 =



〈 D two ; Qthree 〉 ; �x�y: rep of(x; y)
�

(7.15)

P2 =



〈 Qthree; D two 〉 ; �y�x: rep of(x; y)
�

Q1 =



〈 P; Qmost 〉 ; �x�y: saw(x; y)
�

Q2 =



〈 Qmost; P 〉 ; �y�x: saw(x; y)
�

6cf. the discussion of this sentence in Section 4.4 below (4.69) on page 75
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Substituting P1 and P2 for P in both Q1 and Q2 yields the four nested pairs

� D 

〈D two ; Qthree〉 ; �x�y: rep of(x; y)

�
; Qmost

E
; �x�y: saw(x; y)

�
(7.16)

� D 

〈Qthree; D two〉 ; �y�x: rep of(x; y)

�
; Qmost

E
; �x�y: saw(x; y)

�

� D
Qmost;



〈D two ; Qthree〉 ; �x�y: rep of(x; y)

� E
; �y�x: saw(x; y)

�

� D
Qmost;



〈Qthree; D two〉 ; �y�x: rep of(x; y)

� E
; �y�x: saw(x; y)

�

Computing the corresponding readings by recursive application of the apply2 function

yields the four readings in (3.21) (repeated below as (7.17)), tha t Park (1995) attributes

to sentence (7.11).

two(x; three(y; comp(y); rep of(x; y)); most(z;samp(z); saw(x; z)))(7.17)

three(y; comp(y); two(x; rep of(x; y); most(z;samp(z); saw(x; z))))

most(z;samp(z); two(x; three(y; comp(y); rep of(x; y)); saw(x; z)))

most(z;samp(z); three(y; comp(y); two(x; rep of(x; y)); saw(x; z)))

Thus the extension of the QRk -pairs from Fox and Lappin (2005b) with nested structures

along the lines of Keller (1988) and Willis (2000) already all ows for the derivation of

the readings of (7.11).

From a technical point of view, the exact de�nitions of the perm utation functions from

Fox and Lappin (2005b) need to be amended to work recursively on nested structures.

In particular, as GQs, determiner meanings and QRk -pairs occur in k-tuples, one needs

to employ the polymorphism that is possible in the PTCT system. Furthermore the op-

eration that 'lifts' a generalized quanti�er in a way such that it can apply to relations

of arbitrary arity (see Fox and Lappin, 2005b, for detail) needs to be extended to work

with all scope-taking elements. Again, I will not discuss the technical details here any

further. In the following exposition of �lters, I will disregard nested structures and stick

to the de�nitions in (Fox and Lappin, 2005b).

7.2.2 Filters

Due to its rich language it is possible to de�ne complex �lters on the structures above

(Fox and Lappin, 2005b, Section 3.6). Filters are boolean functions that make judge-

ments on QRk -pairs such as (7.9), i.e. they are of the form � 〈Quants; Rel〉 :t where

Quants is a k-tuple of generalized quanti�ers, Rel a k-ary relation, and t is a term of
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propositional type. Hence, given a QRk -pair, a �lter will yield a propositional term that

can be true or false.

Filters and Licensing

In order to de�ne �lters on QR k -pairs some additional auxiliary functions are needed.

To facilitate the access to single quanti�ers in the k-tuple of quanti�ers, Fox and Lappin

(2005b) de�ne a function tuple element that takes a number i and a k-tuple of GQs and

returns the i -th GQ in the tuple, i.e. tuple element(i; 〈Q1; : : : ; Qk〉) = Qi . Furthermore,

they devise properties to identify GQs. In the following I will make use of this and as-

sume that for each GQ there is a property which is true of all and only the respective GQ.

For instance, �ve (Q) should be true iff Q is a GQ corresponding to an NP of the form

�ve N . Combining these two auxiliary functions, �ve (tuple element(2; 〈Q1 ; Q2 ; Q3 〉))
represents the proposition stating that the second element in〈Q1; Q2; Q3〉 is a GQ corre-

sponding to �ve N .

To illustrate the form and use of �lters, consider a simple restric tion concerning the

scope relation between two quanti�ers. For instance, assume we want to restrict the six

readings of (7.5) to those where ∀ takes wider scope than�ve . The corresponding �lter

expressing this restriction looks as follows.

(7.18) � 〈Quants; R〉 [∃i∃j (every(tuple element(i; Quants)

∧ �ve (tuple element(j; Quants) ∧ i < j )]

The �lter (7.18) applies to a QR k -pair 〈Quants; R〉 and yields the representation of a

true proposition iff there are indices i; j of GQs corresponding toevery N and �ve N ,

respectively, such thati is less thenj . In other words, the proposition is true for a QRk -

pair iff there is a GQ for every N and a GQ for �ve N such that the former outscopes

the latter. Note that this formulation of the �lter rules out al l QRk -pairs which do not

contain these two GQs. If one thinks of �lters as contextual contributions towards dis-

ambiguation, this may not be desirable as the constraint expressed by the �lter should

not affect ambiguous expressions that do not involve the two GQs in question. However,

it is easy to change the de�nition of �lter (7.18) into a condit ionalized version.

(7.19) � 〈Quants; R〉 [∀i∀j ((every(tuple element(i; Quants)

∧ �ve (tuple element(j; Quants)) → i < j )]

This �lter passes all QRk -pairs which do not contain either of the two GQs, and those

QRk -pairs in which both GQs are present such that the one forevery N outscopes the
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one for �ve N .

Filters can now be combined with the permutation functions to eventually restrict the

set of generated readings. For instance, if we let�lter stand for the function de�ned in

(7.18), then

�lter
�

permute3(4)
� 


〈 Q1; Q2; Q3 〉 ; �x�y�z: show(x; y; z)
� � �

(7.20)

= �lter
� 


〈 Q2; Q3; Q1 〉 ; �y�z�x: show(x; y; z)
� �

= ∃i∃j (every(tuple element(i; 〈 Q2; Q3; Q1 〉)

∧ �ve (tuple element(j; 〈 Q2; Q3; Q1 〉) ∧ i < j )

As every holds of Q1 and �ve of Q2 (cf. (7.6) above), the proposition (7.20) is false

and hence the (5∀∃) reading is not among the licensed ones. In general, the actually

licensed readings are those, for which the composition of�lter with permutek(i ) yields a

true proposition. We can generalize this further by allowing for an entire set F of �lters

�lter i . The set of licensed readings of a QRk -pair 〈Quants; R〉 w.r.t. to some set of �lters

F = {�lter 1; : : : ; �lter m } is then de�nable as follows.

LPTCT
�

〈Quants; R〉 ; F
�

:= �t
�
∃i

�
t = applyk

�
permutek(i )(〈Quants; R〉)

�
(7.21)

∧ �lter 1
�

permutek(i )(〈Quants; R〉)
�

∧ : : :

∧ �lter m
�

permutek(i )(〈Quants; R〉)
���

This de�nition says that a term t is licensed by〈Quants; R〉 if it is the application of the

quanti�ers in Quants to R, permuted in a way such that the permutation passes allm

�lters in F .

Applying Filters

Due to the rich term language used to de�ne �lters, various sources of disambiguation

can be formulated in a natural and intuitively straightforward ma nner. Fox and Lappin

(2005b) illustrate this with an example of disambiguation du e to a lexical requirement

carried by a certain. I will repeat this example in the following section. Afterward s I

will add two more examples concerning disambiguation due to domain knowledge and

anaphoric reference and show how �lters interact in complex casesof disambiguation.
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Lexical Bias. Fox and Lappin (2005b) point out that a certain N has a strong tendency

to take widest scope in scopally ambiguous sentences7. The strongly preferred reading

of (7.22) is the one, where every is outscoped bya certain.

(7.22) Every critic reviewed a certain book.

This can be accounted for if we assume thata certain comes with a contextual contribu-

tion in form of the following �lter.

�lter lex := � 〈Quants; R〉
�
∀i∀j

�
( a certain (tuple element(i; Quants))(7.23)

∧ ¬a certain (tuple element(j; Quants)) )

→ i < j
��

�lter lex passes all QRk -pairs in which a quanti�er corresponding to a certain N outscopes

any other quanti�er (except those corresponding to a certain N). Again, it is condition-

alized in the sense that it passes all QRk -pairs in which no such GQs occur. The set of

licensed readings of (7.22) is based on the QR2-pair

(7.24) Q :=



〈�P [∀x(critic(x) → P(x))]; �P [∃x(book(x) ∧ P(x))]〉 ;

�x�y: review(x; y)
�

and restricted by the �lter to

(7.25) LPTCT
�

Q; {�lter lex }
�

= { ∃x(book(x) ∧ ∀y(critic(y) → review(x; y))) };

assuming that a certain holds of �P [∃x(book(x) ∧ P(x))]. The effect of the �lter is to

restrict the readings to those, where the quanti�er corresponding to a certain N takes

widest scope with respect to all other quanti�ers, as desired.

Domain Knowledge. The contextual information of the chocolate company example

in Section 3.3.2 can also be encoded as a �lter. According to the description of the

companies policy preceding sentence (3.22) (repeated here as (7.5)), the marketing

managers want to avoid the situation where each of the sales representatives is contacted

by all marketing managers, each of them showing the sales representative the same

sample. This knowledge about the company can be encoded as contextual information

in form of a �lter on subsequent text. The �lter expressing the f act that the (∃5∀) reading

7However, see Hintikka (1986) for a critical appreciation of such a claim.
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does not persist can be formulated as follows:

�lter dom := � 〈Quants; R〉 [∀i∀j ∀k( (every(tuple element(i; Quants))(7.26)

∧ �ve (tuple element(j; Quants))

∧ exists(tuple element(k; Quants)) )

→ ¬(k < j ∧ j < i )]

Using �lter dom as the only �lter, the set of readings licensed by the basic QR3-pair (7.7)

is as desired.

LPTCT
�
〈〈Q1; Q2; Q3〉 ; �x�y�z: show(x; y; z)〉 ; {�lter dom }

�
(7.27)

=
�

∀x(manager(x) → �ve (y; salesrep(y); ∃z(sample(z) ∧ show(x; y; z))))

∀x(manager(x) → ∃z(sample(z) ∧ �ve (y; salesrep(y); show(x; y; z))))

�ve (y; salesrep(y); ∀x(manager(x) → ∃z(sample(z) ∧ show(x; y; z))))

�ve (y; salesrep(y); ∃z(sample(z) ∧ ∀x(manager(x) → show(x; y; z))))

∃z(sample(z) ∧ ∀x(manager(x) → �ve (y; salesrep(y); show(x; y; z))))
	

Hence domain knowledge can enter the picture in the same way aslexical disam-

biguation information, viz. via �lters. Yet another source of d isambiguation concerns

anaphoric reference.

Anaphoric References. The case of disambiguation by anaphoric reference has been

used in Section 1.1.1 to illustrate the need for partial disambiguations. The example

given there is (1.4), repeated here as (7.28).

(7.28) Every child told two teachers some story. It wasAlice in Wonderland.

The pronoun It refers anaphorically back to some antecedent in the �rst sentence, in

this case tosome story. In fact, it disambiguates the �rst sentence in favour of a wid e

scope reading forsome story, i.e. in favour of the (∃∀2) and (∃2∀) readings.

Theories of Dynamic Semantics(Staudacher, 1987; Groenendijk and Stokhof, 1991;

Kamp and Reyle, 1993) aim at an explanation of these facts. Thereason why the other

four readings are excluded is explained with the inaccessibilityof the existential quanti-

�er. In terms of Dynamic Semantics approaches,∀ and two are externally staticwhile ∃
is externally dynamic8. Without going into detail and simplifying somewhat, this me ans

8A note of clari�cation is in order in the case of two. Note that in this thesis I have assumed a distributive
meaning construal of two N, represented by a generalized quanti�er λP [two(x, N(x), P (x))]. In this form,
two is indeed externally static as it does not 'export' the individual variable x it quanti�es over and blocks
off any dynamic effects of embedded dynamic operators (similar to 8). The fact, that plural anaphoric
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that the existential quanti�er can bind variables beyond its s yntactic scope9, while the

other two quanti�ers do not have this possibility. Hence ∃x[P(x)] ∧ Q(x) is equivalent

to ∃x[P(x) ∧ Q(x)] while ∀x[P(x)] ∧ Q(x) is not equivalent to ∀x[P(x) ∧ Q(x)] under a

dynamic construal. In fact, the externally static quanti�ers bl ock off the dynamic effects

of any externally dynamic quanti�ers in their scope, such that ∀y[∃x[P(x; y)]] ∧ Q(x)
is not equivalent to ∀y[∃x[P(x; y) ∧ Q(x)]], for instance. In other words, in order to

be accessible, i.e. show its dynamic effect, an externally dynamic quanti�er m ust not be

outscoped by an externally static one.

This is the requirement a pronoun such asIt can carry as contextual information in form

of the following �lter stating that there is a dynamic quanti�e r and no static quanti�er,

that outscopes it.

(7.29) �lter anaph = � 〈Quants; R〉 [∃i (dynamic(tuple element(i; Quants))

∧ ¬(∃j (static(tuple element(j; Quants)) ∧ j < i ))

Given that dynamic and static are PTCT properties that hold of dynamic and static GQs,

respectively, �lter anaph rules out the (∀∃2); (∀2∃); (2∀∃); (2∃∀) readings and leaves the

(∃∀2) and (∃2∀) readings, as desired. Note that the formulation of this �lter is a straight-

forward and natural translation of the requirement that there must b e an accessible

dynamic quanti�er. In particular, it is independent of any con crete QRk -pair the �lter

might be applied to. Furthermore note, that although the �lter h as been motivated by

the underlying concepts of dynamic semantics, the actual resolution of the pronoun can

still happen differently, for instance in the way described in (Fox and Lappin, 2005a,

Chapter 7).

Interaction of Filters. Filters can be seen as the contextual contributions that place

restrictions on readings and can be accumulated in the course of discourse processing. In

order to illustrate the interaction of the �lters, consider the c hocolate company example

again.

(7.30) Every marketing manager showed �ve sales representatives a sample.

Without any context, the set of �lters F is empty and hence all six readings correspond-

ing to the permutations of the quanti�ers are licensed.

Making use of domain knowledge (the annual product presentation discussed above),

the set of �lters F contains the �lter �lter dom and hence only the �ve readings in (7.27)

reference to two N is possible has to be explained differently, e.g. by introduction of a 'plural' discourse
referent as in (Kamp and Reyle, 1993), cf. Figure 4.2.

9w.r.t. to the syntax of the logical formula it occurs in
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remain. Now consider that the following sentence is uttered subsequently.

(7.31) It was the sample we used last year.

As discussed in the preceding paragraphs, the contextual contribution of the pro-

noun is the �lter �lter anaph , such that the set of �lters at this point is extended to

F = {�lter anaph ; �lter dom }. Hence the set of licensed readings is reduced further to

the only remaining reading

(7.32) ∃z(sample(z) ∧ ∀x(manager(x) → �ve (y; salesrep(y); show(x; y; z))))

where there is a unique sample that was presented, but not in the way that would have

embarrased the sales managers.

The same would happen if the example was slightly modi�ed as to make the sample

speci�c by means of a certain.

(7.33) Every marketing manager showed �ve sales representatives a certain sample.

Assuming that this sentence is uttered in the context of the annual product presentation

(and that we can hence make use of our domain knowledge), the active �lters are F =
{�lter lex ; �lter dom } and the result is as in (7.32). Uttering sentence (7.31) subsequently

adds the anaphoric �lter �lter anaph to F , which in this case does not change the licensed

set, though.

7.2.3 Expressive Power vs. Ef�ciency

In this section I shall comment on the differences between an expressively rich approach

such as PTCT as opposed to constraint-based meta-level approaches as mainly discussed

in the preceding Chapters.

Advantages of Filtering. The preceding sections illustrate that the provision of an

expressively rich language allows for a natural and intuitive formulation of contextual

disambiguation information. For instance, the anaphoric reference �lter �lter anaph states

the intuitive requirement induced by a pronoun that needs to be resolved, namely that

there be an accessible antecedent. In general, the �ltering approach has the following

advantages.

Monotonicity. Filters are collected in a setF in course of discourse processing. Fur-

ther contextual information may add new �lters to F while all others remain ac-

tive. This is an instance of monotonic disambiguation (Alshawi and Crouch, 1992)
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which is a desirable property as already given information does not need to be

altered.

Independence. Filters are independent of the underlying structures they are applied to.

For instance, all of the above �lters can be applied to any QRk -pair to impose the

respective restrictions they express. Contrast this with disambiguation in case of

the variable/constraint approaches, where disambiguation is achieved by adding

further constraints to the underspeci�ed representations themselves. For instance,

in Hole Semantics the six available readings for

(7.34) Every marketing manager showed �ve sales representatives a sample.

are represented by an underspeci�ed representation such as

(7.35) u =

*

⊤;

8
>>>><

>>>>:

l0 : ∀x(manager(x) → h0);
l1 : �ve (y; salesrep(y); h1);

l2 : ∃z(sample(z) ∧ h2);
l3 : show(x; y; z)

9
>>>>=

>>>>;

;

8
><

>:

⊤ ≤ l0;

⊤ ≤ l2;

⊤ ≤ l3;

9
>=

>;

+

A subsequent utterance of

(7.36) It was the sample we used last year.

needs in some way or other add disambiguating information in form of the two

constraints h2 ≤ l0 and h2 ≤ l1 to u to enforce the wide scope reading of the

existential GQ. Obviously, these two constraints enforce this reading only w.r.t. this

particular representation u and naming of meta-variables. They do neither express

any general contextual information nor achieve the same effect when added to

some other representation.

Soft vs. Hard Filters. Filters can be formulated to besoft, i.e. de�ned such that all QRk -

pairs are passed when certain conditions are not met. For instance, the lexical

�lter �lter lex is soft in that it shows its effect only on QRk -pairs containing a GQ

corresponding to a certain. All other QRk -pairs are unaffected by the constraint.

This contrasts with the anaphoric reference �lter �lter anaph , which is hard. It shows

its effect on all QRk -pairs, ruling out those that do not contain any dynamic GQs.

Of course, in the �lters de�ned above certain things have been simpli�ed. Concerning

the anaphoric �lter for instance, there are other dynamic and sta tic elements (such as

logical connectives and negation) that need to be taken into account for an elaborate

statement of accessibility. However, I hope it is still obvious that the possibility to state

complex �lters on readings is a clear point in favour of expressively rich systems.
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Representation at the Object Level. Another point concerns the distinction between

object- and meta-level. A closer look at the de�nition of the set of licensed readings

in (7.21) shows that it is de�nable in the same term language in w hich the readings

themselves are represented. In other words, PTCT is no meta-level approach to under-

speci�cation, in contrast to virtually all other approaches di scussed in this thesis. All

involved structures and functions (such as the �lters) are de�ne d in the very same lan-

guage and not as a separate constraint language on top of an object language. Hence

they are subject to the same inferencing procedures that are available for the rest of the

PTCT system.

Expressive Completeness. Due to the rich constraint language it should in principle

be possible to achieve expressive completeness easily. However, as pointed out above,

the simple QRk -pairs cannot properly represent complex sentences with more thanone

involved relation. As a step towards expressive completeness,I have given a sketch

of an extension of the system to nested structures which aims at solving the problem

along the lines of Keller (1988) and Willis (2000). Still muc h more needs to be done,

e.g. extending the de�nition of �lters to work on nested structure s. I conjecture, that

eventually it should be possible to achieve expressive completeness in PTCT.

Ef�ciency of Filtering. At �rst sight it may seem that the enumeration of readings

in the �ltering approach described above has essentially a generate-and-test character.

However, as Shalom Lappin (p.c.) pointed out, the �lters can be directly used in the

process of this enumeration to cut down on the number of computed readings as follows.

In order to generate all possible permutations of somek-tuple 〈Q1; : : : ; Qk〉 of scope-

taking elements, the algorithm starts with a 1-tuple containing only the �rst element Q1.

Then the next element Q2 is inserted at each possible position in this 'tuple' yielding

two new 2-tuples 〈Q2; Q1〉 and 〈Q1; Q2〉. This step is repeated iteratively with the next

scope-taking element, which is inserted in each of these tuples at each possible position

until all k scope taking elements have been used. The effect of this algorithm can be

illustrated with a tree, where at each level i the insertion of Qi into the tuples from the

previous level i − 1 is depicted.

(7.37) 〈Q1〉h h h h h h h h hh
((((((((((

〈Q1; Q2〉` ` ` ` ` `̀
       

〈Q1; Q2; Q3〉 〈Q1; Q3; Q2〉 〈Q3; Q1; Q2〉

〈Q2; Q1〉` ` ` ` ` `̀
       

〈Q2; Q1; Q3〉 〈Q2; Q3; Q1〉 〈Q3; Q2; Q1〉
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Such a permutation algorithm can be straightforwardly extended such that it checks

at each insertion step whether the resulting tuple satis�es the applicable �lters. For

instance, consider the QR3-pair

(7.38)



〈 Q1; Q2; Q3 〉 ; �x�y�z: show(x; y; z)
�

corresponding to the full six readings of the chocolate companyexample again, where

Q1 = �P: ∃x(sample(x) ∧ P(x))(7.39)

Q2 = �P: ∀x(manager(x) → P(x))

Q3 = �P: �ve (x; salesrep(x); P(x))

Furthermore assume, that the anaphoric �lter �lter anaph in (7.29) is active, i.e. assume

that contextual information induced by anaphoric reference inf ormation rules out those

readings, where Q1 is outscoped byQ2 or Q3. If the permutation algorithm described

above checks each generated tuple for satisfaction of�lter anaph , the 2-tuple 〈Q2; Q1〉
will be discarded during the insertion of Q2 as it does not satisfy the �lter. Hence, in the

subsequent insertions ofQ3 into the remaining 2-tuple 〈Q1; Q2〉 only three tuples will be

generated, of which 〈Q3; Q1; Q2〉 will be immediately discarded as it does not satisfy the

�lter. This particular instance of the permutation algorithm i s illustrated in the following

tree (7.40), where the discarded tuples have been boxed.

(7.40) 〈Q1〉` ` ` ` ` `̀
       

〈Q1; Q2〉` ` ` ` ` ``��
       

〈Q1; Q2; Q3〉 〈Q1; Q3; Q2〉 〈Q3; Q1; Q2〉

〈Q2; Q1〉

Obviously, the algorithm performs only 6 insertions as opposed to the full9 insertions of

(7.37). Making use of �ltering information while enumerating th e readings can actually

prune the tree of intermediate results and hence yield an increase in ef�ciency. In partic-

ular, it may not be necessary to compute the full set of readings. Of course, this depends

on the particular order in which the scope-taking elements are inserted. For instance,

if the permutation algorithm was applied to the QR 3-tuple above with the quanti�ers

ordered as in (7.6), immediate applications of the �lter �lter anaph would not lead to any

reduction of intermediate results as the dynamic existential quanti�er would be inserted

last. Therefore the approach still needs to generate all possible permutations and thus

runs into the combinatorial explosion problem in the worst case.



7.3. Conclusion 146

First-Order Issues As the entire system of PTCT is essentially a rich �rst-order logical

system, it inherits the characteristics w.r.t decidability and enumerability. This is dis-

cussed in length in (Fox and Lappin, 2005a, Chapter 9 & 10). For instance, as (the set of

valid sentences of) �rst-order logic is undecidable, PTCT is undecidable. With the inclu-

sion of a full number theory based on the Peano axioms, PTCT imports the full power of

arithmetic and hence fails to be recursively enumerable. As the authors point out, limit-

ing the number theory to Presburger arithmetic restores decidability. However, although

(Fox and Lappin, 2005a, Section 6.7) state that Presburger arithmetic is suf�ciently ex-

pressive to characterize the truth conditions of generalized quanti�ers, it remains to be

seen whether Presburger arithmetic is expressive enough to dealwith the computation

of the permutation indices needed for the underspeci�ed representations. In any case,

the PTCT system is far beyond feasibility in the sense of polynomial computability that

has driven the design of the expressively weak formalisms discussed in the preceding

chapters.

At this stage it is fair to bring the approach of Muskens (2001) back to mind, which

has been brie�y discussed in Section 4.7.2. Muskens (2001) alsode�nes a system with

the power of �rst-order logic and is thus subject to the same discussion on �rst-order

issues from above. The approach is expressively complete as e.g.disjunction can be

used to conjoin complete speci�cations of single trees, as inthe case ofN_ from Section

6.1. However, Muskens (2001) does not discuss the issue of disambiguation by imposing

additional constraints on the described tree structures at all, which is the reason I left his

approach aside in this discussion and focussed on PTCT, where these issues have been

elaborated to a considerable extent in (Fox and Lappin, 2005a,b).

7.3 Conclusion

This Chapter is meant to show that there are clear bene�ts of employing an expressively

powerful formalism, namely the capability to make empirically adequate and natural yet

formally precise statements on issues of underspeci�cation. The former point refers to

the fact that in powerful systems such as PTCT (or (Muskens, 2001) for that matter) one

can achieve expressive completeness, i.e. characterizeall naturally occurring readings.

The latter point refers to the ability to make intuitively reaso nable and descriptively

adequate statements about underspeci�cation, such as general formulations of �lters

encoding contextual information about disambiguation. Unsurprisingly, one has to pay

for this increase in expressive power with increased computational complexity.



Chapter 8
Conclusion

8.1 Summary

In this thesis I have adopted a general and abstract view on scope underspeci�cation

based on a formal de�nition of underspeci�cation formalism. A URF was very generally

de�ned as a set of objects — the underspeci�ed representations —together with a li-

censingmapping that determines what each such object represents. Thisabstract view

facilitates a clean de�nition of two requirements on URFs, which have been used only

vaguely in the literature so far despite their fundamental status.

The �rst requirement about the existence of partial disambiguations carries not much

content, if it is not speci�ed, which partial disambiguation s one talks about. The second

requirement of compactness is supposed to relate to the desire toavoid combinatorial ex-

plosion, but again it is not clear what this means from a formal point of v iew. However,

in order to evaluate URFs w.r.t. these requirements, it is necessaryto provide formaliza-

tions.

To give the requirement on the existence ofpartial disambiguations some content, was

the purpose of the discussion onexpressive completeness. Generally speaking, a represen-

tation formalism is expressively complete if it provides representations for everything

that needs to be represented. In the context of underspeci�cation, expressively com-

plete formalisms are capable of representing all ambiguities that can possibly occur in

natural language. Motivated by two concrete examples and general arguments about

disambiguation by context I argued in line with K önig and Reyle (1999) that disam-

biguation is unconstrained in principle and that therefore any set of readings can occur

in natural language at some point. This led to a formalization of the notion of expressive

completeness of URFs.

147
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I applied this de�nition to four prominent approaches to unders peci�cation, namely Nor-

mal Dominance Constraints, Hole Semantics, Minimal RecursionSemantics, and Under-

speci�ed Discourse Representation Theory. I dubbed this familyvariable/constraint ap-

proachesas its members share certain key features concerning the use of meta-variables

and the interpretation of constraints on combination of object language parts. All these

formalisms turned out to be expressively incomplete, which answers a long-standing

question raised by K̈onig and Reyle (1999). These results imply that the formalisms un-

der consideration are not capable of representing certain ambiguities occurring in nat-

ural language, which has been exempli�ed with the two concrete examples mentioned

above. Due to the abstract approach I adopted, the failure to provide a representation

for a certain set of readings implies the failure to provide a representation for an entire

class of sets of readings, what I calledpatterns of ambiguity.

As a side effect of the incompleteness proofs, a comparison of the investigated for-

malisms is straightforward. Here it turns out that Hole Semantics, NDCs, and MRS

differ in expressive power. While the former is the expressively weakest, the latter two

are incomparable. This shows that the different ingredients of these formalisms, such

as shared meta-variables, inequalities and sensitivity to the nature of functors, indepen-

dently contribute to an increase in expressive power and cannotbe simulated by each

other. An extension of Hole Semantics with shared meta-variables has been shown to be

the core that is common to all the formalisms.

In order to achieve expressive completeness, two naive proposals have been put forward.

As it turned out, those proposals seemed to suffer from the combinatorial explosion

problem. In order to facilitate a detailed investigation, I pro posed a formal de�nition of

the secondcompactnessrequirement as a restriction on the size of the representations of

URFs. I then showed that under some natural assumptions, a URF cannot be expressively

complete and compact at the same time. This brings out the tension that is involved in

the two requirements, one asking for expressive richness while the other puts restrictions

on the complexity of achieving this. As I have pointed out, this seems to be a new

insight as the prevailing body of work has focussed on devisingef�cient procedures

of underspeci�cation while at the same time neglecting issues of expressivity or even

assuming that expressive completeness is achieved nevertheless.

Finally I have shown that adopting the formal semanticists point of view, i.e. focussing

on expressivity and adequate linguistic descriptions, is certainly possible in rich expres-

sive languages. I used the system of Property-Theory with Curry-Typing, sketched an

extension towards expressive completeness and elaborated on the issue of de�ning �ne-

grained and precise �lters to precisely express the effects of disambiguation.

I think that it is in fact necessary to complement the prevailing body of work done from
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the computational semanticists point of view by such theoretical work on underspeci�ca-

tion. First of all, it is essential to engage in a discussion onexpressive completeness, i.e.

the expressive power needed by URFs to qualify as adequate formalisms for representing

natural language ambiguities. Expressively rich formalisms can contribute to this discus-

sion as they can be used to precisely describe effects of disambiguation and the resulting

ambiguities. After such foundational issues have been clari�ed to some extent, one can

think about the weaknesses and strength of existing URFs gearedtoward ef�ciency and

implementation and think about how to overcome the former.

8.2 Outlook

This latter point already hints at a direction for further researc h, namely an elaboration

of the underspeci�cation approach of PTCT (Fox and Lappin, 2005a). As pointed out

in Section 7.2, further work needs to be done in order to make the PTCT approach

expressively complete. A step towards this goal has already been sketched in this section

by introduction of nested structures. This extension and the necessary adaptation of

the involved functions and �lters should be �eshed out and form alized. With such a

rich system it would then be possible to precisely describe effects of disambiguation by

de�nition of appropriate �lters as indicated. A thorough invest igation of those effects

and elaborate de�nitions of �lters are an interesting undertakin g that contributes to the

understanding of reasoning in discourse.

Considering expressive completeness it may be natural to extend the incompleteness

results and the comparison to further approaches. In particular, it may be interesting

to have a closer look at theexistential positive conjunctive fragmentFOL9;^ of �rst-order

logic, which has been investigated in Kerdiles (2001) w.r.t. complexity and in comparison

with various extensions. The formulas of FOL9;^ are existentially quanti�ed conjunctions

of atomic formulas. In fact, the NDC approach (cf. Section 4.3) and the approach of

Kallmeyer (1999) (cf. Section 4.7.2) are instances of this fragment. In order to use the

fragment for underspeci�cation, one could start by restricting t he atomic formulas to

binary predications of the form R(x; y), where R is some tree relation among{/ � ; /; : : : }
and to unary predications of the form L f (x), where L f is a unary labeling predicate for

each functor f ∈ Σ. The class of models could then be restricted to �nite Σ-labeled

trees/terms and constructiveness could be achieved by de�ning the licensed set of a

formula w.r.t. to its minimal models. Intuitively speaking, it seems reasonable to assume

that FOL9;^ , when regarded as a URF in this way, is also expressively incomplete. Due to

the positive and conjunctive construal, a formula can only 'talk about' the information

which is common to all the elements in some set that it is supposed to license. Hence,
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if the common information is not suf�cient enough to rule out un wanted terms (such

as in the examples in this thesis), then it seems thatFOL9;^ should not be capable of

providing a formula for such a set. A proof of the expressive incompleteness ofFOL9;^

would subsume the proofs for various other approaches (e.g. NDCs)and indicate, that

indeed some means to talk about disjunctive or negative information have to be provided

by a formalism in order to achieve expressive completeness.

Another line of prospective work may aim to solve the problem of the missing empirical

basis, pointed out in Section 3.4. Of course the preparation of anappropriate large-

scale hand-tagged and fully disambiguated corpus of intricate ambiguity information is

a major undertaking for probably several research projects. But ona smaller scale it may

be instructive to start with an investigation of existing corpo ra, which could show how

pervasive the problem of massive ambiguity actually is. A further interesting question

concerns sentence comprehension. It would be interesting to elucidate why competent

speakers have no dif�culties in understanding massively ambiguous expressions while

they seem incapable of attributing disambiguated meanings to such expressions. One

might think that the latter failure can be explained as a perform ance issue, but this would

still leave the question why comprehension works without any performance problems

whatsoever.



Appendix A
Proofs

A.1 Normal Dominance Constraints

Lemma A.1 (Monotonicity)

Let ' be an NDC andC be a set of dominance and inequality literals such that' ∪ C is

a NDC. ThenLNDC(' ∪ C) ⊆ LNDC(' ).

Proof. Suppose � is a constructive solution of ' ∪ C. Then due to the conjunctive

interpretation of literals, � |= ' and � |= C. Therefore, if � ∈ LNDC(' ∪ C) then

� ∈ LNDC(' ).

Lemma A.2 (Independence of Meta-Variable Names)

N is independent of meta-variables names.

Proof. Let ' be a dominance constraint and� be a bijective mapping

(A.1) � : Var(' ) −→ V

from the variables in ' to some set of variablesV . Let �̃ be the extension of � to

dominance constraints as follows:

�̃ (' ∧ ' 0) := �̃ (' ) ∧ �̃ (' 0)

�̃ (X : f (X 1; : : : ; X n)) := � (X ) : f (� (X 1); : : : ; � (X n))

�̃ (X / � Y ) := � (X ) / � � (Y )

�̃ (X 6= Y ) := � (X ) 6= � (Y )

Then the following holds: If � |=� ' then � |=(� � � � 1 ) �̃ (' ) and if � |=� �̃ (' ) then

151
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� |=(� � � ) ' . This means that a tree/term � sati�es an NDC ' if and only if it satis�es

the 'renamed' constraint �̃ (' ). Thus we haveLNDC(' ) = LNDC(�̃ (' )) for each dominance

constraint ' and bijection � form the variables of ' to V .

Lemma A.3
Let ' be a NDC such thatΓ(' ) is a set and� ∈ [Γ(' )]. Then the following holds:

1. � |= X f : f (v1; : : : ; vn) iff for every vi of form X g for some g ∈ Γ(' ) it holds that

f / i
� g.

2. � |= v 6= v0 iff v; v0 are distinct variables and if {v; v0} = {X f
i ; X g} for some

f; g ∈ Γ(' ) (i.e. if one is a argument variable and the other a labeled variable)

then f / i
� g does not hold.

3. � |= X f
i / � X g iff f / i �

� g.

Proof. First note that the tree relations can be stated on the functors directly, as each

functor occurs only once in ' and hence any solution. Let us write df for the unique

node in � that is labeled with f . If � is a solution for ' , then

(A.2) � :
X f 7→ df

X f
i 7→ d_

f i

is the unique witnessing embedding, which is induced by the labeling in ' . We apply

the de�nition of satisfaction and the de�nition of this indu ced embedding.

1. � |= X f : f (v1; : : : ; vn) iff `(� (X f )) = f and for all 1 ≤ i ≤ n : � (vi ) = � (X f )_ i .

As � (X f ) = df we have

(A.3) `(� (X f )) = `(df ) = f

by de�nition. Furthermore for every vi of the form X f
i we have

(A.4) d_
f i = � (X f

i ) = � (X f )_ i

by de�nition again. The only thing left to be checked is that f or all vi of the form

X g it holds that dg = � (X g) = d_
f i . This is true excactly iff f / i

� g.

2. � |= v 6= v0 iff � (v) 6= � (v0). As the form of inequality literals is completely

unrestricted we look at different cases separately:

• if v = X f
i ; v0 = X g then � |= v 6= v0 iff d_

f i 6= dg iff f / i
� g doesnot hold. The

same is true for v = X g; v0 = X f
i .
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• if both v; v0 are labeled or both are holes then� (v) 6= � (v0) by de�nition and

therefore � |= v 6= v0 holds.

In summary, � |= v 6= v0 iff v; v0 are distinct variables and if {v; v0} = {X f
i ; X g}

then f / i
� g does not hold.

3. � |= X f
i / � X g iff � (X f

i ) / �
� � (X g) iff d_

f i / �
� dg iff f / i �

� g.

Example A.4
Suppose that Γ = {f 1; g2; x0; y0} is a set of functors and that we have a NDC ' with

constructive solutions in [Γ]. For instance, we may have the following constraint:

(A.5) ' = X : f (Y ) ∧ U : g(V; W) ∧ S : x ∧ T : y ∧

X 6= U ∧ X 6= S ∧ X 6= T ∧ S 6= T ∧ S 6= U ∧ T 6= U ∧

V 6= X ∧ W / � T

A closer inspection of the �rst line reveals that ' contains exactly one labeling literal

for each functor in Γ, i.e. its constructive solutions will indeed be in [Γ]. Furthermore

the constraint ful�ls all requirements of the normality de�niti on, such as the inequality

literals on labeled variables (N4) which are in the second line. The last line contains an

additional inequality literal V 6= X and a dominance literal W / � T, where W is a hole

and T is a root as required by (N3). Therefore we can apply our considerations from

above and rename the variables accordingly as follows:

(A.6) ' = X f : f (X f
1) ∧ X g : g(X g

1 ; X g
2) ∧ X x : x ∧ X y : y ∧

X x 6= X y ∧ X x 6= X g ∧ X f 6= X g ∧ X f 6= X x ∧ X f 6= X y ∧ X y 6= X g ∧

X g
1 6= X f ∧ X g

2 / � X y

Now we can make use of the fact, that all information about the solutions is actually

encoded in the meta-variable names, and apply Lemma A.3. Let uscheck, whether

the tree/term � = gfxy (which has been used in Example 2.6 already) is among the

solutions of ' . According to the Lemma we need to inspect the tree relations/ i �
� and / i

� .

The tree diagram and the relations are as follows.

g
QQ��

f

x

y

/ 1
� := {gf ; fx }

/ 2
� := {gy}

/ 1�
� := {gf ; fx ; gx}

/ 2�
� := {gy}
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It is clear that � |= ' iff � satis�es each literal. Let us check the labeling literals �rst.

According to the Lemma,gfxy |= X f : f (X f
1) iff for every argument variable of the form

X g for some g ∈ Γ it holds that f / i
� g. Therefore this literal is certainly satis�ed as the

only argument variable X f
1 is not of this form. The same holds for the other labeling

literals of ' as an inspection shows. Thus all labeling literals are satis�ed by � (and in

fact by any other tree in [Γ]).

Now consider the inequality literals which are imposed by the normality de�nition,

shown in the second line. The Lemma tells us that� |= X x 6= X y iff X x and X y are dis-

tinct variables (which is obviously true) and if {X x; X y} = {X f
i ; X g} for some f; g ∈ Γ

(i.e. if one is an argument variable and the other a labeled variable) then f / i
� g does

not hold (i.e. the functor corresponding to the argument variable does not i -dominate

the functor of the labeled variable in � ). As both are labeled variables this if-case does

not apply and therefore the literal is ful�lled. We can see at thi s point already that all

the inequality constraint imposed by (N4) of the normality de� nition will be satis�ed,

simply because the variables will be distinct as the corresponding nodes carry different

labels. Again, this is true for any tree in [Γ].

This leaves us with the remaining two literals. The �rst one is th e inequality literal

X g
1 6= X f which is satis�ed by � if the variables are distinct (which again is obviously

true) and the following holds in addition: if one variable is an argument variable and

the other a labeled variable then the functor corresponding to the argument variable

does not i -dominate the functor of the labeled variable in � . In this case the if-clause is

applicable as the literal relates the argument variableX g
1 to the labeled variable X f and

thus we have to see whetherg / 1
� f does not hold. However, in � it doeshold that g / 1

� f .

Therefore this literal is not satis�ed by � and thus � fails to satisfy the constraint ' . If we

look at the term � 0 = gyfx however, matters are different. Again all the labeling literals

and the inequality literals imposed by (N4) in the second line are satis�ed. And this

time, X g
1 6= X f is also satis�ed as can straightforwardly be read off the tree relations.

g
QQ��

y f

x

/ 1
� 0 := {gy; fx }

/ 2
� 0 := {gf }

/ 1�
� 0 := {gy; fx }

/ 2�
� 0 := {gf ; gx}

Here it does nothold that g / 1
� 0 f . Now the �nal literal X g

2 / � X y needs to be checked for

satisfaction. According to the Lemma this literal is satis�ed by � 0, if g/ 2�
� 0 y. Unfortunately,

this is not true in the present case and thereforegyfx is no solution either. One term that

actually satis�es ' is � 00= gxfy . Here all the literals are satis�ed, including X g
2 / � X y

as we have g / 2�
� 00 y. Eventually, the entire set of terms licensed by ' is LNDC(' ) =

{gxfy ; fgxy }.
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Proposition A.5
Let ' be a NDC with Γ(' ) a set. Suppose thatP ⊆ [Γ(' )]. Let us write P |= ' if � |= '

for all � ∈ P. Then the following holds:

1. P |= X f : f (v1; : : : ; vn) iff for every vi of the form X g it holds that

〈f; g 〉 ∈
\

� 2 P

/ i
�

2. P |= v 6= v0 iff v; v0 are distinct variables and if {v; v0} = {X f
i ; X g} then

〈f; g 〉 ∈

 
[

� 2 P

/ i
�

!

3. P |= X f
i / � X g iff

〈f; g 〉 ∈
\

� 2 P

/ i �
�

Proof. Straightforwardly from Lemma A.3. Concerning 2., note that if {v; v0} =
{X f

i ; X g} then P |= v 6= v0 iff for all � ∈ P : 〈f; g 〉 =∈ / i
�

iff for all � ∈ P : 〈f; g 〉 ∈ / i
�

iff 〈f; g 〉 ∈
T

� 2 P / i
�

iff 〈f; g 〉 ∈
� S

� 2 P / i
�

�

A.2 Hole Semantics

Lemma A.6 (Monotonicity)

Let 〈⊤; L; C 〉 be a USR andC0a set of constraints such that〈⊤; L; C ∪ C0〉 is a USR. Then

(A.7) LHS

�

⊤; L; C ∪ C0�� ⊆ LHS (〈⊤; L; C 〉) :

Proof. Let t ∈ LHS(〈⊤; L; C ∪ C0〉) due to an admissible pluggingp (such that � p(⊤) = t).

Then, by de�nition of admissibility, (C ∪ C0) ⊆ / p. HenceC ⊆ / p and p is an admissible

plugging for 〈⊤; L; C 〉. Therefore t ∈ LHS(〈⊤; L; C 〉)

Lemma A.7 (Independence of Meta-Variable Names)

H is independent of meta-variable names.
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Proof. Let u = 〈⊤; L; C 〉 be a USR and� be a bijective mapping

(A.8) � : Var(u) −→ V

from the variables in u to some set of variablesV . Let �̃ be the extension of � to USRs

which is de�ned pointwise as follows:

�̃ (〈⊤; L; C 〉) :=
D

�̃ (⊤); �̃ (L ); �̃ (C)
E

�̃ (l : f (h1; : : : ; hn)) := � (l) : f (� (h1); : : : ; � (hn))

�̃ (h ≤ l) := � (h) ≤ � (l)

For L and C, �̃ is de�ned elementwise. Let t ∈ LHS(u) due to an admissible plugging p

(i.e. C ⊆ / p). Then1 �̃ (p) is an admissible plugging for �̃ (u) as �̃ (C) ⊆ �̃ (/ p) = / ~� (p) .

Furthermore � p(k) = � ~� (p)(� (k)) for all k ∈ Var(u) and thus t ∈ LHS(�̃ (u)). Similar

reasoning proves the other direction and henceLHS(u) = LHS(�̃ (u)).

Proposition A.8
Let Γ be a set of functors andP ⊆ [Γ] be a set of terms that cannot be licensed inH. Let

CP be the set of well-formed constraints in
T

� 2 P / p� . Then no setP0 such that

(A.9) P ⊆ P0 ⊂ LHS ( 〈⊤; L � ; CP 〉)

can be licensed inH.

Proof. For perspicuity, let us in the following abuse notation and wri te LHS(C) short

for LHS ( 〈⊤; L � ; C 〉) for sets of constraints C. As P ⊆ P0 we obviously have CP 0 ⊆
T

� 2 P 0 / p� ⊆
T

� 2 P / p� . Hence CP 0 ⊆ CP . Due to the monotonicity of the licensing

relation (cf. Lemma A.6) it holds that LHS(CP ) ⊆ LHS(C0
P ). Now assume that u0 =

〈⊤; L � ; C0〉 is a licenser of P0. According to the Form Criterion 4.17 it holds that C0 ⊆
CP 0. This leads to the following contradiction:

(A.10) LHS(CP ) ⊆ LHS(CP 0) ⊆ LHS(C0) = P0 ⊂ LHS(CP )

Therefore the assumption was wrong andP0 does not have a licenser. As it is obvious

from the contradiction, this reasoning works for all sets P ⊆ P0 ⊂ LHS(CP ).
1In β̃(p) the plugging function p is understood as relation, on which β̃ is de�ned pointwise. E.g. if

p(h) = l then β̃(p)(β(h)) = β(l).
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A.3 Minimal Recursion Semantics

A.3.1 Basic De�nitions

Scope-resolved MRS structuresare those MRS structures that correspond to trees/terms:

the outscope relation is actually a tree dominance relation (1. & 2.) and all EPs are

connected as all holes (including the top hole) occur as labels (3.). Further all constraints

have to be ful�lled (4.).

De�nition A.9 (Scope-Resolved MRS Structure)

An MRS structure 〈⊤; E; C 〉 is scope-resolvediff

1. / E is a tree dominance relation with root ⊤,

2. the argument handles in each EP are mutually different,

3. LVar(E ) = RVar(E ) ∪ {⊤}, and

4. every constraint h =q l ∈ C is either trivial (i.e. of the form l =q l ) or it holds that

h / qeq
E l .

Now we can make precise what it means for some MRS structure to 'lead to' a scope-

resolved structure. The crucial relation here islink-subsumption(Copestake et al., 1999,

cf.) which orders the MRS structures according to their degree of explicitness about the

dominance of EPs. An MRSm structure link-subsumes another MRS structurem0 if there

are one or more holes that have been identi�ed with labels in m0 (i.e. the dominance

has been made explicit) but not yet in m. The formal details of these concepts have not

been spelled out by Copestake et al. (1999). I propose to realize this identi�cation of

holes and labels viasimple substitutions.

De�nition A.10 (Substitution on Handles)

A substitution � on an MRS structure〈⊤; E; C 〉 is a mapping

(A.11) � : Var(E ) ∪ {⊤} −→ Var(E ) ∪ {⊤}:

Let us write � as [h1=� (h1); : : : hn=� (hn)] where we omit all pairs of the form hi =hi . A

substitution is called simpleif it is of the form [h=h0] (i.e. it renames exactly one handle).

On MRS structures,� is de�ned componentwise, i.e.

(A.12) �
�
〈⊤; E; C 〉

�
= 〈� (⊤); � (E ); � (C)〉

and pointwise on E and C.
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De�nition A.11 (Link-Subsumption)

Let m and m0be MRS structures. Thenm link-subsumesm0 (written as m ⊑ m0) iff there

is a series of simple substitutions� 1; : : : ; � n such that

(A.13) � 1(· · · (� n(m)) · · · ) = m0

Thus m link-subsumesm0 if m0 is the result of consecutively replacing one handle inm

by some other handle (and thus getting rid of the �rst one). Note that this de�nition,

which is based on a series of simple substitutions guarantees that handles are indeed

identi�ed and not just 'swapped' as it would be possible using a (non-simple) substitu-

tion [h=h0; h0=h].

De�nition A.12 (Well-Formed MRS structure)

An MRS structure is well-formed iff it link-subsumes one or more scope-resolved MRS

structures.

A.3.2 Deriving the Form Criterion

Lemma A.13 (Monotonicity)

Let 〈⊤; E; C 〉 be a well-formed MRS structure and C0 be a set of constraints such that

〈⊤; E; C ∪ C0〉 is still a well-formed MRS structure. Then

(A.14) LMRS

�

⊤; E; C ∪ C0�� ⊆ LMRS

�
〈⊤; E; C 〉

�

Proof. Let t ∈ LMRS(〈⊤; E; C ∪ C0〉) by virtue of some series of simple substitutions

� 1; : : : ; � n . Let us write � = � 1 ◦ : : : ◦ � n for the composition of these simple substi-

tutions. Then � (〈⊤; E; C ∪ C0〉) = 〈� (⊤); � (E ); � (C) ∪ � (C0)〉 is scope-resolved. Hence

〈� (⊤); � (E ); � (C)〉 = � (〈⊤; E; C 〉) is scope-resolved andt ∈ LMRS(〈⊤; E; C 〉).

Lemma A.14 (Independence of Meta-Variable Names)

M is independent of meta-variable names.

Proof. Let m = 〈⊤; E; C 〉 be a well-formed MRS structure and� a bijective mapping

(A.15) � : Var(m) −→ V

from the variables in m to some set of variablesV . Let �̃ be the extension of � to MRS
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structures which is de�ned componentwise, elementwise and asfollows:

�̃ (l : f (h1; : : : ; hn)) := � (l) : f (� (h1); : : : ; � (hn))

�̃ (h =q l) := � (h) =q � (l)

Let t ∈ LMRS(m) due to a series of simple substitutions � 1; : : : ; � n such that

� n(· · · (� 1(m)) · · · ) = m0 and � (m0) = t. Then2 �̃ (� 1); : : : ; �̃ (� n) is a series of simple

substitutions such that

(A.16) �̃ (� n)
�

· · ·
�

�̃ (� 1)
�

�̃ (m)
��

· · ·
�

= �̃ (m0)

where �̃ (m0) is scope-resolved and hencẽ� (m) is well-formed. Obviously, � (�̃ (m)) = t

and henceLMRS(m) ⊆ LMRS(�̃ (m)). The other direction follows from similar reasoning.

As it is mentioned in (Copestake et al., 1999), there are several possibilities for iden-

tifying handles (and thus for simple substitutions, in my term s): equating two holes,

equating two labels, or equating a hole and a label. In the following let l : f (h1; : : : ; hn)
and l0: g(h0

1; : : : ; h0
m ) be two EPs of some well-formed MRS structurem.

First consider the equation of two holes, i.e. consider a simple substitution of the form

� = [k=k0] where k; k0 ∈ {h1; : : : hn ; h0
1; : : : ; h0

n}. If both k and k0 are arguments of the

same EP then this EP would contain the same handle twice in� (m). This cannot be

undone by further substitutions and therefore we could never arrive at a scope-resolved

MRS structures which demands all argument handles in one EP to be different according

to De�nition A.9.

If on the other hand k and k0 are from different EPs with labels l and l0, then both

l and l0 will share the hole k0 in � (m). This means that the hole k0 is dominated by

two distinct mother nodes in � (m). This again cannot be undone by further substitu-

tions and thus we could not arrive at any scope-resolved MRS structure because the fact

that k0 has to distinct mothers contradicts the requirement on the outscope relations of

being a tree dominance relation in De�nition A.9. Thus the equati on of two holes by

a substitution necessarily leads to an MRS structure, which cannot link-subsume any

scope-resolved MRS structure i.e. which is not well-formed. This in turn contradicts the

well-formedness of m and hence no such simple substitution can possibly participate in

the process of takingm to some scope-resolved MRS structure.

Furthermore equating two labels would form an EP conjunction. As I have set aside EP

conjunctions in this investigation, those simple substitution are ruled out as well. In

2Again, β̃ is de�ned pointwise on simple substitutions, i.e. β̃([k/k0]) = [β(k)/β(k0)].
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conclusion, only those simple substitutions will take one well-formed MRS structure to

another well-formed MRS structure, where one of the handles is a hole (without labeling

an EP) and the other a label (without occurring somewhere as a hole). Let us call the

former pure holes and the latter pure labels.

Now suppose thatm is a well-formed MRS structure, i.e. m link-subsumes one or more

scope-resolved MRS structuresm0. By de�nition, there is series of simple substitutions

� 1; : : : ; � n such that � n(· · · (� 1(m)) · · · ) = m0. Let � = � n ◦ : : : � 1 be the composition of

those simple substitutions. Now recall that all simple substitutions are of the form [h=l]
w.l.o.g.3, where h is a pure hole and l is a pure label. After application of one such

simple substitution, this hole and label are not available for further application of simple

substitutions as the hole has disappeared and the label is notpure any more. Therefore

the identi�cation of pure holes with pure labels is uniquely de termined by the simple

substitutions and hence� is bijective between the pure holes and the pure labels. On all

other handles � is the identity. The bijective assignment of pure holes to purelabels of �

is the MRS counterpart to the Hole Semantics pluggings from De�nition 4.12. However,

in the case of Hole Semantics we did not have to bother about the 'pureness' of holes and

labels as they have been 'pure' by de�nition because all holesand labels in some USR

had to be mutually distinct. Following Hole Semantics, let us call such a mapping, i.e. a

composition of simple substitutions which leads from some well-formed MRS structure

m to a scope-resolved MRS structure, aplugging for m.

Similar to Hole Semantics, let us de�ne the relation of � -dominanceE � on handles for

some plugging � for a set of EPsE as follows. k E � k0 holds if

1. k = k0, or

2. k : f (: : : ; k0; : : :) ∈ E, or

3. � (k) = k0, or

4. there is a k00such that k E � k00and k00E � k0.

So actually � -dominance is just an extension of the outscope-relation onm, i.e. it holds

that / E ⊆E � . Note that it is re�exive due to point 1. This re�exivity makes t he for-

mulation of the following comparison with the set of constrain ts straightforward 4. The

following Lemma is a �rst step towards a form criterion as it relates the set of constraints

C of a well-formed MRS structure m to the � -dominance of a plugging � that maps m to

a scope-resolved MRS structure.

3The simple substitution could as well be of the form [l/h], substituting the pure hole for the pure label.
However, by renaming l to h after the application of such a simple substitution we get the same result as
applying [h/l].

4To distinguish θ-dominance in MRS from p-dominance in Hole Semantics I usedE vs. ⊳, where the
indication of the equality in E should remind the reader of its re�exivity.
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Lemma A.15
Let m = 〈⊤; E; C 〉 be a well-formed MRS and� be a plugging for m. Then

(A.17) C ⊆ Eqeq
�

Proof. Let h =q l ∈ C be a constraint where h is a hole and l is a label. If h = l

then h Eqeq
� l due to the re�exivity of Eqeq

� . So suppose thath 6= l , let m0 = � (m)
and let E 0 be the set of EPs ofm0. As m0 is scope-resolved, the image� (h) =q � (l) of

the constraint h =q l is ful�lled in m0. By de�nition of scope-resolvedness it holds that

either � (h) =q � (l) is trivial, i.e. � (h) = � (l). Then h and l have been pure holes and

labels, respectively, and� (h) = � (l) = l . Henceh Eqeq
� l . Or it holds that � (h) outscopes

� (l) in m0, i.e. � (h) / qeq
E 0 � (l). Then there are consecutively outscoping labelsl0; : : : ; ln

such that l i : f i (: : : l i +1 : : :) ∈ E 0 (0 ≤ i ≤ n − 1) with � (h) = l0 and � (l) = ln due to the

de�nition of the outscope relation and the scope-resolvedness of m0. Furthermore the f i

are all �oating-scopal functors as the relation is qeq-restricted.

Now let hi be those holes in m for which � (hi ) = l i (0 ≤ i ≤ n). Then hi E � l i by

de�nition. In addition, l i : f i (: : : hi +1 : : :) ∈ E is the pre-image in m of the corresponding

EP l i : f i (: : : l i +1 : : :) ∈ E 0 (0 ≤ i ≤ n − 1). Then l i E � hi +1 for 0 ≤ i ≤ n − 1. In

conclusion, in m it holds that h = h0 E � l0 E � h1 E � l1 E � : : : E � hn = l . As all labels l i
label EPs with �oating-scopal functors, we have h Eqeq

� l in m.

Note that the re�exivity of E � enables us to treat trivial constraints of the form k =q k

on a par with non-trivial ones. In Hole Semantics we did not need the re�exivity of the

p-dominance relation as trivial constraints were not admitted.

Again, this result has a correspondence in Hole Semantics, namely the De�nition 4.13

of admissibility. However, in MRS admissibility is built into De�nition 4.24 of MRS

structures, as each MRS structure respects its constraints by de�nition. Therefore we

have to derive the Lemma above, instead of using it as a separateproperty of pluggings.

Due to this correspondence concerning the subset relation between plugging domi-

nances and the set of constraints we can proceed similarly to theway we did in the case

of Hole Semantics. Restricting our investigation tosets(instead of multisets) of functors

Γ, we can again recur to a distinguished set of variables where themeta-variable names

show the corresponding functors of the EPs as superscripts. Givena tree/term � of [Γ]
we can de�ne a corresponding set of EPs

(A.18) E � :=
n

l f : f (hf
1 ; : : : ; hf

n) | f n ∈ Γ
o

which is identical to the set of labeled formulas L � in (4.58). Note that in this set of
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EPs all holes and all labels are pure. Even more comfortably, we can now reuse the

tree pluggings p� of Hole Semantics, which have been de�ned in De�nition 4.16, as

pluggings in the MRS sense for the MRS structure〈⊤; E � ; ∅〉. The plugging p� is then

just the composition of the simple substitutions [h; p(h)] (h a hole) which maps 〈⊤; E � ; ∅〉
to the scope-resolved MRS structure which corresponds to� . Note that then Ep� is the

re�exive dominance w.r.t. p� as de�ned above.

Lemma A.16
Let m be well-formed MRS structure with Γ(m) a set. Then (modulo renaming of vari-

ables) for every scope-resolved MRS structurem ⊑ m0 such that � (m0) = � where � is a

substitution with � (m) = m0, it holds that

(A.19) Eqeq
� ⊆ Eqeq

p�

Proof. Let E and E 0 be the set of EPs ofm and m0, respectively. Then � (E ) = E 0.

Furthermore note that p� (E � ) = E 0 asp� is such that it identi�es each hole with a label

in E � .

Now note that m is as well based onE � with the difference, that some of the holes

may have been identi�ed with labels already. In other words, th ere is a series of simple

substitutions which can be composed to a substitution� such that E = � (E � ). Then we

get the following equation

(A.20) �
�
� (E � )

�
= E 0 = p� (E � )

Hence � ◦ � = p� and E � ⊆ Ep� . Note that � maps some (pure) holes ofE � to some

(pure) labels and � maps all remaining pure holes to the remaining pure labels such that

in E 0 all holes and labels have been identi�ed. So each (pure) hole in E � is directly

mapped to its label in E 0 by either � or � (and not due to a consecutive application of

both).

Concerning the qeq-restrictions, note that from R ⊆ R0we cannot concludeRqeq ⊆ R0qeq

in the general case5. However, in this special context, things are different. It is enough

to note that for two labels l E � l0 iff l Ep� l0. The 'only-if ' direction is clear as E � ⊆ Ep�

from above. For the 'if ' direction suppose that l and l0 are such that l : f (: : : h : : :) ∈ E �

and p� (h) = l0. This means that l Ep� l0 comes about becausel labels an EP with a hole,

in which l0 is plugged by p� . As p� has been shown to be composed of� and � , one of

the following two cases obtains:

5For instance, for two handles kRqeq k0 which are connected by somekRk1R . . . Rkn Rk0 such that the
corresponding functors are all �oating scopal, R0 may extend this sequence to. . . ki R0kR0ki +1 . . . where k
is a handle such that the corresponding functor isnot �oating scopal. Hence kR0qeq k0 would not hold.
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1. � (h) = l0. Then � (l : f (: : : h : : :)) = l : f (: : : l0: : :). This latter EP is in E and hence

l / � l0 holds by de�nition of � -dominance.

2. � (h) = l0. Then l : f (: : : h : : :) is in E and l / � h / � l0 holds again by de�nition of

� -dominance.

The transitive case ofl Ep� l0 follows from this straightforwardly. Now we can conclude

that Eqeq
� ⊆ Eqeq

p� becauseE � ⊆ Ep� and both relations coincide on the labels, which is

the crucial point w.r.t. the de�nition of the qeq-restriction.

This proposition, together with Lemma A.15 eventually gives us the following result

concerning the relation of the set of constraints of a well-formed MRS and its licensed

set.

Proposition A.17
Let m = 〈⊤; E; C 〉 be a well-formed MRS such thatΓ(m) is a set. Then the following

holds (modulo the renaming of variables):

1. E =
�

l f : f (v1; : : : ; vn) | f n ∈ Γ(m)
	

where eachvi is either of the form hf
i or lg for some g ∈ Γ(m)

2. If l f : f (v1; : : : ; vn) ∈ E and vi is of the form lg for some g ∈ Γ(m), then

〈f; g 〉 ∈
\

� 2L MRS(m)

/ i
�

3. If C0 are the non-trivial constraints in C, then

C0 ⊆
\

� 2L MRS(m)

/ qeq
p�

Proof. 1. Clear from the de�nition of � and the fact that substitutions do not change

the set of functors occurring in an MRS structure.

2. Recall that each substitution does not change any label (but only pure holes).

Therefore, if l f : f (v1; : : : ; vn) ∈ E and vi is of the form lg, then this EP will occur

in any scope-resolved MRS structurem0 which is link-subsumed by m such that vi

is still of the form lg. Hence, by de�nition of � , it holds that f / i
� g for � (m0) = � .

3. Due to the Lemmata A.15 and A.16,C ⊆Eqeq
� ⊆Eqeq

p� for each � ∈ LMRS(m). Setting

aside trivial constraints, one may use the non-re�exive version / qeq
p� .
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A.4 Comparing the Approaches

Proposition A.18
Let u be a USR ofH. Then LHS(u) = LNDC(uy).

Proof. Let � ∈ LHS(u) be one of the terms licensed byu by virtue of an admissible

plugging p. For some holeh ∈ RVar(u) ∪ {⊤} let dh be that node in (the tree domain of)

� which corresponds to h in the construction of � by � p. Then

(A.21) � :
h 7→ dh h a hole in RVar(u)
l 7→ dp� 1 (l ) l a label in LVar(u)

is an embedding for the NDC uy. Furthermore � is a solution of uy, i.e. it holds that

� |=� uy. The following proofs the case of satisfaction for dominanceliterals, the others

work similarly:

� |=� h / � l iff � (h) / �
� � (l)(A.22)

iff dh / �
� dh0 where p(h0) = l

As p is admissible,h ≤ l ∈ / p. By de�nition of / p, either p(h) = l and henceh = h0 and

dh / �
� dh0 holds trivially. Or there is a k such that h / p k and k / p l . Then h / �

p h0 and by

de�nition of � p we havedh / � dh0. As� p uses exactly the occurring functors of the labeled

formulas, � is a constructive solution. Hence� ∈ LNDC(uy) and LHS(u) ⊆ LNDC(uy).

In the other direction, assume that � ∈ LNDC(uy) by virtue of an embedding � . As � is

a constructive solution, each label is mapped to one node of� by � . Furthermore, the

holes must be mapped to mutually distinct nodes. As the number of labels exceeds the

number of holes by one we can de�ne the following plugging:

(A.23) p :
⊤ 7→ l if � (l) = "

h 7→ l if � (h) = � (l)

Now p is an admissible plugging for u. To see this, suppose� |=� h / � l for some

dominance literal in uy. Then � (h) / �
� � (l). Then either � (h) = � (l) and hencep(h) = l

and thus h / p l . Or there are labels l1; : : : ; ln such that � (h) = � (l1) / � : : : / � � (ln) / �

� (l). Then let ln+1 = l and hi be those holes for which � (hi ) = � (l i +1 ) (0 ≤ i ≤ n).
Then p(hi ) = l i +1 and therefore hi / p l i +1 (0 ≤ i ≤ n). Furthermore it follows that

l i : f (: : : hi : : :) must be some labeling literal in uy for some f (because� (l i ) / � � (hi )) and

hence l i / p hi (1 ≤ i ≤ n). Finally we get that h0 = h / p l = ln+1 and we can conclude

that p is admissible.



A.4. Comparing the Approaches 165

Suppose that l : f (: : :) is a labeling literal in uy. Note that if � (l) = " , then � p(⊤) =
f _ : : :, and if � (l) = � (h), then � p(h) = f _ : : :. Therefore we can conclude that� p(⊤) =
� . Hence� ∈ LHS(u) and LNDC(uy) ⊆ LHS(u). This �nally shows that both representations

are equivalent, i.e. that we haveLHS(u) = LNDC(uy).

Proposition A.19
Let Γ = {f 1; g1; h1; x0} be a set of functors and S = {fghx ; hfgx } be a set of terms

constructed out of these functors. ThenS cannot be licensed byH.

Proof. Assume that〈⊤; L; C 〉 is a USR that licensesS. Again we can conclude thatL =
L � is the set of labeled formulas. Concerning the constraintsC, we need to compute the

intersection of the corresponding plugging dominances (where the numerical subscripts

on the holes have been dropped as all functors are unary anyway).

\

� 2 P

/ p� =
� 


l f ; lx
�

;


hf ; lx

�
; 〈lg; lx〉 ; 〈hg; lx〉;



lh; lx

�
;


hh; lx

�
;(A.24)



⊤; l f

�
;


⊤; hf �

; 〈⊤; lg〉; 〈⊤; hg〉 ;


⊤; lh

�
;


⊤; hh�

; 〈⊤; lx〉;



l f ; hf �

; 〈lg; hg〉 ;


lh; hh�

;



l f ; lg

�
;


l f ; hg�

;


hf ; lg

�
;


hf ; hg� 	

The well-formed constraints in the listing above have been underlined again. They form

the maximal set of constraints CS which any licenser of S can possibly have.

(A.25) CS =
�

hf ≤ lx; hg ≤ lx; hh ≤ lx; ⊤ ≤ l f ; ⊤ ≤ lg; ⊤ ≤ lh; ⊤ ≤ lx; hf ≤ lg
	

Contrary to the cases before, not all the constraints inCS are vacuous w.r.t. the entire

set of terms. In fact, the constraint hf ≤ lg imposes the non-trivial requirement that

f must dominate g in any licensed term. This can be seen at the following constraint

graph illustrating CS.

⊤

l f : f (hf )

lh : h(hh)

lg : g(hg)

lx : x
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Now it is easy to see that

(A.26) LHS(〈⊤; L; CS〉) = {fghx ; fhgx ; hfgx }

becauseLHS(〈⊤; L; CS〉 comprises all terms in which f dominates g. As C ⊆ CS this

again yields a contradiction similar to the contradictions deri ved in the preceding sec-

tions.

(A.27) {fghx ; fhgx ; hfgx } = LHS(〈⊤; L; CP 0〉) ⊆ LHS(


⊤; L; C 0� ) = P0

Therefore there is no USR of Hole Semantics licensingS.

Proposition A.20
Let Γ = {f 1; g1; h1; i 1; j 1; x0} be a set of functors andT ⊆ [Γ] a set of terms as follows.

T = { hfgijx hfigjx ; hfijgx ; hifgjx ; hifjgx ; hijfgx ;

ihfgjx ; ihfjgx ; ihjfgx ; ijhfgx ; ijfghx ; ifjghx ;

fijghx ; ifgjhx ; figjhx ; fgijhx ; ifghjx ; fighjx ;

fgihjx ; fghijx ; hfgjix ; hfjgix ; hfjigx ; hjfgix ;

hjfigx ; hjifgx ; jhfgix ; jhfigx ; jhifgx ; jihfgx ;

jifghx ; jfighx ; fjighx ; jfgihx ; fjgihx ; fgjihx ;

jfghix ; fjghix ; fgjhix ; fghjix }

Then there is no NDC that licensesT.

Proof. Assume that' is an NDC such thatLNDC(' ) = T. Along the lines of the argument

in Section 4.3, we need to compute the following intersections in order to make use of

the Form Criterion 4.7:

/ 1
T :=

T
� 2 T / 1

� = ∅

6=1
T :=

� S
� 2 T / 1

�

�
= { fh ; fx ; gf ; hg;

ff ; gg; hh; ii ; jj

xf ; xg; xh; xi ; xj }

/ 1�
T :=

T
� 2 T / 1�

� = { fg ; fx ; gx; hx; ix ; jx }

Let us investigate the literals which correspond to these intersections according to the

Form Criterion 4.28. From the fact that / 1
T is empty we can conclude that there are no

shared holes/labels, i.e. we can conclude that the set of labeling literals L is as follows

(where the subscript indices at the holes have been omitted as all functors are unary):

(A.28) l f : f (hf ) lg : g(hg) lh : h(hh) l i : i (hi ) l j : j (hj )
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Regarding dominance literals, the maximal setD determined by / 1�
T is:

(A.29) hf / � lg hf / � lx hg / � lx hh / � lx hi / � lx hj / � lx

The set of I of inequality literals of ' will contain at least the inequality literals to ful�l

(N4) of the de�nition of normality, which requires there to be an i nequality literal for

each pair of distinct labeled variables.

(A.30) l f 6= lg l f 6= lh l f 6= l i : : :

Additionally, the following inequality literals can occur i n I due to the form of 6=1
T .

hf 6= lh hf 6= lx hg 6= l f hh 6= lg(A.31)

hf 6= l f hg 6= lg hh 6= lh hi 6= l i hj 6= l j

We now have again ' ⊆ (L ∪ D ∪ I ) according to the Form Criterion 4.7. In order to

compute LNDC(L ∪ D ∪ I ), observe that many of the literals above are vacuous w.r.t. the

trees in [Γ]. All inequality literals of the form hf 6= l f are trivially satis�ed as no label can

equal its argument hole and all inequality literals of the form l f 6= lg; f 6= g are trivially

satis�ed as two nodes must necessarily be distinct if they bear distinct labels. Finally,

all dominance literals of the form hf / � lx are trivially satis�ed as x is the only constant

in Γ and therefore necessarily has to be dominated by all other functors. Therefore the

remaining non-vacuous literals are:

(A.32) L ∪
�

hf 6= lh; hf 6= lx; hg 6= l f ; hh 6= lg; hf / � lg
	

Only these literals are decisive in the determination of LNDC(L ∪ D ∪ I ). Note that by

construction each term in T satis�es these literals. But unfortunately there are other

terms not in T which also satisfy these literals, namelyfihjgx and fjhigx , as can be

easily seen. In each of these two terms,f dominates g, f is neither the mother of h, nor

is g the mother of f , nor is h the mother of g. Therefore (L ∪ D ∪ I ) licenses a set larger

than T and we get the following contradiction using the monotonicit y Lemma A.1

(A.33) T ∪ {fihjgx ; fjhigx } = LNDC(L ∪ D ∪ I ) ⊆ LNDC(' ) = T

As with the incompleteness arguments before, this is an obvious contradiction and there-

fore our assumption must have been wrong: there is no NDC which licensesT.

Note that among the literals in (A.32) there are indeed those which can be used to

'simulate' the qeq-restriction in simple cases (namelyhf 6= lh and hh 6= lg) as discussed

in Section 5.3. In the more complex case ofT however, they do not suf�ce to simulate

the full expressive power of the qeq-constraint.
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