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Abstract

In this thesis, two requirements on Underspeci ed Representation Formalisnase investi-
gated in detail in the context of underspeci cation of scope. The requirement on partial
disambiguation, stating that partially disambiguated ambiguities need to be represented,
does not carry much content unless it has become clear, exactlyvhat those ambiguities
are. In line with Konig and Reyle (1999), | argue that all theoretically possible patterns
of ambiguity, i.e. subsets of readings, can occur in natural larguage and that therefore
an underspeci ed representation formalism can only be regarded asexpressively com-
plete if it provides representations for all of these subsets. This dscussion is couched in
a general formal setting, which facilitates clean de nitions and allows for the derivation
of formally precise results. With those formal de nitions at han d, various underspeci-
ed representation formalisms are evaluated. As it turns out, none of the investigated
formalisms is expressively complete, which answers a corresponidg question raised in
(Konig and Reyle, 1999). These incompleteness results allow foma straightforward com-
parison of the discussed approaches with respect to expressiveqgwer, which forms the
second contribution of this thesis.

The second requirement is theavoidance of combinatorial explosignwhich can only be
achieved if the involved representations are in some sense moreompactthan the mere
listing of the available readings, as | argue and elaborate. | pu forward a formal de-
nition of compactness that identi es avoidance of combina torial explosion with the
feasible construction of underspeci ed representations. As arother main result it is then
shown that — under two natural assumptions — the two requirements of compactness and
expressive completeness cannot be ful lled at the same time.This tension between these
two requirements has been neglected in the literature, which hasfocussed on ef cient
decision procedures and implementation. In a last part | show, how an approach that
is geared towards expressive richness can facilitate expressiveompleteness and precise
statements of disambiguating information.
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Chapter

Introduction

Scope ambiguities pose one of the most challenging problemsdr natural language se-
mantics. The following sentence is a classical example of aexpression that is ambiguous
between readings, which are induced by scope taking elements.

(1.1) Every child told two teachers some story.

For instance, (1.1) can mean that for every child, there were two teachers such that the
child told a different story to each of the two. Or it can mean tha t there were two speci ¢
teachers (e.g. the principal and his deputy), each of which had a geci c story (e.g. their
famous fairy tale) such that every child told the respective story to these teachers. In
fact, there are six different readings for (1.1), which correspond to the permutations of
the quanti cational noun phrases every child, two teacher, and a story.

In Montague (1974a,b,c), Richard Montague presented his in uential approach to nat-
ural language semantics. Montague proposed to treat scope amigiuities syntactically.
Therefore, in the Montagovian framework, scopally ambiguous satences receive mul-
tiple syntactic analysis — one for each reading. In Figure 1.1 the entire process of
interpretation of an expression e is depicted. If the expression isn-fold ambiguous be-

analysis S; of e. This syntactic analysis is then translated into an expressiori ; of some
intermediate logical language, which can in turn be interpreted asm;. Because of Mon-
tague's implementation of compositionality, this intermed iate language is dispensable in
principle. In the following, | will use the term 'reading’ for bo th the interpreted meaning

as well as for some logical expression representing it.

To be precise, a scopally ambiguous sentence is derived in more than one way ahhence 'receives'
multiple derivations.



Input Syntactic Logical Meaning
String Structure Formulae
S "1 - m
e
Sn "n > Mn
Parsing Translation Interpretation

Figure 1.1: Montague's framework

This strategy of calculating each reading of an ambiguous sergnce has been criticized
for several reasons.

Spurious Syntactic Analysis The Montagovian approach of a syntactic treatment of an
essentially semantic phenomena seems undesirable. There isonindependent rea-
son why a semantically ambiguous sentence should receive mor¢han one syn-
tactic analysis and therefore the move to deal with the ambiguity on the syntactic
level seems unwarranted.

Combinatorial Explosion One major problem with the Montagovian approach has be-
come well-known as the combinatorial explosionproblem. The term combinatorial
explosionrefers to the fact that natural language exhibits cases of massie ambigu-
ity. One often cited sentence in this contexf is

(1.2) A politician can fool most voters on most issues most of the tinme, but no
politician can fool all voters on every single issue all of the time.

This sentence consists of two clauses, each containing fouguanti ed NPs and one
modal verb (can). Taking into account that these ve scope-taking elements have
to take scope within their clauses, there are5! [51 = 14400 different possibilities of
arranging them. Although not all of those theoretically imagin able arrangements
of scope-taking elements correspond to available readings, tB number of actually
available readings is still massivé. In general, the number of distinct readings for
some expression withn scope taking elements isn! in the worst case. Any approach
that calculates all the different readings (such as the Montagovian framework)

has therefore to deal with n! different objects, a number which grows worse than
exponentially with n. From a computational point of view, it is very inef cient

to compute all n! readings. In general dealing with an exponentially growing

number of objects is regarded as infeasible. In particular, it is assumed that only

’see e.g. (Bos, 1995; Muskens, 1995; Poesio, 1996)
Scf. (Muskens, 1995)
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those procedures are feasible, which need a number of steps thais polynomial in
the length of the input.

Psycholinguistic Evidence It seems that human speakers often do not calculate differ-
ent readings at all. As in the case of (1.2) it is unlikely that a human speaker
entertains such a huge number of different readings simultaneaisly. On the con-
trary, often speakers are not evenaware that a sentence is ambiguous. Hence it
seems that humans reason with some kind ofunderspeci edstructure, which con-
tains some information about the scope taking elements but m&es no commitment
concerning their actual scope.

As the psycholinguistic considerations suggestUnderspeci ed Representation Formalisms
(URFs henceforth) aim at providing one single representation which stands proxy for
the entire set of readings of an ambiguous expression. The ideasg, that a scopally
ambiguous expression receive®ne syntactic analysis' out of which one underspeci ed
representation is constructed. This framework is depicted in Figire 1.2.

Input Syntactic Underspeci ed Meaning
String Structure Representation
e S - u - my
Parsing Construction Interpretation

Figure 1.2: Underspeci ed processing framework

The advantage over the Montagovian framework seems obvious. fere is no need to
calculate all the n! different syntactic analyses and readings in the worst case, but aly
one syntactic analysis, which is used to construct one underspeed representation that
somehow represents all readings simultaneously. Therefore it sems that one does not
run into the combinatorial explosion problem, as the calculation of the (potentially mas-
sive number of) readings is avoided. However, a closer look reeals that this is only
true if the URF meets certain requirements. Those requirements are dicussed in the
following section.

1.1 Requirements on Underspeci ed Representations

Requirements on underspeci ed representation formalism have been discussed infor-
mally by many researchers in underspeci ed semantics. The follaving are of particular
importance and will be investigated more closely in this thesis.

“modulo any independent syntactic ambiguity, of course, which | leave asidehere
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1.1.1 Partial Disambiguations

Up to this point we have only considered the worst case of a sentace bearingn quanti-

ers, the order of which was completely unrestricted. Therefore th e sentence was!-fold

ambiguous among readings that correspond to possible permutatns of the quanti er

sequence. However, natural language expression do not alwaysteow this worst case
behaviour, and the combinatoric possibilities of the scope tking elements may be re-
stricted. There are two cases which can be distinguished.

1. There are syntactic and semantic restrictions at the level of idividual sentences,
which restrict the set of possible readings. For instance, a reléive clause consti-
tutes a so-calledisland® for certain quanti cational NPs. Such an NP occurring in
a relative clause may not take scope outside of ®. In the sentence

(1.3) Two children who read every book were praised by a teacher.

the quanti ed NP every book occurs inside a relative clause. Although (1.3) con-
tains 3 quanti ed NPs, it does not exhibit 3! = 6 readings, but only two. One,
where there are two children, each of which read every book and each & which

was praised by a (possibly different) teacher. And another whee there is one
speci ¢ teacher (the principal, say) who praised two children, e ach of which read
every book. The quanti ed NP every book cannot contribute to the ambiguity of

the sentence as it is con ned to take scope inside the island i occurs in. Syntactic
and semantic restrictions like this one impose restrictions on te possible ambigu-
ities of a sentence. A sentence which is restricted in such a wayloes not have all
n! (theoretically) possible readings, but only a subset of them.

2. Sentences may badisambiguatedby discourse or by (possibly non-linguistic) con-
text. Consider, for instance, the following small piece of discourse, consisting of
(1.1) followed by another sentence:

(1.4) Every child told two teachers some story. It wasAlice in Wonderland

By using the anaphor It, the discourse makes explicit that only one speci c story
was involved in the tell events of the rst sentence, nhamely Alice in Wonderland

5(Ross, 1967)

8n this thesis | take inde nites such as two teachers to be quanti cational on a par with other NPs such
as every N and most N. This contrasts with other proposals where inde nites are construed to have no
quanti cational force on their own (e.g. Kamp and Reyle, 1993) or where the ambiguities involving indef-
inites come about due to a lexical ambiguity of the inde nite between a quanti ca tional and a referential
reading (e.g. Fodor and Sag, 1982) or introduction of a choice function (e.g. Reinhart, 1997). The latter
two approaches aim at an explanation of the fact that inde nites are kn own to be able to take scope out of
islands. That this is possible with a fully quanti cational construal of inde nit es (as it is adopted here) is
shown in (Ebert and Endriss, 2004), where the class of thesewide-scope inde nitess characterized on basis
of their inherent lexical semantic properties.
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The second, follow-up sentence serves talisambiguatethe rst one in favour of
a wide scope reading for some story. Thus disambiguation means, that from the
six readings, which (1.1) initially allowed, only two remain: o ne, in which for
every child there were two teachers such that the child told those two teachers
Alice in Wonderland And another, in which there were two speci ¢ teachers (e.g.
the principal and his deputy) such that every child told those tw o Alice in Wonder-
land. There is still some ambiguity left, which concerns the relation between every
child and two teachers. Therefore (1.1) has only been partially disambiguated in
contrast to a full disambiguation, where only one reading remains.

As the two points above illustrate, it is crucial for a URF to provide representations for
partially disambiguated structures, where the scope taking betaviour of some of the
scope taking elements is fully determined, although it remains undetermined for other
elements. For instance, there has to be a representation for thesix readings of (1.1), for

the two remaining readings in (1.4), and for the two readings in (1 .3). Although this

latter set of readings did not actually emerge through disambiguation, i.e. by restriction

of some larger set of readings, | will nevertheless subsume thisase under the heading
‘partial disambiguation'.

For the moment, let me simply state that an underspeci ed representation formalism
must provide representations for partial disambiguations

1.1.2 Compactness

To motivate the Compactnessequirement’, let me make a naive URF proposal. The
proposal is to represent all readings by the set they form. For inséince, if a sentence

represent all the readings without any preference for one of them.

However, this does not seem to be a sensible underspeci ed reprsentation, as it does
not underspecifyanything, intuitively speaking. In fact, to construct the repre sentation
from a syntactic analysis (cf. Figure 1.2) we still have to calculate each reading, and
thus we will run into the combinatorial explosion problem. Note however, that in this
case it is not due to the general architecture of the framework, but due to an implicit
problem with the de nition of the URF itself. Therefore combinat orial explosion can

"Note that compactnesss it is used here is not to be confused with the compactness property of logics
Here, compactness is a requirement on the syntactic part of an undengeci ed representation formalism,
whereas it is a property of entailment in the logical setting. Despite this possible source of confusion, |
decided to stick with the term compactas it is used in the vast majority of work on underspeci cation to
talk about concise representations.



1.2. Variable/Constraint Approaches 13

only be avoided, if the de nition of the URF allows for ef cien t construction of the
underspeci ed representations, which implies that the representations themselves must
be more compact than the complete enumeration of the readings.

This requirement is also mentioned in Konig and Reyle (1999). They call a representa-
tion underspeci ed

'[...] if it represents an ambiguous natural language sentence of &xt in a
more compact manner than [...] a disjunction of all its readings.'

(Konig and Reyle, 1999, p. 252)

My terminology differs somewhat from theirs. They make the compactness requirement
the de ning feature which allows one to call a representation fo rmalism underspeci ed |
take a more liberal view and understand underspeci cationassimultaneously representing
various readings Then compactness becomes a separate requirement. The compaess
requirement will be discussed in detail in Chapter 6, where the issue is taken up formally.
For the moment, | will just state that an underspeci ed representation formalism must
have compactrepresentations.

1.2 Variable/Constraint Approaches

Let me brie y introduce a family of approaches to underspeci cat ion which all aim at
solving the combinatorial explosion problem while adhering to the requirements on un-
derspeci ed representations. The introduced approaches all shae certain key features.
They make use ofmeta-variablesto constrainthe way in which parts of an underlying ob-
ject language can be combined. For this reason | will call thisfamily variable/constraint
approaches.

This strategy — constraining the composition of parts of an undelying formal language

— has been pursued by seminal approaches to underspeci cation.With Underspeci ed
Discourse Representation Theory (UDRRgyle (1993) de ned one of the rst approaches

to underspeci cation. He uses DRT (Kamp and Reyle, 1993) as the mnderlying language
and constrains the composition Discourse Representation Struatres in a way that can
account for scope ambiguities. Furthermore, he gives a calculs to reason with the
underspeci ed structures, which he revised later (Reyle, 1995).

Hole SemanticgBos, 1995) is an approach that is inspired by UDRT. It is more exible in
the sense that it is independent of the underlying object language. (Bos, 1995) illustrates
this by applying his general de nitions to Predicate Logic, which yields its underspeci ed
sister Predicate Logic Unplugged
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Minimal Recursion Semantic§MRS; Copestake et al., 1995, 1999) again is similar in
spirit to the approaches above. It has been reformulated in a featire structure framework
which makes MRS particularly well suited as the semantic comporent in Head-Driven
Phrase Structure Grammars.

More recently, Normal Dominance ConstraintgKoller et al., 2003) have been used for
underspeci cation. They restrict the powerful formalism of Domin ance Constraint in a
way that enables effective computational procedures (cf. Koler et al., 2000).

In the following | will put special emphasis on the above-mentioned approaches for
mainly two reasons. First, all of them are seminal, prominent, and widely used ap-
proaches. Second, they seem so similar w.r.t. their de nitions of variables, parts, and
constraints, that it is interesting to ask whether they actually differ in expressive power
and — if they do — where the differences are.

1.3 A URF Example

To illustrate the concepts common to the variable/constraint approaches, consider exam-
ple (1.1) again. This sentence is ambiguous between six diffeent readings correspond-
ing to the six distinct possible orderings of quanti cational elements. In the Montagovian
framework, the analysis and translation of the readings of (1.1) into some logical lan-
guage Yields the six expressions of that language. In the follaving, | will use First Order
Logig enriched with Generalized Quanti ers(FOLGQ as the logical language®. Gen-
eralized Quanti ers are stated as tripartite structures, comprising a variable, and two
formulas with that variable occurring free, called restrictor and scope respectively. For
instance, the logical representation of a simple sentence sug as

(1.5) Most men smoke.

would turn out as
(1.6) most(x; man(x); smoké&x))

and it would be interpreted as true w.r.t. a model according to a standard interpretation
of most, if the set of men that smoke is larger than the set of men that do not smoke
in that model. Employing generalized quanti ers in the followi ng, the six readings of

8see (Barwise and Cooper, 1981; Keenan and Westerahl, 1997), for instance. Using generalized quan-
ti ers, one actually leaves the realm of rst order logic (cf. Barwise and Coop er, 1981).
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example (1.1) are as follows.

a.7) xX{child(x) - two(z;teache(z); [y{story(y) [Idld(x;y;z)))) ([ZI)1
x{child(x) - Dyfstory(y) [tdo(z;teache(z);told(x;y;z)))) ([T}
[y(story(y) CIX{child(x) — two(z;teache(z);told(x;y;z)))) ([IZ)
[y(story(y) [wWo(z;teache(z); [x{child(x) - told(x;y;z)))) ([ZI)1
two(z;teache(z); Ly(story(y) [CIX{child(x) - told(x;y;z)))) (2[0)1
two(z; teache(z); [X{child(x) - [Ly{story(y) [idld(x;y;z)))) (20

Variable/constraint approaches to underspeci ed representations make use of the fact
that logical expressions of different readings have elementaryparts in common. In the
example above these are:

(1.8) xqchildx) - )  DOstory(y) [

two(z;teache(z); ) told(x;y; z)

Here the box indicates a 'hole’ in the expression which needs to be lled with material
from some other part. The order of combination of these parts is what determines the
different readings and therefore theories of underspeci ed representation do not fully
specify this order. The above case is exceptional in that therés no constraint on the order
of combination of the three quanti cational elements at all — every order of combination
yields a logical form which represents a legitimate reading of sertence (1.1). To impose
those constraints it is necessary to be able to talk about the pes and make statements
which indicate that certain 'holes' of certain parts may only be lled with certain other
parts. This is where meta-variablescome in.

Let us assume a set of meta-variable symbol§Xg; X1;X>;:::}. Then we may 'label
each of the parts in (1.8) by pre xing a meta-variable to it, separated by a colon "'
Furthermore, we may be more explicit about those 'holes' and substute meta-variables
for the boxes, too. Then the parts of (1.8) turn out as follows:

(1.9 Xo: X{child(x) - X1) X Dyfstory(y) [Xl3)

X 4:two(z;teache(z); X 5) Xg :told(x;y; 2)

Now there are 'handles' to actually get hold of the parts and talk about their combination.
For instance, one could specify, that the part labeledX 4 has to occupy the holeX 3. Then
only the following possibilities of combination remain, whe re we let X; B X; stand for
'the part X; occupies the hol&;": Either X, B X1 and Xe B Xs, which yields the ([TZ)
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reading. Or Xo B Xsand Xg 2 X1, which yields the ([2I) feading.

In addition to simply specifying that some part has to take the place of some specic
hole, one could impose the weaker constraint that the part labded X 4 must occur only
somewhere at the place of the hole X3 after combination, i.e. possibly as a subpart
of some other part occupying X 3. This constraint, which we will write as X3/ X 4 in
the following, would of course still allow for the combinatio ns described above (i.e. for
the (LLI) and the ([2ZI)Feadings) but in addition for one other way of combination:
if Xo B X3, X4 B X1 and Xg B Xs in turn, this weaker constraint is still ful lled
and therefore the (L) reading is licensed as well. Of course we can think of further
constraints, such aspart X; does not occur at hole; and so on.

A further increase in expressive power can be achieved by conjoiing constraints. For
instance, we could add another constraint X3/ X g to X3/ X 4 from the previous para-
graph and allow only for those combinations of parts, which simultaneously ful | both
constraints. As it is easy to see, the only remaining way of comination of parts yields
the ([ZD-and (LX) readings. These are exactly the two remaining readings for the rst
sentence in (1.4) after disambiguation has taken place. Let s write this underspeci ed
representation a bit more formally as a pair [B; C[where P is the set of labeled parts
(1.9) and C is the set of constraints. So in this example we would write

8 9

* % Xo: X{child(x) - X1); g +

(1.10) X2: byfstory(y) [Xb); - {X3/X 4 X3/X o}

§ X 4:two(z;teache(z); X 5); §

X : told(x;y; 2) '

for the underspeci ed representation described in this paragraph. This also illustrates
that further disambiguation can be achieved by adding further constraints to the setC.
For instance, the addition of the constraint X1 /X 4 to (1.10) would only allow for one
single combination of the parts resulting in the ([TX) reading. Hence, disambiguation
can be achieved with a monotonic operation (Alshawi and Crouch, 1992, cf.), where
monotonicity requires to non-destructively alter an initial re presentation by adding only
something to it, leaving the original representation intact.

An interesting question is now, how well this approach to underspeci cation ful Is the
requirements of section 1.1. First, it seems that it provides compct representations. For
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instance, the representation

8 9
* % Xo: Xfchild(x) - X1); E +
X2 Ly(story(y) [Xk);
E X 4:two(z; teache(z); X 5); E ’
X : told(x;y; z) :

(1.11)

which does not impose any constraints and therefore represents dlsix possible readings
is much shorter than the speci cation of the full set of the six readings in (1.7). Sec-
ond, as the representation in (1.10) illustrates, the approach provides representations
for partially disambiguated structures, i.e. for subsets of readngs. However, it is not
obvious which partial disambiguations/subsets of readings can actually be represented
in this approach. In particular, it is not clear if it provides rep resentations for all possi-
ble subsets of readings that can occur. To discuss and answehése questions properly,
formal de nitions of the approaches and the requirements are needed.

1.4 Aim and Structure of the Thesis

This thesis aims at elucidating the real content of the two often-cited, informal and yet
fundamental requirements Partial Disambiguation and Compactnes®f underspeci ca-
tion approaches. The rst requirement is one on the expressive pover of underspeci ed
representation formalisms, after one has become cleawhich partially disambiguated
sets of readings actually need to be represented. The second redgement is one on the
complexity of those formalisms, requiring them to avoid combinatorial explosion and to
provide for ef cient construction procedures. They create a tension between expressivity
and complexity that is of the same sort as in other elds, such as formal language theory
or logic, where increased expressive power goes along with incrased complexity.

This all will be discussed on a rather abstract and technical level and in this respect
this thesis differs from most other work on underspeci cation. | am not interested in
devising yet another formalism, but rather in more theoretical qu estions about scope
underspeci cation. Those questions concern the expressive pwer needed to adequately
account for scope ambiguities of natural language, an evaluéion of existing approaches
in this respect and connected issues of ef cient constructionand combinatorial explo-
sion. One would think that such fundamental questions have keen asked and partially
answered already, but surprisingly this does not seem to be the cae, despite more than
ten years of research in the eld. For instance, although there are various formalisms for
the underspeci cation of scope on the market, discussions abait a comparison of their
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expressive power have emerged only very recentl§. The same is true for discussions
of the necessary means to properly represent natural language amigjuities (cf. Fuchss
et al., 2004). Perhaps most surprisingly, even the above-mentimed tension between the
two requirements is rarely noticed or acknowledged, so it seems.

In this thesis | put forward a formal framework and de nitions that allow for an evalu-
ation and a comparison of underspeci ed representation formalisms, and | will discuss
the issues touched above in detail. The thesis is structured afollows:

In Chapter 2 | will set the stage by clarifying the terms 'reading' and 'underspeci ed
representation formalisms' and by providing general and abstractde nitions which will
be used in the remainder of the thesis.

The third Chapter then discusses theexpressive completenes$ underspeci ed repre-
sentation. The property of expressive completeneastually gives that of partial disam-
biguation real content by classifying a formalism as expressively complet if it is capable
of representing all ambiguities that may possibly occur in natural language. In other
words, an expressively complete formalism is linguistically adequate as it can be used
to represent ambiguities that need to be represented. | will rst i llustrate the notion at
an elaborate example and argue (in line with Konig and Reyle (1999)) that in principle
disambiguation is unconstrained, in particular considering disambiguation information
from discourse and context. | will esh this out by giving two fa irly simple examples
that will prove problematic for the variable/constraint approach es and conclude with a
formal de nition of expressive completeness in the setting that has been established in
Chapter 2.

Chapter 4 is concerned with an evaluation of the variable/constraint approaches w.r.t.
expressive completeness as de ned in Chapter 3. It will turn out that none of these
formalisms is expressively complete as each fails to representree or more of the exam-
ples of Chapter 3. The chapter concludes with a brief discusgin of other approaches to
underspeci cation.

The proofs from Chapter 4 can be applied straightforwardly for a comparison of the
expressive power of the variable/constraint approaches. This iddone in Chapter 5, where
the differences and their common aspects are worked out. A generhdiscussion on
expressive power, linguistic adequacy and existing formalisns concludes the chapter.

The negative results from Chapter 4 naturally lead to the questbn what an expressively
complete formalism may look like. In Chapter 6 | will give two o bvious answers, mainly
to highlight that expressive completeness leads directly to aproblem with the com-
pactness requirement. After a further discussion about compleity issues and a formal

9(cf. Koller et al., 2003; Niehren and Thater, 2003)
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de nition of this latter requirement, | will show that it is imp ossible to have expressive
completeness and compactness at the same time.

Motivated by this result, expressively rich approaches for undespeci cation are dis-
cussed in Chapter 7. Those approaches take a different route fronvariable/constraint
approaches and strive for expressive completeness and linguiie adequacy, but are far
from satisfying the compactness requirement. 1 illustrate the bene ts of such an ap-
proach by extending and elaborating the PTCT system of Fox and Lgpin (2005a).

Finally, Chapter 8 summarizes the results of this thesis and shws some prospective lines
of research.



Chapter

Underspeci ed Representation
Formalisms

On an informal level it is far from obvious how well an approach such as the one from
Section 1.3 ful Is the requirements from Section 1.1. In this section | will therefore set
the stage and give the technical preliminaries which are necesary in order to work with
clean de nitions in the subsequent chapters.

As the discussion in the preceding chapter (and particularly the example in Section
1.3) has shown, underspeci cation in variable/constraint approa ches is achieved by
talking about the composition of expressions of some formal language, e.g. the for-
mulas of FOLGQ So basically ameta-languageis de ned, which speci es how parts of

an underlying object languagecan be combined to nally yield a set of expressions of
this object language. The URF in Section 1.3, for instance, emlpyed additional meta-

variables X; and constraints on those variables to restrict the composition d the parts

X{child(x) - X1); Dydstory(y) [Xl3);two(z;teachez); X5), and told(x;y; z).

An important observation at this point is that the exact nature of the parts of the object
language does not matter in order to evaluate the requirements an URFs. As long as we
keep track of the information about the meta-variables we can smply rename the parts.

20
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For instance, in the example above we could use the followingabbreviations?:

(2.2) x{child(x) - X1) a(X1)
Ly(story(y) [Xk) e(Xs)
two(z;teache(z); X 5) t (X5)

told(x;y; z) X

Here entire parts have just been abbreviated by a single functor vhich takes the meta-
variable for the hole as its argument. Then the ([2ZI)-&and ([[2) readings of the represen-
tation in (1.10) would come out as e(t (a(x))) and e(a(t (x))), respectively, i.e. as terms
consisting of the functors above.

The example above is special in that the parts have only one ha or none, i.e. the scope
taking elements have only one scopal argument. In general howeer, parts may have
more than one hole. For instance, a generalized quanti er actually takes two arguments:
a restrictor and a scope. We can account for this by having a part vith two holes, for

instance two(z; X; Y ) as the translation for the generalized quanti er corresponding to

two. Another case in point are logical connectives, such as imptation, which has two

arguments: the antecedent and the conclusion. The correspondig part X — Y (using

in X notation as usual) also has two holes. Again we could abbreviate those parts, this
time by functors which take two arguments:

(2.2) two(z; X;Y) t9YX;Y)
X Y i(X;Y)

The purpose of the foregoing paragraphs is to illustrate that there are several options
even within one object language. For instance, the part correspnding to the NP every
child could be construed as a unary functora(X ), corresponding to [x{child(x) - X) as
above; or as a combination of a binary functor a{X; Y ), corresponding to X{X - Y),
and a O-ary functor c, corresponding to child(x); or as a combination of another unary
functor a°{X ) corresponding to IX{X) and i (Y;Z) and c such that a(X) = aYc;X) =
a%i (c; X)). The crucial point is that it is suf cient to use an abstract col lection of func-
tors, no matter what the actual choice of object language and arts is. In general, parts
which employ n holes correspond ton-ary functors and parts without holes correspond
to constant functors. Readings, i.e. expressions of the objectanguage, will then be
encoded as terms over those functors. By only talking about furctors and terms we
can abstract over the underlying object language of a URF and focs on the inherent
properties of the formalisms under investigation.

Iwhere a is reminiscent of all, e of exists and t of two



2.1. Terms and Trees 22

2.1 Terms and Trees

‘Collections of functors' are known assignatures which specify a set of functors together
with their arity. Terms can then be de ned over a given signature . The formal de nitions
run as follows:

De nition 2.1

A signature ~ = [H; aris a pair consisting of a nite set F of functor symbols and an
associated arity functionar: F - N. The set oftermsT over a signatureX is de ned as
follows:

1. If f CElwith ar(f) =0thenf [TI. Functors of arity 0 are also calledconstants

In the following | will use typewriterfont  for concrete functor symbols and terms.
Therefore f; g;::: denote particular functors of some signature, while f;g;::: are vari-
ables ranging over functors. Often | will indicate the arity of a func tor symbol by a
superscript, i.e. | will write f?2 for a functor f with arity ar(f) = 2. In the following | will
sometimes make string concatenation of two stringsc and d explicit by writing ¢ d.

Another way of viewing a term is to regard it as a labeled tree which is de ned over a
tree domain(Gorn, 1967) that describes the tree structure. In the following, " stands for
the empty string.

De nition 2.2 (Tree Domain)
Atree domainD is a setD [CN] such that

1. " D,
2. di (d CNL ;i [CNL) (i.e. D is pre x-closed, and
3. di CdirDiforall j<i (d [N, ;i [CNL).

The elements of theD are called nodes

Tree domains are de ned such that " stands for the root of the tree (1.). Furthermore,
for every node it is ensured that its mother node and all its sister nodes to the left exist
(2. and 3., respectively).

Example 2.3
For instance, the set

(2.3) {"; 1,11;111,2; 21, 22; 23}
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ful Is all the requirements for a tree domain. The tree structure can be graphically
depicted as

P
1 PPHDQP
| " PPp
11 21 22 23

111

The pre x-closure in point 2. ensures that together with the nod e 111, the tree domain
contains its mother node 11 (and in turn this node's mother node 1 and so on). Point 3.
ensures that together with the node 23 the tree domain contains its sister nodes22 and
21.

Implicit in the tree domain are various relations, such as dominance of nodes. They are
spelled out explicitly in the following de nition.

De nition 2.4 (Tree Relations)
Let D be a tree domain. Then one can de ne the following relations on D x D:

i-dominance Iy = {@uili CNG
[ v] there is ai [NIsuch thatu/} v

immediate dominance /p

dominance I = the re exive and transitive closure of /p
i-descendance /‘D = {kvC] thereis aw such that

u/bwandw/g v

precedence {iv;ujw u;v;w [N ;i<j [N}

t

Spelled out less formally, u i-dominates v iff v is the i-th daughter of u, u immediately
dominates v if v is somedaughter of u. Dominance is de ned straightforwardly as the
re exive and transitive closure of immediate dominance 2. The relation of i-descendance
is somewhat less common and relates to v iff v is dominated by the i-th daughter of u.
It will be used later in the text to determine whether certain co nstraints hold. Finally, u
precedesv if u is left of v in the tree.

A Z-labeled tree is nothing more than a tree domain and an additional labeling function,
that assigns a functor label of some given signatureX to each node. It only has to be

2Sometimes (cf. Bos, 2002) tree relations are noted differently, i.e.u [Mis de ned to mean that v is the
mother and u is the daughter, whereas it is vice versa in the de nition above. My notation can be memorized
by rotating u [ clockwise by 90 . The resulting picture is then ’ , Which resembles a drawing of a tree

\"
where u dominates v.
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ensured that the number of daughter nodes of some noded corresponds to the arity
of the functor which labels d. This requirement constitutes the second point of the
following de nition:

De nition 2.5 (Labeled Tree)
Let ~ = [H; ar[be a signature. A>-labeled tree is a pair = [D;  [Where

1. D is a tree domain, and

2. . D - F issuch that
if *(d) =f then d- ar(f) and d- (ar(f) + 1) £DI

In the following | will write /1] , etc. instead of/iD;/D, etc. for a tree with under-
lying tree domain D. As terms are uniquely readable, there is a unique correspondence
between terms overZ and Z-labeled trees as the following examples illustrate:

Example 2.6

Given the signature = = {f 1; g%;x%;y°}, the term gfxy has to be read asg(f (x);y) The
corresponding >-labeled tree is depicted to the left and the underlying tree domain is
given to the right:

Concerning the tree relations de ned above, it holds that

[t = {M10m 11

12 = {20

/= {10 200m 110

[ = {[M10M20mM 116107 116009 CIM 151028 2 G0 1100
/T = {[J10Im 110009 1100

12 = {2

1= {2050, 203

According to De nition 2.5, a tree is given by a collection of node s and a labeling func-
tion which assigns a functor to every node. In general, different nodes may be labeled
with the same functor, of course. However, in the special casehat every functor appears
only once in the tree, one can actually dispense with the nodesand talk about the func-
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tors directly. Another way of stating this would be to say that t he labeling function is a
bijection, or the functor labels form a proper set (without mul tiple occurences) instead
of a multiset. In particular, the tree relations can then be de n ed on the functors. For
instance, if in some such treed/d%and “(d) = f and “(d% = g then one may as well
say thatf /g as the correspondence between the nodes and the functors is unige. In
this case, | will often simplify the notation and leave out th e pair brackets, writing fg
instead of [f]g [J

Example 2.7

As the tree in Example 2.6 ful Is the condition (i.e. the functor labels {f;g;x;y} form a
proper set), the relations on the tree nodes can be rewritten as reldions on functors as
follows:

[t = {of;fx}

17 = {ay}

I = {df;gy;fx}

I = {df;gy;fx ;9% 99 ff ;yy;xx}
[t = {of;fx;gx}

12 = {ay}

L 1= {fy;xy}

Note that if x was substituted for y in the tree, one could not determine whether f / x
holds, for instance, as this would depend on exactly which ofthe two occurences ofx
one had in mind.

I will make heavy use of this notation in later sections, where | will restrict the investi-
gation to sets of functor labels in order to simplify the discussion.

2.2 Formalisms and Expressive Power

To 'talk about' terms in meta-language formalisms actually means to represent a set of
them. As we have seen above, an underspeci ed representation fo(1.1) 'talks about'

FoLGQformulas and in fact represents the set consisting of the six fornulas in (1.7).

Therefore an underspeci ed representation formalism, which is de ned over some sig-
nature X, must de ne

1. what the underspeci ed representations are, and

2. how a representation encodes a set of terms ovei.
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The following de nition describes this more formally:

De nition 2.8
An underspeci ed representation formalisn over a signatureX is a pair [U; L where

1. U is the set of underspeci ed representationand

2. L is the licensing mapping
L:U— PowT )

that maps each representation inU to a set of terms overZ.

| used the term licensingin this De nition so | do not have to talk about representations
representingsomething. Solicenseis the formal counterpart to the intuitive and vague
notion represent.

Example 2.9

Let > = {a';e’;t1;c%} be the signature from the beginning of this Chapter. LetU =
Pow(T ) be the set of sets of terms overZ and L = idpyy(7 ) the identity on the sets of
terms over . Then [U;L[ls a URF according to De nition 2.8. It corresponds to the
naive proposal from Section 1.1.2, where every set of readings is reprsented by itself.

A more reasonable de nition is the following one along the line s of the informal discus-
sion from Section 1.3. LetV = {Xo; X 1;:::} be a set of variables and

n

(2.4) P={Xi:f(Xj;::; X)) | F" X Xi;Xj,;:00X;, OV}

be a set of parts, which are built out of the functors in Z and the variables inV. Then let
U = Pow(P), i.e. an underspeci ed representation is a set of parts fromP. For instance,
for the given signature >, a possible representation would be

(2.5) Xo:a(X1); X2:e(X3); X3:t(X4); X5:C

Now a licensing mapping has to be de ned. In order to do this, we say that atree (and
hence term) satis es an underspeci ed representation u, if each of the variables inu can
be mapped onto a tree node of such that the labeling and motherhood information in
the parts is respected. So letVar(u) be the set of variables which occur somewhere in
the parts in u. E.g. in case of (2.5) we haveVar(u) = {Xg; X1;X2; X3;X4; X5} Then

3The de nition of an underspeci ed representation formalism is reminiscen t of the speci cation of a
logical language together with a model relation. Just as a formula of a logical language has a class of
models, an underspeci ed representation licenses a set of terms. Thereason why | didn't adopt those
logical notions is that licensingis still different from denotingor having a modelin that the latter should be
reserved for de ning the meaning of underspeci ed representations. | do not want to suggest that setsof
terms provide meanings for underspeci ed representations in the model theoretic sense.
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we may say that atree = [D;" [3atis es an underspeci ed representation u iff there is
a mapping

(2.6) :Var(u) — D

(2.7) X) /¢ () @A<ksn) and (X)) =f

Note that in (2.5) the variable X3 is shared by two parts: as daughter ofX , (which bears
the label information €) and as the mother of X4, where it is speci ed that X 3 should be
labeled with t. Therefore, in every term which satis es this representation, X, must be
mapped to a node labeled bye and X 3 must be mapped to its single daughter node and
be labeled byt . All other variables occur only once in the representation and therefore
there is no restriction on their mapping to tree nodes.

Therefore only those terms will satisfy (2.5) which contain (at | east) the functors a and
x and the subterm et. For instance aetx and etax both satisfy (2.5). However, as
satisfaction is currently de ned, a term such as attttttetx also satis es (2.5). This is
undesirable, as the term contains material (six instances of tke functor t) that is not
mentioned in the representation. In the following de nition o f licensing we incorporate
a further restriction to rule out terms which are too big in this sense:

(28) L:ubB {t x|t satises uand

t contains exactly the functors mentioned in u}

For the representation in (2.5) it now holds L (2.5) = {aetc;etac } as desired.

With the speci cation of the licensing relations we have completed the de nition of

a URF [U; L] The underspeci ed representations are sets of parts and the licasing
mapping assigns the set of satisfying terms (containing no addional functors) to each
underspeci ed representation. This example formally spells out the basics of the infor-
mal URF de nition of Section 1.3. It properly de nes parts over som e signature using
meta-variables but does not touch the issue of constraints yet.

Given this general de nition of URFs we may compare underspeci ed representation
formalisms over a common signature with respect to their expressve power. We want
to say that a formalism U is as expressive as another formalisnu? if it licenses at least
those sets of terms which are licensed byu®
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De nition 2.10

For two underspeci ed representation formalisms U and U° over the same signatureX
with licensing mappings L and L° respectively, we say thatU is at least as expressive
asU%and write U® [CO1iff for every underspeci ed representation u® of U°there is an
underspeci ed representation u of U with L(u) = LYu9. As it is common practice, let
us specify when the formalisms areequivalentas

(2.9) U=u iff v°rCm and U CUf
Furthermore U is more expressive that/? (written U°@U) iff U® CUlbut not U%= U.

This concludes the formal de nitions of the foundational not ions which will be used in
the investigations to come. The de nitions have been kept general and independent
of any existing approach or logical language. Underspeci ed representation formalisms
(URFs) are de ned as a set of representations together with a liceasing function that
maps each representation to a set of terms. In the following chapers these de nitions
will be put to use.



Chapter

Expressive Completeness

Expressive Completeness is — generally speaking — a statemeabout the expressive
power of some representational formalism with respect to some chss of objects which
should intuitively be represented. The formalism is called expressively complete w.r.t.
the class of objects, if indeed each object in the class can beepresented.

A simple and well-known example concerns truth-functions, which are functions
(3.1) t:{0;1}" — {0;1}

mapping n-tuples of truth-values (0 and 1 corresponding to falseand true) to a truth-

value. This comprises unary negation— or binary connectives like conjunction [ar
disjunction [t is well-known that any truth-function can be expressed by a minimal
pair of = and a binary truth-function such as [CaF [_For instance, the truth-function

given by implication, which sends [1} 0[fo 0 and all other pairs to 1, can be represented
with - and [Cas follows:

(3.2) a->b= -alhl

This means that{—; [} &re expressively completg.r.t. the class of all truth-functions. For
each truth-function we nd a representation consisting just of {—; [}1

Intuitively it is clear what it means for a URF to be expressively complete: for each
possibly occurring scope ambiguity in natural language there stould be an underspec-
i ed representation that represents this ambiguity. In terms of o ur formal de nitions

this means that, for each set of readings of an ambiguous expresion there has to be an
underspeci ed representation which licenses this set. In other words, if a URF is not
expressively complete, it does not provide representations forcertain ambiguities which

29
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actually should be represented. Therefore such a URF is inadequatfor the representa-
tion of natural language ambiguities.

In the following section | will illustrate the concept of expre ssive completeness using
Cooper Storagas a URF along the lines of Frank and Reyle (1994). Then | will reviev

the discussion of expressive completeness in #hig and Reyle (1999) and give further

support for their claims. | will nish this chapter with a forma lization of expressive

completeness for URFs.

3.1 Cooper Storage as a URF

In Frank and Reyle (1994) it has been argued that there are sets of redings which can-
not be represented by a Cooper Storage representation. In this seon | shall briey
introduce Cooper Storagén contrast to Montague's approach of Quantifying In and illus-
trate this shortcoming of Cooper Storage.

3.1.1 Cooper Storage A Sketch

Cooper Storage was originally proposed in Cooper (1983) to accaint for the derivation
of the readings of scopally ambiguous sentences without redutg them to syntactic
ambiguities. Roughly, Cooper Storage works bycollecting scope taking elements in a
set (the store), rather than applying them in the semantic construction directly. This
application is postponed to some later stage, at which the sope taking element is taken
out of the set and applied to the representation built up so far. At this point, the scope
element is retrieved

Let us take (1.1) as a concrete example, which is repeated here as3.3)
(3.3) Every child told two teachers some story.

The sentence has the standard syntactic analysis shown in Figur8.1. In the next two
paragraphs | will illustrate the syntactic Montagovian treatment of ambiguity and then
show the semantical treatment of Cooper Storage.

Montague’s Quantifying In

As has been pointed out above, Montague deals with scope ambuities by proposing
a different syntactic structure for each reading. Those syntacticstructure deviate from
the standard analysis in Figure 3.1 by introduction of the operation of Quantifying In.
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%
X x X Xx
NP VIQ
P
Q - P o
Every child \ NP
Q Q
Q @
\Y, NP some story
P

told two teachers

Figure 3.1: Standard Analysis of (3.3)

Instead of dealing with the quanti cational NPs in situ, i.e. at the place where they oc-
cur, Montague introduces syntactic placeholder variables, whch are realized as indexed
pronouns such ashe;. On the semantic side these pronouns are translated into varialbds
vi. The quanti cational NPs can then 'quantify into' the result ing proposition in any or-
der, which eventually determines the scope relations and thusthe generated reading. To
exemplify the Quantifying In approach, consider Figure 3.2, which shows one possible
syntactic analysis of (3.3) in the Montagovian framework!: The subscripts at the upper

X x X Xx
NP S’%
Q Pp
hild NP i
every chi
Q ‘ | ! IS& a a
1 a
some story NP S
" b b H H
" h H
two teachers NP VP
A B QQg
hes Vv NP
@@ B
—B
\Y/ NP ity
s
told himy

Figure 3.2: A Quantifying In analysis of (3.3)

S nodes indicate, that these nodes are the result of an applicdbn of an indexed syntactic
rule R, which is responsible for the replacement of the placeholder pranoun bearing the

1This is only one of in nitely many analyses this sentence receives in the Monagovian framework, as
any NP node can be either realized by the surface NP or by a placeholder pronauwhich is used for further
quantifying in. Note that | used placeholder pronouns different from he; as proposed by Montague (such
asit,) as these sound more natural in the present sentence.



3.1. Cooper Storage as a URF 32

corresponding index n by the quanti cational NP. For instance, in the case above the
rule R; combines the NPtwo teachers with the S hes told him 1 it, thereby substituting
the NP for the placeholder pronoun with the same index (him1). This results in the S hes
told two teachers it, to which the rules R, (yielding hes told two teachers some story)
and R3 (resulting in every child told two teachers some story) are applied. Therefore
the grammar will generate the string in (3.3) despite the complex syntactic structure
with placeholder pronouns.

Due to the strictly compositional design of the grammar, the semantic construction par-

allels this syntactic analysis. First, the semanticsz y x: tell(x;y; z) of told successively
combines with the variables vy; V2, and v3 corresponding to the placeholder pronouns
himq, it,, and hes, respectively. This results in the open propositiontell(vs; v2; vi). This

open proposition serves as the basis for consecutive applicains of indexed semantic
Quantifying In rules, which corresponds to the indexed syntactic rulesR,. Those rules
combine the (generalized quanti er) semantics of an NP with th e (open proposition) se-

mantics of an S, where the variable corresponding to the indexn of the rule is abstracted

over:

(3.4) JS K= INPK(V n:JSK)

In case of the rst instance of Quantifying In above, the semantics
Q: two(z;teache(z); Q(z)) of two teachers combines with v j:tell(vs;va;vi). After
a sequence of -reductions this yields the open proposition

(3.5) two(z;teache(z); tell(vs; v2; 2)):

The further combination with the semantics of some story (this time abstracting over
Vo) gives

(3.6) [y(story(y) [wo(z;teache(z);tell(vs;y;z)))
and the nal combination with the NP every child results in the ([I2) reading
(3.7) xX{child(x) - [Oyfstory(y) [mo(z;teache(z);tell(x;y; z)))):

Using the strictly compositional Montagovian method of semantic construction, we de-
rived exactly one reading from a single syntactic analysis.
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Cooper Storage

Cooper Storage pursues a different strategy, as more than one logil form is constructed
from the standard syntactic analysis in Figure 3.2. To achieve this the scope taking
elements (i.e. quanti ed NPs in this example) are not function ally applied, but put in
storage during the semantic construction process. Instead, a @ceholder variable is used
in composition with the verb, the index of which is recorded with the quanti er.

According to the standard analysis, the verbtold combines rst with the NP two teach-
ers. However, instead of a direct application of the generalized quanti er to the verb, a
placeholder variable v1 is used and the quanti er itself is put into storage, together with
the index 1. The following structure represents this.

D E
(3.8) y x: told(x;y;vi1); (P:two(x;teache(x);P (x); 1)

This structure is of the form [5IS [Cthe left component ' represents the semantic core
component, which is the result of composing the semantics of he verb with the place-
holder variable v;. The second component is the storageS — an unordered set of quan-
ti ers, which are paired with an index. This index has to be recorded such that in a
later retrieval step the quanti er can be applied to bind the co rresponding placeholder
variable in an argument position?. The combination with the next quantied NP some
story adds another element to the storage, and another placeholdewariable is used for
the semantic core:
D
(3.9) x: told(x;v2; v1); (P:two(x; teacheKx); P (x)); 1);
(P: X{story(x) [PXXx));2) -

The nal combination of the representation above with the subj ect every child yields

D
(3.10)  told(vs;vo;v1); (P:two(x;teache(x); P (x));1);
E

(P: IX{story(x) [PI(x));2); (P: Ix{child(x) - P(x));3)

At this stage all quanti ers are in the store, which is an unordered set. The order in
which the quanti ers take scope is determined by the order in whi ch they are retrieved
Retrieval of a quanti er is performed by taking it out of storage a nd applying it to the
open core proposition. Speci cally, the placeholder variable with the recorded index is
abstracted from the core representation. Then the quanti er is applied to this abstract
just as in the application of the semantic Quantifying In rule (3.4). This will yield a

2similar to the index used in the syntactic/semantic rules in the Quantifying In approach
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new core representation and a new store from which the quanti er has been removed.
For instance, retrieval of the quanti er corresponding to every child yields the following
core representation:

(3.11) P: X{child(x) - P(x)) v s:told(vs;vz;vi) = [X{child(x) - told(x;Vv2; V1))

The complete representation including the reduced storage is tlen as follows:

D
(3.12) [X{child(x) - told(x;v2;Vv1)); (P:two(x;teachefx); P (x));1);

( P: X{story(x) [PKx));?2)

Retrieving the quanti er corresponding to some story next yields the following result:

D
(3.13) [y(story(y) CIX{child(x) — told(x;y;V1)));

( P: two(x; teachefx); P (x)); 1)

E

Finally there is no other option but to retrieve two teachers last:

D E
(3.14) two(z; teache(z); Ly{story(y) [CIX{child(x) - told(x;y;z)))); [

This yields a structure with an empty storage and the (2 [(I)teading has been derived.

Note that the quanti ers take scope in the opposite order in which they have been re-
trieved. Every child has been retrieved rst and takes narrowest scope, some story
has been retrieved second and takes intermediate scope, antio teachers takes widest
scope as it has been retrieved last. Therefore we can read off the orer of retrieval
straightforwardly from the abbrevations we used for the readings by taking them from
right to left: For instance, in the case at hand, the (2 [I)teading has been derived by re-
trieving every child (abbreviated as [),lsome story (abbreviated as [),land two teachers
(abbreviated as?2) in sequence.

3.1.2 Cooper Storage is Expressively Incomplete

Cooper Storage representations can naturally be regarded as undepeci ed representa-
tions, because the order of all quanti ers which are in store has not been determined
and is left open. Therefore we can say that (3.10), for instance, underspeci es the six
possible readings of sentence (3.3). By retrieving the stored quati ers in any order we
could derive any of the six readings.
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But structures where some retrieval has already taken place can als be taken to be
underspeci ed representations. In (3.12) for instance, [CHas been retrieved and has
therefore been con ned to narrower scope than 2 and [ihe relative scopes of which
have not been determined yet. Therefore this structure can be undertod as an un-
derspeci ed representation for the two readings (2 (L And ([ZI)1We might say that by
retrieving a quanti er from storage we are partially disambiguating the representation.
By retrieving [we have disambiguated (3.10) in favour of the narrow scope reading for

L vhich leaves us with only the subset{(2 LI [(ZID} out of the entire set of readings.

At this point, let me reiterate an important observation from the p revious paragraph.
Once a quanti er has been retrieved, it takes narrower scope thanthe quanti ers which
are still in the storage. For instance, after retrieval of [l was con ned to narrower
scope than [Cand 2. Subsequent retrieval of [limited this quanti er to narrower scope
than 2. We can use this observation to make a general statement abouthe form of
the underspeci ed readings for some structure s = [IS [where ' is the core semantic
representation and S the storage set of quanti ers. Suppose that' has been obtained

indices. Then each of the readings which can be derived frons through further retrieval
of quantiers in S is of the form (R1---RmQn - Q1), where Ry --- Ry, is a possible
sequence (i.e. permutation) of the quantiers in S. The entire set of readings which
such a structure underspeci es is

(3.15) (R1"RmQn Q1) | Ry;:::; Ry is an enumeration of the elements of S

Obviously, all the underspeci ed readings end in a common seqence of retrieved quan-

tiers Qn Q1.

This leads to a problem for expressions which do not exhibit this pattern of readings.
For instance, consider the small piece of discourse (1.4) agai, repeated here as (3.16)

(3.16) Every child told two teachers some story. It wasAlice in Wonderland

Recall that the presence of the anaphorit in the second sentence partially disambiguates
the rst in favour of the wide scope reading for some story Hence only the ([T2Z) and
([ZI)teadings remain, where [idkes wide scope but the relative order of the other two
quanti ers has not been determined yet. Of course we would like to nd a suitable rep-
resentation of Cooper Storage to represent this set of two reading. But according to the
considerations about the form of the underspeci ed readings, there is no such represen-
tation — the two readings in question do not end in a common sequence of quanti ers.
This means that Cooper Storage is not capable of underspecifyig the readings of the
partially disambiguated rst sentence in (1.4).
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This shortcoming of Cooper Storage — when seen as a formalism founderspeci cation
— has been pointed out in Frank and Reyle (1994) already. They not that, in general,
Cooper Storage does not provide the means to restrict the scope rationships for the
type of ambiguity which was exempli ed above. That is, for thre e given quanti ers
Q1; Q2; Q3, Cooper Storage is not expressive enough to impose a scope resttion that
requires Qi to take scope overQ, and Q3 while leaving the relative scope of Q, and
Qs unspeci ed. It is this kind of shortcoming with respect to expre ssive power that
expressive completeness of underspeci ed representatismalismsis about. Identifying
a set of readings that cannot be represented with Cooper Storageallows us to state
that Cooper Storage isexpressively incompletdn other words, Cooper Storage is not an
adequate formalism for the representation of natural language ambiguities?.

3.2 Informal Discussions of Expressive Completeness

In Konig and Reyle (1999) the term 'completenessvas explicitly mentioned for the rst
time in the context of underspeci cation. In comparing several formalisms, the authors
called a representation formalism completeif its 'disambiguation device produces all pos-
sible re nementg...]' (p. 2). They illustrate this de nition as follows:

'[...] let us consider a sentence with three quanti ed NPs with un derspeci ed

scoping relations. Then [the formalism] must be able to represert all 23" = 64

re nements, i.e. partial and complete disambiguations of this sentence. For
many formalisms the question whether they are complete [...] is not decided

yet.'

(Konig and Reyle, 1999, p. 252)

In this and the following chapter | will remedy this situation by giving a formal de nition
of completeness and an evaluation of various approaches with repect to it.

Concerning a rst step towards formalization, note that there are n! different permuta-
tions on a set of n distinct scope taking elements. This corresponds to the worst ase
scenario, in which the order of the elements is totally unrestricted and each ordering
leads to a legitimate reading of the expression. A point in caseis sentence (3.3), where
the set of scope taking elements can be schematically depied as { [ 1;2} as above.

3Keller (1988) extends the original proposal of Cooper Storage by allowing for nestedstorage structures.
Those nested structures are necessary to avoid overgeneration of theriginal Cooper storage approach in
case of certain sentences containing embedded NPs. Although nesting ingses further constraints on the set
of possible readings it cannot solve the problem of expressive incompleteness of #hstorage approach. See
Blackburn and Bos (2005) for a implementation of Cooper and Keller Storage in a @mputational semantics
system.
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Therefore, the entire set of readingsR will be of cardinality n!in general. In case of the
three quanti ers above, R contains the following 3! = 6 readings

(3.17) R = { IO 2L 2L ATATH

Now disambiguation can simply be seen as an operation which rués out some of those
readings, which in turn means that partial disambiguations correspond to subsets of
R. Using the fact that the power set of every set with cardinality m has 2™ different
elements’, we can conclude that there are2"' subsets ofR, i.e. partial disambiguations.
This is what Konig and Reyle (1999) pointed out.

Let us reconcile this view with what has been said about expresiwe completeness at the
beginning of Chapter 3. There we asserted that a URF is called exssively complete,
if it provides an underspeci ed representation for each possibly occurring ambiguity in

the processing of sentences and discourses. Nowdfig and Reyle (1999) state that
expressive completeness of a URF should be de ned w.r.t. the fullset of partial disam-
biguations. This view implies the claim that natural language is unrestricted concerning
ambiguities — each imaginable partial disambiguation could, in principle, arise while

processing discourse. In the following Section | will substartiate and support this claim

further.

3.3 Partial Disambiguation is Unconstrained

Suppose that some URF is1ot capable of representing some set of reading®, i.e. sup-
pose that there is no underspeci ed representation of the formalism that licensesP. If
we claimed that this URF suf ces to properly represent the meaningof natural language
expressions in discourse processing (i.e. if we claimed that a deition of expressive
completeness does not compriseP), then we would make a strong claim about natural
language ambiguities. More precisely we would claim that

1. thereis no individual sentence in natural language that canbe ambiguous between
the readings in P, and

2. discourse cannot evolve in a way such that discourse processg yields an ambigu-
ity among the readings in P.

To summarize, we would claim that there is no means in natural language to produce
an ambiguity among the readings in P — neither for isolated sentences nor for entire
discourses.

4including the set itself
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3.3.1 Ambiguity in Individual Sentences

Concerning point 1, for individual sentences, it does not seen implausible to think that
the ambiguity of sentences behaves in some regular way such tht certain ‘'weird' pat-
terns of ambiguity P may not actually occur. For instance, scope islands are one pé-
nomenon which is known to restrict the ambiguities of sentences (as mentioned in Sec-
tion 1.1.1), and we may assume that this happens in a systematic vay. However, if the
assumption is correct that certain patterns of ambiguity do not arise, the underlying reg-
ulating factors are far from obvious, as ongoing discussion on his matter shows>. At
present, there is no evidence for the claim that isolated senteces cannot, in general,
exhibit certain patterns of ambiguity.

In fact, there are rather simple sentences which prove problematt for certain under-
speci ed representation formalisms. Consider the following sentence, which has only
four readings according to Park (1995).

(3.18) Two representatives of three companies saw most samples.

Although (3.18) contains the three quanti ed noun phrases two representatives (2),
three companies (3), and most samples(M), not all possible permutations lead to licit
meanings. As has been pointed out for similar examples by Hobs and Shieber (1987)
already, the following logical form contains an unbound variab le and therefore this read-
ing is excluded:

(3.19) two(x; rep.of(x;y); most(z; samfz); threg(y; comp(y); saw(x; z))))

Note that the rst occurence of y in rep.of(x;y) is free as the corresponding quanti er
threetakes scope belowmost

Park (1995) observes that from the ve readings, where all variables are bound properly,
another one is not warranted by the sentence. He states that thefollowing reading is
not available to native speakers of English.

(3.20) threg(y; comp(y); most(z; samfz); two(x; rep.of(x;y); saw(x; z))))

Scf. the contributions in Szabolcsi (1997), for instance.
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Thus the remaining four readings are as follows.

(3.21) two(x; three(y; comp(y); rep.of(X; y)); most(z; samfz); saw(x; z)))
three(y; comp(y); two(x; rep.of(X; y); most(z; samp(z); saw(x; z))))
most(z; samg(z); two(x; threg(y; comp(y); rep.of(X; y)); saw(x; z)))
most(z; samg(z); threg(y; comp(y); two(X; rep.of(X; y)); saw(x; z)))

In order to account for this data, Park (1995) puts forward the prin ciple that quanti ers
take scope around the relations they are involved in and that they may not intercalate
between quanti ers from other relations. For instance, in the re adings of (3.18) there are
two relations involved, namely rep.of(x;y) and saw(x; z). According to Park's principle,
two and three take scope aroundrep.of(x;y), while two and most take scope around
saw(x; z). Additionally, the proposed 'non-intercalation' of Park prohi bits most to take
scope betweentwo and three such that only the four desired readings are generated.
(Willis, 2000) devised a restrictive system to underspeci cation by directly implementing
Park's scope principlé.

Obviously, an expressively complete approach to underspeci @tion must provide a rep-
resentation for the four readings in 3.21. However, in the follo wing Chapter | will show
that some of the URFs under investigation are not capable of repreenting this ambigu-
ity 7. This lack of expressive power is an indication of their inadequacy as underspeci ed
representation formalisms for natural language.

3.3.2 Ambiguity in Discourses

Concerning point 2 above, the claim that certain patterns of amhiguity cannot arise
during the processing of an entire discourse seems dubious. In ordr to uphold this view,
one would need to argue that discourse evolves in a way that systmatically generates
only certain kinds of ambiguities while it never generates others. This assumption seems
far-fetched, considering that it has to apply even to non-linguistic contexts which can
also be a cause for disambiguation. And again, there is no evidnce that discourse is
restricted in a way such that certain patterns of ambiguity cannot arise while processing
the discourse.

| shall give a very simple example of a contextual disambiguaton which will prove prob-
lematic for certain URFs. In order to make it sound natural, | will give some context.

bsee also (Willis and Manandhar, 1999a,b)
"under the assumption that all NPs, including inde nites, denote quanti ers and therefore contribute to
genuine scope ambiguities, cf. footnote 6, page 11
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Consider the situation of a company producing chocolate prodicts. At some
point before christmas, sales representatives from retailers vidithe company
to place orders. After their arrival they are shown samples by the marketing
managers. Of course the marketing managers want to make a good impes-
sion, so they plan ahead to avoid one situation which is partiaularly embar-
rassing. They want to avoid the situation where each of the sale representa-
tives is contacted by all marketing managers, each of them shoing the sales
representative the same sample.

Suppose that with this knowledge about the company an employee utters the following.

(3.22) Yesterday, we had our annual product presentation and everythingwent well.
Every marketing manager showed ve sales representatives a samp.

The rst sentence serves to make the whole utterance a bit more natiral sounding,
but actually we are only interested in the second one. It parallels sentence (3.3) in
syntactic structure and is in principle ambiguous among six readings corresponding to
the permutations of the involved quanti ers. However, as we are also aware of the
company's policy?, we know that (3.22) does not describe the embarrassing situation
mentioned above. More precisely, the preceding context rules ot the ([5I) teading. It
is not the case, that there was one speci c sample and ve salesrepresentatives such
that every marketing manager showed each of the ve representatives this sample. Note
that all the other ve remaining readings are still plausible. F or instance, there may have
been one speci c sample which each of the marketing manager sbwed to ve different
representatives (the (LI&) reading). Or there may have been ve representatives and
a different sample for each of them, such that every marketing manager showed this
sample to that representative (the (5 [ teading).

Although some of these remaining readings are far from impressivew.r.t. the perfor-
mance of the marketing department (and therefore maybe less plaugble), they are still
possible readings contributing to the ambiguity of (3.22). Thus the set of remaining
readings is the full set of permutations of the involved quanti ers less the contextually
excluded reading.

(3.23) {(5 LS COEK L3y, (LI8); (5D}

Note that the source of the disambiguating information can vary. It could be world
or domain-speci ¢ knowledge, probably encoded in the knowledge base of some
expert/dialogue/question-answering system. Or it could come aslinguistic knowledge in
form of preceding or succeeding sentences. The crucial point ishat it seems improbable

8and of the employee's awareness of this policy and of the fact that the pesentation went well
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that non-linguistic context, world knowledge and linguisti ¢ context are so well-behaved
such that they disambiguate ambiguous information only in certain limited ways. |
rather conjecture that in this respect really anything is possible. For instance, the com-
pany may have further policies. Maybe each marketing manager isresponsible for a
speci ¢ sample? Or maybe the employee continues by saying know those ve guys,
they have been here last yeaP Or maybe both? The challenge for an underspeci ed
representation formalism is that it has to provide representations for the ambiguities
remaining after contextual disambiguation, such as for the ve-fold ambiguity of (3.22).

To provide further support for the claim that indeed any imagina ble partial disambigua-
tion can occur in this manner (i.e. due to disambiguation by context), | will give a
recipe to construct (admittedly arti cial) texts which exhibi t a previously given ambigu-
ity. Here | will make use of the fact that subsequent sentencescan be used to partially
disambiguate a preceding sentence. Given a piece of discoursehich is ambiguous be-
tween some readingsP and some piece of subsequent discourse which excludes some
readings E [P] the entire discourse is then ambiguous between readings? — E, i.e.

P has been partially disambiguated by excluding certain readings E. We can construct
these disambiguating discourses by using unambiguous parapfases for readings. For
instance, consider sentence (1.1) again, repeated here as (3.24

(3.24) Every child told two teachers some story

To paraphrase the ([2I) Teading
(3.25) [y(story(y) [two(z;teache(z); [X{child(x) - told(x;y;z))))

we could use the sentence

(3.26) There is a story and two teachers such that every child told these ¢achers this
story.

We can also assume that a negated counterpart for every paraphrasean be created by
pre xing it with It is not the case that .... The negation of the reading (3.26) would
then be paraphrased by the sentence

(3.27) Itis not the case that there is a story and two teachers such that gery child told
these teachers this story.

In general, if e is the natural language expression that is an unambiguous paraprase
for some reading' , then we let & be the negated paraphraselt is not the case that e .
Thene has the unambiguous meaning—' .

We can make use of these negated paraphrases to stepwise cut oahy unwanted mean-
ings from a set P of readings. Suppose for instance that we start with (3.24) which is
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ambiguous among the six readingsP listed in (1.7). Then the discourse (3.24) + (3.27)
is only ambiguous between the readings in

(3.28) P — { [y(story(y) [ho(z;teache(z); x{child(x) - told(x;y;z)))}

P is partially disambiguated by excluding the ([2I) teading due to the addition of the
negated paraphrase (3.27) to (3.24). Through iteration of this proc edure and addition
of further negated paraphrases of other readings we can eventudl/ cut out any subset
of readings from P.

In general, starting with an expression e that is ambiguous between some readings

the negated paraphrases corresponding to the readings i — P2 i.e. by composing the
discourse

(3.29) e+e +:i+e

Using this recipe we are able to construct discourses which are amiguous between the
readings of every possible partial disambiguation. Starting with an expression that is
ambiguous between alln! readings (given n scope taking elements) we can add negated
paraphrases until we exclude all unwanted readings. Therefore there is a discourse for
every possible set of readingsP, which exhibits exactly the ambiguity of P. Although
these constructed discourses sound arti cial, underspeci ed representation formalisms
must nevertheless be capable of representing their meaning, with is the ambiguity in P.
This further indicates that Konig and Reyle (1999) are right in assuming that expressive
completeness of underspeci ed representation formalisms shodd be de ned w.r.t. the
full set of possible partial disambiguations.

3.4 The Problem of the Missing Empirical Basis

In the previous section | have argued for a completely unconstraned de nition of expres-
sive completeness, i.e. a de nition with respect to all possibly occurring disambiguations.
It would be desirable to give this argumentation some empirical basis. Unfortunately an
empirical basis one could use to argue is non-existert. What one would need is a
theory-independent corpus where sentences are annotated with tke set of readings they
have in isolation as well as in the context they appear in the corgu

9cf. (Poesio, forthcoming, Chapter 6)
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In fact, the only empirical/experimental work on scope ambiguit ies | am aware of con-
cerns determination of the underlying principles for scope preferencei.e. regarding the
question, which reading of an (scopally) ambiguous is preferred (see for instance loup,
1975; Kurtzman and MacDonald, 1993; Anderson, 2004). Although this work sheds
light on the psycholinguistic processes involved in human conprehension of scope am-
biguities, it does not say much about the mere availability of readings beyond extremely
simple cases. For instance, Kurtzman and MacDonald (1993) andAnderson (2004) limit
their investigation to simple 5- or 6-word sentences such as 8.30), which contain only
NPs of the form every N and a N and are hence two-fold ambiguous at most.

(3.30) Every kid climbed a tree.

Higgins and Sadock (2003) use hand-tagged data from the Wall $reet Journal section of
the Penn Treebank to train classi ers in a machine learning approach to modeling scope
preferences. However, in order to simplify the task, they only consider sentences with
two scope-taking elements. So although this data (893 sentaces, annotated with Penn
Treebank parse trees and hand-tagged for the preferred scope readmor unambiguity)

is roughly of the type one would need to argue about available readngs, it is of not
much use due to the restriction to only two scope-taking elemerts. Furthermore, the
sentences were tagged in isolation, such that no effects of cotextual disambiguation

could be captured.

One problem in going from only two-fold ambiguous, simple sentences to more com-
plex ones is the necessity to control various properties of the setences, for instance
equal plausibility of the different readings or other lexical or syntactic ambiguities©.
Furthermore, it is notoriously dif cult to elicit precise judgem ents from human speakers
on complex ambiguous sentences, let alone entire discourseften enough, competent
speakers already have severe dif culties in judging isolated £ntences containing only
three quanti ers, not to mention a sentence such as the following notorious standard
example for massive ambiguity.

(3.31) A politician can fool most voters on most issues most of the tine, but no politi-
cian can fool all voters on every single issue all of the time.

| would be surprised if any competent speaker of English actualy perceived any ambi-
guity when hearing (3.31), and | would be even more surprised if such a speaker could
explain what the actual readings of (3.31) are.

Some recent work aims at elucidating the necessary expressive pwer of underspeci-
ed representations. Fuchss et al. (2004) evaluate the hypothesis (from Niehren and
Thater, 2003) that 'all linguistically relevant MRS expressions are nétsvhere nets are

10¢f. (Kurtzman and MacDonald, 1993, p. 249)
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a restricted subclass of the expressions of Minimal Recursion Seantics. They use the
English Resource Grammar (ERG) (Copestake and Flickinger, 2000to parse sentences
of the Redwoods Treebank (Oepen et al., 2002) and inspect the castructed representa-
tions of Minimal Recursion Semantics, which is the formalism used in the ERG. It turns
out that over 80% of the constructed MRS structures are indeed of the restricted net
form. Fuchss et al. (2004) go on to claim that '[f[rom a more abstract point of view, our
evaluation contributes to the fundamental question of whaixpressive power an underspec-
i cation formalism needs. (Fuchss et al., 2004, p.254). This result is cited in (Koller,
2004, p.127), where he claims that it ' provides substantial evidence that all correct under-
speci ed descriptions should indeed be [...] nets [..\]

However, these claims seem to be quite far-fetched. The resulbf Fuchss et al. (2004)
only shows that a particular system (the ERG) based on a particulaURF (MRS) produces
to a large extent structures of a certain form (nets) — nothing more and nothing less. In
particular, there is nothing substantial or fundamental about this result, because a single
natural language sentence that needs to be represented by a nomet is enough to refute
the net hypothesis. To illustrate this point, consider the discussion about the necessary
generative power of grammars to account for natural language. Ndody would claim
that the generative power of a context-free grammar‘! is adequate for the analysis of
natural language, just because a large percentage of sentencen a given corpus receive
adequate context-free analyses. Such claims have been refutelly careful linguistic con-
sideration, e.g. by Shieber (1985). The result of Fuchss et al. 004) may be interesting
in practice!?, but it cannot provide further insight into the necessary expressive power
of underspeci ed representation formalisms.

Note that the net hypothesis (in particular the phrase 'all linguistically relevant MRS
expressiony implies the claim that MRS as such is suf cient for the underspeci ed rep-

resentation of natural language semantics2. But in order to evaluate such a claim em-
pirically, one would need to evaluate the constructed MRS represatations against a
theory-independentorpus re ecting the ambiguity of natural language. In fact, | a rgue
below that MRS (and other formalisms) are not capable of properly representing the
meaning of ambiguous natural language sentences.

In the discussion about the empirical basis of expressive comigteness, one is faced with
a dilemma. On the one hand, a corpus tagged with ambiguity information, in particular

for complex cases of ambiguity and contextual disambiguaton, would be necessary to
give a precise, empirically grounded de nition of expressive completeness and the no-

"or even a regular grammar, for that matter

2for instance for speeding up the constraint solution process, cf. (Fuchset al., 2004)

1350 does Conjecture 2 in (Koller, 2004, p.113) for dominance constraints: Every dominance constraint
that is needed for underspeci ed semantics. ]'.
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tion of linguistically adequate underspeci ed representatio n formalism. But on the other
hand, human speakers do not seem to be capable of producing such corpus. Neverthe-
less, the discussion and the examples from the preceding seaih substantiate the claim
that in principle partial disambiguation is unconstrained.

3.5 A Formal De nition

In this section | will aim at formalizing the intuitions on exp ressive completeness which
have been put forward above. According to the preceding discussin, an expressively
complete formalism must provide representations for all posside partial disambigua-
tions of the full set of possible readings for some given set ofscope taking elements. In
our approach scope taking elements are formalized as functors ad readings as terms
over those functors. Consequently, the full set of possible radings for some given set of
scope taking elements corresponds to the set of terms which can ® build from a given
multiset of functors. This latter set of terms | will call the term closure*.

De nition 3.1
Let > be a signature. For some nite multiset I’ [X1the term closure[l'] is de ned as

(3.32) [M={f1---fn IO [fq;:::;f, isan enumeration of '}

In other words, the term closure over some set of functorsI is the set of terms which can
be build according the rules in De nition 2.1 by using each functo r in I" exactly once. Of
course, one wants to allow for multiple occurences of the same @inctor, and so we take
I" to be a multiset.

To illustrate the de nition of term closure consider the signat ure = = {f*; g*;x°} and the
multiset of functors'® ' = {[f : f; g; xJ}. Then the term closure is[I'] = {ffgx ;fgfx ;gffx }
as this set consists of all the terms that can be build out of thefunctors according to the
rules for generating terms.

Note that if we let n = |I'| be the number of elements inT", we obviously have that
(3.33) [[FT]<n!

E.g. the case ofn! corresponds exactly to the worst case scenario of a sentence with
n quanti ers, where each permutation of quanti ers yields an actua | reading of the

Ypecause it is the closure of some set of functors under the syntactic rulefor generating terms
151 will use f[ b brackets to indicate a multiset
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sentence. But given that functors may not only be unary, not evey permutation on the
sequence of functors may actually be a term and thereforen! is only an upper bound.

Now we are able to give a formal de nition of what it means for a URF to be expressively
complete. A URF has that property, if it provides a representation br every non-empty
subset of the term closure of any given (multi-)set of scope-t&king elements.

De nition 3.2 (Expressive Completeness)

An underspeci ed formalism [;L[Cbver a signature X is expressively completif for
every multiset ' [31 it holds that for every non-empty subset P []I] there is an
underspeci ed representation u such that L(u) = P.

This formalizes what Konig and Reyle (1999) had in mind. There must be a representa-
tion for every subset of readings of every possible full set of reaings. According to this
de nition it is enough to nd one counterexample to show the expressive incompleteness
of a URF over some signature>. If one can show that there is a (multi-)set of functors

I =land a set of termsP L[] of the term closure of ' which the URF cannot li-
cense, then the URF does not ful | the requirements for expressive completeness from
De nition 3.2.

Due to the general and abstract approach | pursue here, the failure ofsome formalism
to license an abstract set of terms means the failure to represent a entire pattern of
ambiguity. To illustrate this, consider the set of terms P = {fghx ; hgfx }, which will be

shown to be not representable in Hole Semantics and Minimal Rearsion Semantics in
the next chapter. So whenever we are faced with an isolated setence or arrive at a point
in discourse where there is a two-fold ambiguity of three unary scaope taking elements
such that in one reading the order of scope taking elements is tle reverse of the other,
we know that this ambiguity cannot be represented by Hole Semartics and Minimal Re-
cursion Semantics, independent of the concretely involved sope taking elements. As
these scope taking elements comprise quanti cational noun ghrases, negation, modals,
opaque verbs, etc., this pattern of ambiguity may come about by @rtial disambiguation

of sentences such as the following ones (where the scope takig elements are under-
lined).

Every child told two teachers some story

Most man want to marry a supermodel

John probably didn't read two novels

I will not discuss the ambiguity of these sentences any furthe here. The crucial point
is that if any of these sentences is partially disambiguated n a way that leaves a two-
fold ambiguity between readings which can be encoded byP, then Hole Semantics and
Minimal Recursion Semantics cannot represent this ambiguity.
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3.6 Conclusion

In the sections above | have argued in line with Konig and Reyle (1999) that an un-
derspeci ed representation formalism is only adequate for the representation of natural
language ambiguities, if it is capable of encoding any posdble kind of ambiguity. This has
been formalized by a de nition of expressive completeness whch requires that, given
a multi-set of functors of some signature, every set of terms buit out of these functors
needs to be licensed. Failure to license some set of terms amous to the inability to
represent an entire pattern of ambiguity. Two instantiations of two patterns have been
given to motivate the de nition of expressive completeness. Sentence (3.18) in Sec-
tion 3.3.1 from Park (1995) is an example of an isolated sentence with only four of ve
potentially available readings. The contextually disambiguated chocolate company ex-
ample from section 3.3.2 illustrates how contextual information can be the source of a
partial disambiguation with only ve instead of six potentia lly available readings. In the
following chapter, the formal de nitions will be put to use in  an investigation of different
approaches to underspeci cation.



Chapter

Incompleteness Results

In this Chapter | will go into more formal detail about the discu ssion of expressive power.
As | have argued in the foregoing Chapter, expressive completeess needs to be de ned
w.r.t. the set of all possible partial disambiguations.

In the following | will rst investigate three of the variable/constraint approaches intro-
duced in Section 1.2 in detail, namely Normal Dominance Constraints, Hole Semantics
and Minimal Recursion Semantics. For each of the three formalisns | will answer the
question whether it is expressively complete according to De nition 3.2. Unfortunately,
it turns out that the answer is negative in all three cases.

The three approaches above all have been construed to work with arlirary object lan-
guages and therefore they t well into the general and abstract view of URFs | put for-
ward in Chapter 2. Underspeci ed Discourse Representation Theoryis more restricted
in this respect, as its underlying language is DRT, but as Hole Semntics is largely a
generalization of UDRT, the results of the former carry over to the latter. UDRT, as well
as some other approaches, will be discussed subsequently ineStion 4.7.

As a rst step towards a formal investigation | shall discuss variable/constraint ap-
proaches from a more abstract point of view in the following section.

4.1 Technical Preliminaries

In general, a URF [U; L[bf a variable/constraint approach will have representations
U which are built on meta-variables V, some 'logical symbols'S and other symbols L
usually included or derived from the signature X of the underlying object language.
More precisely, U will be a formal language over the vocabulary (L [CS1 V).

48
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In Section 1.3 | have already given an informal example of a variade/constraint ap-
proach: expressions of the underlying object languageroLGQhave been taken apart and
enriched with meta-variables. Then the combinatorial possibiities for these parts have
been restricted by imposing constraints on meta-variables. In Eample 2.9 the de nition
of these parts over a general and arbitrary signature has been spedld out more formally.
As all approaches which will be investigated in this chapter de ne parts in virtually the
same way as they have been de ned in Example 2.9, | will repeat this de nition here
and introduce some additional terminology which will be usefu | in the following inves-
tigation.

Given a signature X~ and a set of meta-variablesV let
(4.1) P={X:f(Yy;::;Y) | f" = XY, O}

be the set of parts, which are built over the functors in X and the variables in V. In
order to restrict the combination of those parts, constraints are imposed. Constraints
are given asrelations on variables which will be interpreted in a certain way de ned

by the formalism. In general, an underspeci ed representation of a variable/constraint

sets of variables which occur inP and the relations C;j, respectively. Let us write Var(u)
for Var(P) [L\Whr(C,) [ [LWhr(C,), the entire set of variables occurring in an under-
speci ed representation. Let us furthermore distinguish between the variables occurring
on the left hand side (i.e. at a labeling position) and the right hand side (i.e. at an argu-
ment position of a functor) of some part. Additionally, let "'(P) [=Ibe the (multiset of)
functors that occur in the parts P.

(4.2) Lvar(P)
RVar(P)

{X | X:f(:) P}
{Y | X:fC::Y ) [P}

rP) = {f | X:f¢::) A}

The left and right hand side variables will also be called labeling variablesand argument
variables respectively. Often | will apply these functions to the underspeci ed represen-
tation itself instead to just the set of parts, i.e. | will often use I'(u) to actually mean
I"(P), for instance.

One feature that is crucial to all these meta approaches to underpeci cation is the
requirement, that meta-variables behave indeed as variables,.e. that the licensing is ac-
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tually independent of meta-variable name§ his means that renaming the meta-variables
consistently, the licensed set is not changed. In other words if a representation uses
somek distinct meta-variables and licenses some seP of terms, then one could take any
k meta-variables without changing the licensed set. The exactchoice of meta-variable
names does not matter.

In the approaches under investigation, constraints are interpreed conjunctively. If an
underspeci ed representation licenses some termt, then t has to satisfyall constraints
(in a sense to be de ned precisely for each formalism). Therefore the addition of fur-
ther constraints to an underspeci ed representation may rule out some of the terms that
have been licensed by the original representation. This propertyof an approach shows
the monotonicity of the licensing relation. A URF has a monotonic licensing relaton if the
addition of further constraints only restricts the set of licensed terms further. Indepen-
dence of meta-variable names and monotonicity of the licensing relation are properties
that will be important in the following investigations.

4.2 Proving Incompleteness

Now we are prepared to carry out the incompleteness proofs. In order b establish the
expressive incompleteness of an approach we need to nd a set oferms which cannot
be represented by the approach. Of course it is not satisfactory targue only informally

about the impossibility to nd a representation for a given set. This inability may just
show the weakness of the author in nding such a representation but not a limitation of

the approach itself. Therefore we need precise proofs which give lhe desired results.

For each of the three investigated approaches | will show inconpleteness by deriving a
criterion that relates a set P of terms to the form of an underspeci ed representation

which licensesP. Due to the similiarity of the URFs, the argument proceeds along ttre
same lines in all three cases.

1. Firstit is shown that the URF is independent of meta-variablenames and that the
licensing relation is monotonic.

2. Then a criterion is derived, that relates a set of termsP to the form of any potential
licenser, i.e. to the form of underspeci ed representations of the URF that license
P. More speci cally, the criterion states which constraints can at most occur in a
representation, if this representation is supposed to licenseP. In this statement
about the form, speci ¢ meta-variable names are used, but due tothe indepen-
dence of the formalism, the statement holds in full generality (modulo renaming
of variables).
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3. It is shown that some speci ¢ counterexample setP cannot be licensed by the
approach. Starting from P, the criterion is used to determine the maximal set of
constraints C of any potential licenser representation. Then it is shown that this
set of constraints C is too weak to impose the proper restrictions on licensing.
More speci cally, it is shown that C licenses a setP°which is larger than P (i.e.

P CPY.

4. Monotonicity can be used to deduce thatP does not have a licenser as follows.
Assuming that u is an underspeci ed representation that licenses P, the crite-
rion from point 2. yields that u contains the constraints in C or less. Due to
monotonicity, the set licensed by u will either be the set P° (licensed by C) or
larger. Therefore, the set licensed byu will be P°or a superset thereof (i.e.
PO [CIXu)). This is a contradiction to the fact that u is assumed to licensesP,
becauseP [CPP [CIXu) = P. Hence one must conclude that the assumption is
wrong and that P cannot be licensed by any underspeci ed representation in the
formalism.

In each of the following three sections on Normal Dominance Consraints, Hole Seman-
tics and Minimal Recursion Semantics, the respective approachwill be de ned formally
closely along the lines of the seminal publications, but cowched in terms of the URF de -
nition of Chapter 2. Then the form criterion and the incompleten ess will be derived and
discussed.

4.3 Normal Dominance Constraints

The rst URF which | will investigated is the approach using Normal Dominance Con-
straints. This approach has been elaborated and investigated in a seriesf papers, which
focus on different variations on Dominance Constraints and ther complexity properties
(Koller et al., 2000; Althaus et al., 2001; Erk et al., 2003). In (K oller et al., 2003) the
authors compare an approach usingNormal Dominance Constraintso Hole Semanticas
de ned in (Bos, 2002). As a comparison of different approaches is one major goal of
this thesis, | will stick closely to the de nitions in (Kolle r et al., 2003). This will enable
us to compare their results on expressive power to the result deried in this thesis.

4.3.1 Representations and Licensing

The underspeci ed representations of the Normal Dominance Constaint approach are
based onDominance Constraints The following de nitions are slightly rephrased ver-
sions of the de nitions given in (Koller et al., 2003).
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De nition 4.1
Let V be a set ofvariables A dominance constraint over a signature is de ned as a
conjunction of dominance literals inequality literals, and labeling literals,

(4.3) o= X Y XBY | XfX X |

Dominance Constraints (DCs) can be straightforwardly identied with a triple
[A; Cy; Co[tonsisting of a set of partsP and two relations on meta-variables C; and
C, as speci ed above. Obviously, the set of labeling literals canstitutes the set of parts
P. The set of dominance literals and the set of inequality literals of the DC constitute
the relations C; and C,, respectively. The conjunction of literals is then left impli cit and
not expressed syntactically. In the following, | will often ma ke use of this and identify a
DC with the set of its literals.

Now that it is clear that labeling literals are actually the 'parts’, we can talk about the
variables Var(' ), the left hand side (or labeled) variables LVar(' ), and the right hand
side variablesRVar(" ) ofa DC' , as speci ed in (4.2). Variables not in LVar(' ) are called
holesand variables not in RVar(' ) are called roots.

On the semantic side, meta-variables are interpreted as tree node of a >-labeled tree. A
dominance literal X/ Y, for instance, is intended to state that the node correspondirg
to X must dominate the node corresponding to Y. The de nition of the semantics of
dominance constraints runs via a notion of satisfaction similar to the simpler de nition
of satisfaction in Example 2.9.

De nition 4.2
Let = [DO; [be aZ-labeled tree. Satisfaction of a dominance constraint (over ) by a
tree under an embedding

(4.4) Var(' ) — D
iswriten as = ' and de ned as follows:
E o X:f(XginXa) iff (X)) (X)) @<isn)and ( (X))=f
E XEBY iff (X)E (Y)
E X/ Y iff (X)/  (Y)
E iff | 'and E '°
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A tree satis es a constraint (written ="' ) and is called a solution if there is an embed-
ding suchthat | ' . A constraintis satis able if it has a solution.

As in the case of Example 2.9, obviously every satis able constint has an in nite num-

ber of solutions as additional nodes in the tree do not change sitisfaction. Therefore we

restrict our attention to so-called constructivesolutions, which are solutions , in which

every node in is denoted by some labeled variable inLVar(* ). Formally, we have that
lLvar¢ y is surjective for every constructive solution of * .

Unfortunately, general Dominance Constraints as de ned above have bad computational
properties. Koller et al. (1998) show that the problem of testin g whether a dominance
constraint is satis able is NP-complete. Therefore Koller et d. (2000) devise a restricted
variant of Dominance Constraints, which they call normal. They show that the satis-
ability problem for Normal Dominance Constraints can be done in polynomial time.

Koller et al. (2003) de ne normality as follows.

De nition 4.3
A dominance constraint’ is called normal if it ful Is the following conditions:

(N1) Every variable occurs in a labeling literal.

(N2) Every variable occurs at most once on the right-hand side andat most once on the
left-hand side of a labeling literal.

(N3) If X/ Y occursin' then X is a hole andY does not occur on the right-hand side
of a labeling literal.

(N4) If X andY are different labeled variables then there is a constraintX Y in "' .

This concludes the de nition of Normal Dominance Constraints (NDCs), which are the
underspeci ed representations in this approach. Let us useUypc to denote the full set of
NDCs, i.e. the set of formulas which are built according to De nitio ns 4.1 and 4.3.

Due to point (N4) of De nition 4.3 of normality, we know that disti nctly labeled vari-
ables of an NDC will be mapped to distinct nodes in a solution. Formally speaking, we
have that [ var( ) is injective for every solution of a NDC' . Therefore [iva () is a
bijection from labeled variables in LVar(' ) to tree nodes for every constructive solution

of a normal dominance constraint ' . In other words, if we let I'(" ) be the multiset
of functors occurring in labeling literals in '
in [F( )]. This paves the way for a de nition of the set of licensed terms of a normal
dominance constraint as the set of its constructive solutions

, then every constructive solution of ' is

(4.5) Lwoc(" ) ={ | Iis a constructive solution of ' }
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The underspeci ed representation formalism N using NDCs is how given as
(4.6) N := Mypc; Laoc

Example 4.4
To illustrate the NDC approach, let us use sentence 1.1 again, fébwed by another sen-
tence.

(4.7) Every child told two teachers some story. Days before, the children lad been told
to think about their favourite fairy-tale and two teachers, they wanted to tell the
fairy-tale to.

The follow-up sentence serves the purpose of disambiguatinghe rst. If every child told
its favourite tale, the wide-scope reading for some story is ruled out, as the stories vary
with the children. The same holds for two teachers, which also have to vary with the
children. Furthermore, as there is only one favourite fairy-tale mentioned, some story
cannot take scope below and vary with two teachers The only remaining reading for
4.7 is therefore the ([L2) reading, where [fakes intermediate scope.

(4.8) [X{child(x) - Ly{story(y) [twWo(z;teache(z);tell(x;y; z))))

Let us recur to the signature = = {a';t*;el;x°} from Chapter 2, where a;t;e, and x
stood for every child, two teachers, some story, and told.

(4.9) x{child(x) - X1) a(X1)
Ly(story(y) [Xk) e(X3)
two(z; teache(z); X 4) t(Xa)

told(x;y; z) X

Furthermore let V = {Xo; X 1;:::} be the set of meta-variables. Then

(4.10) ' =Xo:a(X1) [Xb:e(X3) [Xk:t (X4) [X:x [Xo & X, [Xlp & X3
XoE X5 [XbE X3 [XhEXs [XhBXs [X1/ X»

is a normal dominance constraint (over ) that encodes the desired reading. First note
that all the requirements on normality from De nition 4.3 are ful Il ed:
(N1) Every variable occurs in a labeling literal.

(N2) Every variable occurs at most once on the right-hand side andat most once on the
left-hand side of a labeling literal.



4.3. Normal Dominance Constraints 55

(N3) In X1/ X5 it holds that X1 is a hole (i.e. not in LVar(" )) and X, does not occur
on the right-hand side of a labeling literal.

(N4) For all different labeled variables X and Y there is a constraintX 2Y in"' .

Concerning the set licensed by this NDC, we have to nd trees suchthat there is an
embedding for which = ' holds. For the rstliteral Xg:a(X1) satisfaction comes
down to

(4.11) F Xo:a(Xy) iff  (Xo)/' (X1)and ( (Xo))=a

In order for (4.11) to hold,  must have a node to which X ¢ is mapped, which is labeled
by a, and which has as the rst daughter another node, to which X is mapped. By
iterating this argument for the other labeling literals we can c onclude that must have
at least four nodes which are labeled bya; e;t, and x. Furthermore the node labeled by
t must be the daughter node of the node labeled bye due to the shared variable X 3. As
we are only interested in constructivesolutions, we know that has exactlyfour nodes,
as each node in must be denoted by some labeling in' . Therefore, the only possible
solutions of the labeling literals are aetx and etax, just as in Example 2.9. In contrast to
this example however,' contains additional literals. As an inspection reveals, the twvo
possible solutions also satisfy the inequality literals (because nodes with distinct labels
are necessarily distinct), which leaves the satisfaction of he dominance literal X1/ Xo:

(4.12) E X1/ Xo iff X1/ (X2)

This means that the node whichX 1 is mapped to (which is the daughter node of the node
labeled with a according to the information in the labeling literals) must dom inate the
node which X is mapped to (which is the node labeled with e according to the labeling
literals again). This is not the case inetax , where the daughter of a only dominates itself
and is labeled with x. Thus the only remaining solution is aetx. Therefore Lypc(' ) =
{aetx } as desired.

4.3.2 Form Criterion

In this section | will show that NDCs are expressively incompleg, following the steps
indicated in Section 4.2.

Monotonicity and Variable-Name Independence. First note that the NDC approach
N has a monotonic licensing relation. This can immediately be ®en in De nition 4.2
of satisfaction. Due to the fact that all literals are interpreted conjunctively, additional
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literals only restrict the set of licensed terms further (see Lemma A.1 in the Appendix for
details).

Furthermore we can see from the de nition of satisfaction, that N is independent of
variable names, i.e. that the exact naming of variables does notmatter w.r.t. licensing.
This gives us the freedom to choose meta-variable names freely tien constructing a
constraint or to x some meta-variable names without loss of generality (see Lemma A.2
in the Appendix for details).

In order to show the incompleteness of N, it is suf cient to nd one counterexample, i.e.
some (multi-)set ' [>land some set of termsP L[] which cannot be represented. |
will make use of this and restrict the investigation to NDCs' where each functor occurs
only once. This means that the functors form aset(rather than a multiset) (' ).

The Form Criterion. As the proof schema in Section 4.2 indicates, a criterion relating
the solutions of a constraint to its form is the crucial part in prov ing incompleteness.
A rst step towards such a criterion is the observation, that the meta-variables in any
constraint can be renamed in a systematic way. This is due to the rstrictions imposed
by De nition 4.3 of normality and the assumption that each funct or I'(" ) occurs only
once.

Recall that for each constructive solution of ', the restricted embedding |[ivar( ) is
a bijection from labeled variables in LVar(' ) to the tree nodes of , each of which is
uniquely labeled with one functor in I'(" ). Therefore there is a bijection between the
labeled variablesLVar(* ) and the functors in I'(" ). This means that for every functor f
in I'(" ) there is a corresponding labeling literal, which is uniquely labeled by a corre-
sponding variable X f .

Due to the normality conditions on the constraints, in particular due to (N2), we know
that all the right hand side variables in RVar(' ) are distinct. In fact, a variable occurring
at the ith argument position of a labeling literal with functor f may either be a labeled
variable X 9 from some other labeling literal (with functor g), or some unique argument
variable Xif . Eventually we end up with labeling literals of the form

(4.13) XPif(viive)  f OO

where eachv; is either of the form?® X 9 or Xif .

According to (N1) of De nition 4.3 of normality, we know that the | abeling literals alone
determine the set of variables in a constraint. Now (N3) tells us that every dominance

Note that the X are meta-variable names and thev; are variables over meta-variable names
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literal in ' is of the form

(4.14) X1 x9  fg
and (N4) states that ' contains all inequality literals of the form
(4.15) XTEXY fg [Of Eg

In summary, we can rename the variables of a NDC (where I'(" ) is a set) as stated
above: the variable which labels a literal with functor f will be renamed to X' and all
remaining variables in argument positions to Xif according to the functor and position
they occupy. The following Lemma summarizes these ndings.

Lemma 4.5
Let' be a NDC such that every functor occurs only once (i.e. wherd (' ) is a set). Then
the following holds (modulo naming of variables):

1. ' contains exactly the following labeling literals
(4.16) XPof(vyiinve) 0 COC)

where eachvy; is either of the form Xif or X9 for someg [I1' )

2. ' contains at least the following inequality literals

(4.17) xf8x9 fg ()

3. all dominance literals of ' are of the form
(4.18) X1 x9  fg COIx)

Due to the independence of variables hames this renaming procedre does not change
the set Lypc(' ) which is licensed by the constraint. So w.l.o.g. we can use the med-
variable names given in Lemma 4.5 above whenever we have to dealvith an NDC
where each functor occurs only once.

Example 4.6

To illustrate these observations, let us take as an example theset of functors ' =
{f1;9%;x%y%} and suppose that' is a NDC with constructive solutions in [I'], i.e. with
(" ) =T. Then we already know that ' contains — modulo variable naming — labeling
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literals of the form
(4.19) XT:fv)  XY:gvive) XXix o XViy

where v is some labeled variable fromLVar(' ) = {X;X 9, X*; XY} or X!, v; is some
labeled variable or X 7, and v, is some labeled variable different from vy or XJ. For
instance, the labeling literals might be as follows:

(4.20) XPfxY)y  X%gx';xd) x*x o XViy

Furthermore ' contains at least the following inequality literals due to co ndition (N4)
of the normality de nition:

(4.21) Xxfax9 xfgx* xfgxy XIgx*x x9gxy xxgxV
In addition to these, ' may contain further inequality literals and dominance literal s,
which however must relate holes to roots. For instanceX 3/ X* would be a possible
candidate.

This illustrates that we have been able to derive some general fats about the form of a
constraint by restricting ourselves to sets of functorsrl.

If F(" ) is aset, nding constructive solutions of a NDC is also easy. Reall that construc-
tive solutions were such that every node in a solution correspond to a labeled variable
in the constraint. As there is exactly one labeled variableX ' for every functor f, this
labeled variable must correspond to a unique tree noded which bears the label " (d) = f.

Therefore, in order to see whether some tree is a solution to a NDC' with some set of
functors I'(" ), we rst have to check whether the tree  also contains exactly (tree nodes
labeled with) the functors (" ). If this is the case, it is straightforward to check if all

the labeling, dominance and inequality literals are satis ed. For instance, if' contains
the labeling literal X 2:a(X ¢), we only have to check whether a is the mother node of
ein ,i.e. whether a/! e holds. For a dominance literal such asx2/ Xt we have to
see whether the rst daughter of a dominatest , i.e. whether it holds that e/ t. For an
inequality literal such as X! 8 X ¢ we need to check whetherc is not the daughter of e,

i.e. whether e/ ¢ doesnot hold.

This shows that satisfaction of a constraint by a tree can be cheked simply by inspection
of the variables and the tree relations without reference to an embedding. This nding

can be straightforwardly extended to the entire set of solutions. If P is the set of terms
licensed by an NDC, then each of the terms can be checked for satiaction in the above
manner. In conclusion, instead of inspecting each of the treerelations separately, we can
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use the intersections of the respective tree relations. Supposé¢hat ' is an NDC (such
that each functor occurs only once) which licensesP. For instance, if' contains the la-
beling literal X 2:a(X ©), then for each [Plit holds that a/® e. In other words, it holds
that [@elI_1,, /1. Similar intersections can be used for dominance literals (intersec-
tion of i-descendanced ' ) and inequality literals (intersection of the complements of
i-dominances/'; or complement of the union of i-dominances according to DeMorgan's
law). Let us abbreviate those general set theoretic constructims as follows:

(4.22) s = \ /
| S
Iy = /'
2P
4L[ !
g, = /i
2P

Combining the observations above with the results from Lemma 4.5amounts to the
following Form Criterion.

Form Criterion 4.7
Let' be a normal dominance constraint which licenses a set? (where each functor in
(" ) occurs only once). Then the following holds (modulo renaming of variables).

1. ' contains exactly the following labeling literals
(4.23) XPof(viinve) 0 COC)

where eachvy; is either of the form Xif or X9 for some g I ). In the latter case
it holds that f/ |, g.

2. ' contains at least the following inequality literals
(4.24) xt8x9 fg [CI()

If in addition X[ & X9or X9 & X/ is an inequality literal in * then f S5 g.

3. ' contains only dominance literals of the form
(4.25) X1 x9  f,g CIT)
and it holds that f/ | g.

Lemma A.3, Example A.4, and Proposition A.5 in the Appendix spellout and illustrate
these observations in detail.
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This gives us the criterion relating the form of a constraint to its licensed set. Note
that although the criterion (and the lemmata before) talk about certain variables, the
results remain true for a different choice of meta-variables due to the meta-variable
name independence of the approach.

In the following | will actually use the contraposition of the three statements about
the literals from the Form Criterion 4.7. Starting from a set P and assuming that P is
licensed by some constraint’ we can reason as follows. For instance, ifP is such that
f/ I, g doesnot hold, then ' cannot contain the dominance literal X / X 9, according to
the contraposition of point 3. of the form criterion. This interrel ation of the tree relations
in P and the form of a NDC enables us to prove that some fairly simple set do not have
licensing NDCs. One such set is used in the following section a counterexample to the
expressive completeness oN .

4.3.3 The NDC approach is Expressively Incomplete

Recall the contextually disambiguated sentence (3.22) from Sction 3.3.2, repeated here
as 4.26. The discourse context given there was such that the seence

(4.26) Every marketing manager showed ve sales representatives a samp.

was only ve-fold ambiguous despite the fact that it contain s three quanti cational NPs
which could in principle interact freely. The context ruled out t he ([I)teading such
that only the following ve readings remained:

(4.27) {(5 L5 COEK L3, (LI8); (5D}

To deal with this set formally, suppose that > is a signature containing three unary
functors and a constant. Let them bel” = {e!;f1; al;s%}, resembling exists ve, all, and
show. Then the readings in (4.27) correspond to the terms

(4.28) P = {faes;feas;eafs;aefs;afes }

Note that the term efas (corresponding to the excluded ([51) teading) is the only one
in [I'] (corresponding to the full set of six readings) that is missing in P. Let us try to
nd an underspeci ed representation of N that encodes the ambiguity of (4.26) (i.e.
that licenses the setP).

As noted in the Form Criterion 4.7 inspection of the intersection of the respective tree
relations of P is enough to determine a potentially licensing constraint. The tree rela-
tions of i-dominance andi-descendance of the elements oP are given in Figure 4.1. A



4.3. Normal Dominance Constraints

61

/ l;aes / fleas / éafs / giefs / elu‘es / l;aes / fleas / (leafs / aefs / gifes
fa fa fa
fe fe fe fe fe
fs fs fs fs fs fs fs
af af af af af
ae ae ae ae ae
as as as as as as
ef ef ef
ea ea ea ea
es es es es es es es

Figure 4.1: Tree relations for P = {faes ;feas ; eafs ; aefs ; afes }

calculation of the corresponding intersection reveals that

(4.29) I3 = O
(4.30) /Y = {fs;as;es}:
(4.31) @%, = {ff ;aa;ee;ss;sf;sa;se}

Now suppose that'

is a NDC which licensesP, i.e. Lypc(' ) = P. Using the Form

Criterion 4.7 we can derive the following results concerning the form of ' .

Labeling Literals. As the functors occurring in the terms in P are ' = {f;a;e;s}, '

must contain a labeling literal for each functor, i.e. '

(4.32)

XTf(G:)

must contain

Xaa(::) Xe:e(::d) XS:s

To determine the variables in the argument positions we recur to the rst point
of the Form Criterion 4.7. This states that we can have a labeled vaable X9
only as argument of those labeling literals for which there is a corresponding pair
of functors in /5. However, as computed in (4.29), P is such that/% = [For
this reason none of the labeling literals can have a labeled varable in argument
position and the set of labeling literals in ' is

(4.33) X fxl) X2aXd)  Xe:e(Xf) Xs:s

Dominance Literals. Concerning the dominance literals, we know that any dominance

constraintin ' is of the form Xif /X 9. Using the contrapositions of the statements
in the Form Criterion 4.7, we can conclude that' can only contain dominance liter-
als for each of the pairsin/ 3 . In (4.30) we have calculated that /1 = {fs ; as; es}.
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Therefore' can only contain the following dominance literals:

(4.34) xfr xs  X&r xs Xl XS

Inequality Literals. The second point of the Form Criterion states that' contains in-
equality literals for any pair of labeled variables, i.e.

(435 xXfgx2 x'exe xfgxs x2gxe x3gxs xegxs

In addition, ' can contain inequality literals for each pair of functors in 5,13. As
81 happens to be{ff ;aa; ee;ss;sf;sa;se}, ' may contain any of the following
inequality literals:

(4.36) xtax! xagxa XegX$
xiaxa xiaxs X2gX$

If we let L;D and | stand for the labeling literals, dominance literals and inequality
literals from (4.33), (4.34), and (4.35) together with (4.36), resp ectively, it holds that

' [(U DI CL).

Considering these sets of literals, rst note that the labeling literals L do not impose any
restrictions on dominance. This is due to the fact that the memkbers of P do not have
any immediate dominance information in common (and hence /ip = [ Concerning
dominance literals, the only common information about i-descendance, states that each
unary functor must dominate the constant functor. This imposes no real restriction
either as the constant functor has to be dominated by the unaryfunctors anyway. The
same vacuity we nd in the inequality literals 1, which only make statements about
inequalities that are satis ed by any tree. A closer look reveak that all constraints on
the tree structure in (L [T) are vacuous such that they are eventually satis ed by
any tree. Thus it holds that Lypc(L (DI CT) = [I].

We can now make use of the monotonicity of the licensing relation of N. Recall that
more constraints impose more restrictions on the licensing and trerefore less terms are
licensed (cf. Lemma A.1). As' contains all the labeling literals L and at most the
constraints of D [L(i.e. ' [0 1)), we have Lypc(L D) CLpc( ). With

this we can eventually derive a contradiction.

(4.37) [T = Lyoc(L DI [IO) Clhpe( ) = P LM

Therefore the initial assumption must have been wrong. There is ro normal dominance
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constraint that licensesP. Hence it is impossible to encode the ambiguity of the contex
tually disambiguated sentence (4.26) in the NDC approach. In fect, due to the abstract
approach adopted here, we can generalize this observation and nte that the NDC ap-
proach cannot encode thepattern of ambiguity P, i.e. no matter how the functors in
I are instantiated. This means that the NDC approach is not capal® of representing
the ambiguity of expressions containing three scope-taking éements which can interact
freely, such that one of the six theoretically possible readings is excluded.

For instance, we can produce the same seP with the recipe for using negated para-
phrases developed in Section 3.3.2. Suppose we start out with thesix-fold ambiguous
sentence (1.1), repeated here as (4.38):

(4.38) Every child told two teachers some story.

As argued in Section 3.3.2, adding a negated paraphrase for some rea#ing provides a
disambiguating context such that this paraphrased reading is ecluded. Let us add the
negated paraphrase for the( [TZ) reading.

(4.39) Every child told two teachers some story.
But it's not the case that there is a story such for every child thee are two
teachers such that each child told the story to the teachers.

The resulting discourse is ambiguous between the ve remainingreadings

(4.40) { (20 0y, (C20:X(2 LOEK2 L0 -

A closer look reveals that these readings parallel the ones in (£7). Indeed they can be
described by the same setP which we used above. If we identify the quanti ers with
functors as follows

(4.41) X{child(x) - X1) f(X1)
two(z;teache(z); X ») a(X2)
Ly(story(y) [Xk) e(Xs)

told(x;y; z) S;

then the set P = {faes ;feas;eafs;aefs;afes} corresponds exactly to the remaining
readings (4.40) of the discourse (4.39). So the NDC approach cannotencode the am-
biguity of (4.39), because it cannot represent P as shown above. We can even push
this further and add another paraphrase to exclude another reading, namely the (2 (1)1
reading.
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(4.42) Every child told two teachers some story.
But it's not the case that there is a story such that for every chitl there are two
teachers such that each child told the story to the teachers.
And it's not the case that there are two teachers such that for evey child there
is a story such that each child told that story to the teachers.

The remaining four readings correspond to a new setP? = {faes ;feas;eafs ;aefs }.
Unfortunately, this set cannot be represented by the NDC approacleither?.

Eventually we found fairly simple counterexamples to the completeness of N which
proves the following theorem.

Theorem 4.8
N is not expressively complete.

4.4 Hole Semantics

Hole Semantics was rst introduced by Johan Bos in (Bos, 1995) & a general approach
to underspeci cation. His formalism was inspired by the seminal work of Reyle (1993)
and is similar w.r.t. the interpretation of constraints, but inde pendent of a particular
object language. In (Bos, 2002) he gives a re ned and streamlined de nition, which |
will use here. The following sections are structured analogousy to the preceding ones
for NDCs and the incompleteness proof runs similarly along the Ines of the schema
indicated in Section 4.2. However, the de nition of licensin g is different and not based
on a satisfaction relation, but on a pluggingoperation on underspeci ed representations.

4.4.1 Representations and Licensing

The following de nition of Hole Semanticguns closely along the lines of (Bos, 2002),
but at some points | will motivate and comment on some differences to the original
de nitions.

De nition 4.9
Let > be a signature andV be a set of meta-variables. Then

(4.43) P={:f(hy;:::;hy) | f" = I hy OV}

is the set of labeled formulas (overX).

2To see this, note that the intersections [£] [£1, and &5 remain the same for P°. So the reasoning for
the non-representability of P%is exactly the same as forP .



4.4. Hole Semantics 65

So labeled formulas are what have been called 'parts' in (4.1). Trerefore the labeled
variables LVar(L) (called label§ and the argument variables RVar(L) (called holeg can
be straightforwardly de ned as in (4.2) for some set of labeled fo rmulas L. Furthermore,
(L) denotes again the set of functors occurring inL.

De nition 4.10

A pre-USR is a triple OOL1JC [Iwhere L is a set of labeled formulas andC is a
nite set of constraints of the form h < I, where h [CRVanL) [{I} ik a hole including
[ ihle top hole and | [IVar(L) is a label.

This de nition is the rst step towards a full de nition of the u  nderspeci ed representa-
tions of the approach. The constraints relate holes to labels ad will be taken to specify
that the hole h must 'dominate’ the formula labeled by I. The [“element is the top hole
and designates the ‘'highest' labeled formula w.r.t. this dominance. But yet additional
requirements on well-formedness need to be imposed.

For a pre-USRLIL L] C [ the relation of C-dominance/ ¢ on meta-variables is de ned as
follows. k /¢ k°holds, if

1. k:f(::;k%::0) O or
2. k=k[CQ, or
3. there is ak®such thatk / ¢ k®and k%9 ¢ k°

Thusk C-dominates kPif k is a label of a labeled formula that contains k®as a hole (point
1), or there is a constraint k < k®in C (point 2). Furthermore, point 3. demands /¢ to
be transitively closed.

Bos (2002) gives three criteria for determining the well-formedn ess of pre-USRs: exis-
tence of a top hole, acyclicity, and well-namedness. The rst two can be de ned directly
on the C-dominance relation by stating that the (graph of the) relation must have a max-
imal element and be acyclic. The well-namedness requirement | popose here requires
all labels and holes to be distinct, which is a stronger requirement than the original one
in Bos (2002). | will discuss this point further in Section 4.4.4 .

3USR stands for UnderSpeci ed Representation

“In the present de nition, constraints are de ned the other way aroun d as they are de ned in Bos
(2002). There the constraint h  liswrittenas | h. | adhere to the former convention as this corresponds
to the way | have de ned tree relations. Furthermore, in Bos (2002) th e rst component of a pre-USR triple
is a setof holes and labels (the domain) D, which comprises the top hole and all labels and holes fromL.
As the latter can be recovered fromL anyway, | prefer to state only the top hole in the rst component.
Finally, the terminological distinction between 'pre-USR' vs. 'USR' as | de ne them is expressed as 'USR' vs.
'‘proper USR' in Bos (2002).
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De nition 4.11
Let (O 1] C e a pre-USR. We say that it igoroper and call it a USRIiff

1. Lislthe maximal element of / ¢ (i.e. [LLd k for all labels and holes k),
2. /¢ is acyclic (i.e. there is nok such thatk / ¢ k), and

3. all labels and holes are mutually different.

This concludes the de nition of the underspeci ed representat ions of the Hole Semantics
approach. Let us write Uy for the set of all USRs which adhere to De nition 4.11. Note

that the correspondence to the general scheme for the variable/cmstraint approaches is
straightforward: a USR is a tuple [L}; C [_tonsisting of a set of labeled formulasL and

only one relation C on the meta-variables.

Now the licensing relation needs to be de ned. The basic idea d Bos (2002) is to
combine labeled formulas by 'plugging’ labels into holes. Fomally this is achieved by a
bijective mapping, called plugging

De nition 4.12
Letu = OLG L) C [be a USR. Apluggingp for u is a bijection

(4.44) p: RvarlL) [} 1+- LVar(L)

from holes (including the top hole) to labels.

Similar to C-dominance, the relation of p-Dominance/ , on meta-variables is de ned as
follows. k/, k®holds, if

1. k:f(C::;k%::0) O or
2. p(k) =Kk° or
3. there is ak%such thatk / , k%and k%9 , k°

Similar to the case of C-dominance, k p-dominates kCif k is a label of a labeled formula
that contains k®as hole (point 1), or the formula labeled kCis 'plugged into' the hole k
(point 2). Again point 3. demands /, to be transitively closed.

De nition 4.13
Let p be a plugging for some USRI L] C [p is admissibleif it respects the constraints
C,ie.if

(4.45) C [Ig
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It immediately follows that /¢ [Z} if pis admissible which illustrates that the domi-
nance relation induced by an admissible pluggingp is actually just a re nement of the
dominance relation / ¢ induced by the constraints.

Every plugging for some USR gives rise to a tree, as eventually bparts of the USR are
‘plugged’ together. Therefore we can de ne a function | for each plugging p for some
USRu, that yields the corresponding tree/term from [[(u)]. , actually performs the
plugging on the term level and is applied to a hole to yield the term which is eventually
plugged in this hole by virtue of p. The following de nition and a later example will
make things clearer.

De nition 4.14
Letu = L] C e a USR andp be a plugging for u. Then let

(4.46) oi Rvar(l) T+ [F(L)]

be de ned as follows:
1. p(h) =xiff p(h) =landl:x [Tl
2. p(h)y=1( p(hy);:::; pChp))iff p(h) =T andl:f (hy;:::ihy) L1

We can now de ne the set of licensed terms for a USRu = 1] C [Cas follows:
(4.47) Lus(u) ={ p(Dpis an admissible plugging for u}

Finally, the Hole Semantics approach to underspeci ed represernations can be spelled
out as the URFH in terms of the general De nition 2.8:

(4.48) H := My Lys[]

I will illustrate the de nitions above by a contextually disa mbiguated example of sen-
tence (1.1), which is repeated as (4.49) below. It is similar to t he one given for the NDC
approach in Example 4.4.

Example 4.15
Let us assume that your daughter told you at some day that she andeach of the other
kids had to think of some fairy tales for school. At some later day she says

(4.49) Today, every child told two teachers a story.

Without any context (4.49) would be six-fold ambiguous. Howe ver, you have additional
disambiguating knowledge from a preceding statement of your daughter. According to
this statement, each child thought about his/her own fairy tal es. This gives you the infor-
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mation that the stories varied with the children. Only those readings remain for (4.49)
where some storytakes scope belowevery child. Thus the readings ( [I2); ((21);1(2 (11
are the only ones that contribute to the ambiguity of (4.49).

More formally, let us use the signature from Example 4.4 = {al;e’;t1;c°} where a, t,
e, and c stood for every child, two teachers, some story, and told, respectively. Then the
three remaining readings correspond to the termsP = {aetc ; atec ;taec }. As we will
see, the following triple is a USR which licenses the sefP (assuming a suitable setV of
meta-variables).

8 9 8 9
x E loa(ho); 3 E L=llo; 2,
(4.50) u= l1:e(h1); ~ : —=ll,; ~
§ |2:t(h2);§ § C=ll3;
' I3:c ! " ho=ly

Note that u is indeed a proper USR in accordance with De nition 4.11. First of all

it is well-named as all labels and holes are mutually different. It has a top [Cwhich

C-dominates each label (and hence each hole) by virtue of the constraints, and it is

acyclic. These latter two requirements on C-dominance can be checked straightfor-
wardly by inspection of the following graph that illustrates th e constraints in C by solid
lines connecting labels and holes.

(4.51) -

lo:a(ho) l2:t (h2)

I1:e(hy) I3:cC

The information that some story takes scope belowevery child is encoded in the con-
straint hg < |1 and can be straightforwardly read off the tree.

For the pluggings, there are 4! = 24 possible bijections between holes and labels. For

SActually, all the constraints of the form > | for some label | only have to be included to ful | this
well-formedness requirement. Strictly speaking, they — as well as the op itself — are super uous and the
entire approach could be de ned without reference to a top, similar to the NDC approach, which does not
appeal to such a device. However, as | want to stick closely to the originade nitions, | will not alter the
de nitions in this respect.
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instance, we could have a pluggingp that maps the holes to the labels as follows:

g
ho 3 Iy
hy B Iy
hy O I3

(4.52)

And indeed this plugging is admissible as, for instance,hg / |1 due to the fact that
p(ho) = 11. Then

(4.53) p(D=F a p(ho) =ae- p(hy) =aet- p(hy) = aetc
is one of the licensed terms ofu. In contrast to this, the plugging

I,
ho B 12
hi B lg
hy B 13

(4.54) p°:

is not admissible, because the pairhg < |1 is not in / x. In short, the constraint ho < |;
requires a to dominate e in a term that corresponds to an admissible plugging. This is
not the case in o( = eatc and therefore this term is not among the licensed ones.
Eventually, only three of the 24 possible pluggings are admisible and we get accordingly

(4.55) Lus(u) = {aetc ; atec ;taec }:

Therefore the ambiguity of example (4.49) has been successfulf encoded. That this is
not always possible will be proved in the following.

4.4.2 Form Criterion

Again | will rst derive a criterion relating the form of a representat ion to its licensed
set, along the lines of the schema shown in Section 4.2.

Monotonicity and Variable Name Independence. First, the licensing relation of H
is monotonic. Adding further constraints of the form h < | to a USR restrict the pos-
sible pluggings further and therefore may exclude some of the lcensed terms. Second,
H is independent of meta-variable names. Renaming the meta-veables in a USR does
not affect the existence of a plugging but only the domain on which the plugging oper-
ates. Therefore, renaming of variables does not affect licensig. These observations are
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formally spelled out in the Lemmata A.6 and A.7 in the Appendix.

The Form Criterion. As with NDCs, we restrict ourselves to the special case of repre-
sentations where every functor occurs exactly once, i.e. where tle functors I'(u) form a
set instead of a multiset. At rst, note that we can recur to the same strategy of indexing
meta-variables that we used in Lemma 4.5 to make some rst observéions on the form
of normal dominance constraints. Given a USRu we can use the fact that all holes and
labels must be mutually distinct (due to point 3 of De nition 4 .11) to conclude that each
labeled formula occurring in u must be of the form

(4.56) 1" f(htsooonh)

and that all constraints must then be either of the form [C=1I" or of the form h? <1 for
some functorsf; g. Due to the independence of meta-variable names we can again s
those labels and holes to rename the meta-variables in a USR8 without changing the
set licensed byu. For instance, the USRu from Example 4.15 can be rewritten as

8 9 8 9

. E 12: a(hd); 2 % C=e g,

o 1e: e(he); =t =

(4.57) v :'5 It -t (hY); 5 5 L= 3
. IC . ha<|e ]

in accordance with this new meta-variable scheme.

Recall that in the Form Criterion 4.7 of the NDC approach, various treerelations were
used to compare the literals to the respective (intersections of tree relations. For
instance, dominance literals were compared to the intersection of corresponding i-
descendance relations to determine whether a tree could be liceased (or whether the
literal could be part of the constraint, in case of reasoning in the opposite direction).
We could do these straightforward comparisons, because dominape constraints were
interpreted directly by tree relations (see the De nition 4.2 of sat isfaction).

In case of Hole Semantics licensing works more indirectly via plggings and thus it is
not obvious, how and where tree relations could be compared to the constraints of a
USR. However, there is a simple way around this obstacle. We de e a new type of tree
relation that can be compared straightforwardly with the constraints. In fact, thi s new
tree relation will be a plugging dominance /, for each tree and it will be used to
restrict the set of constraints in the way it is indicated in De ni tion 4.13 of admissibility.

To get a plugging dominance for some tree, we decompose the treesuch that every
node corresponds to a labeled formula with appropriate meta-variables according to the
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meta-variable scheme above. Then we de ne a plugging on thesdabeled formulas that
reverses the decomposition and plugs the labeled formulas backogether such that we
get the tree we started from.

De nition 4.16 (Plugging for a Tree)
Let > be a signature, I’ [=1a set of functors, and []I'] a tree. The set of labeled
formulas corresponding to I" is

n (0]
(4.58) L = 1I":t(t;nnh) 0 oo o

The plugging p corresponding to is de ned on RVar(L ) {1} 4ds follows,

(4.59) p (D= 1O
p(hi) = 117

where d; is the unique node in  which is labeled with f .

Let me illustrate this with an example. Suppose we start from thetree = aetc. The
functors occurring in  are " = {a; e;t;c}. Then we de ne a set of labeled formulas L
which have meta-variables according to the meta-variable naming scheme. In this case
we get

(4.60) Ltaet:cg := {1%:a(h}); 1°:e(hg); I' 1t (hy); 1°:c}

Note that this set depends only on the set of functors and not onthe tree structure. Then
we de ne a plugging p , corresponding to the tree , that plugs the labeled formulas in
L back together.

Co 1M =|a
(4.61) p o M B IIEB=I® =10
h$ O 1(&D =10 =t
htl [t |‘(dt— 1) — |‘(111) =|c

Obviously, p plugs the labeled variables in a way that yields exactly . Forp and L
we have , (D= |, i.e. applying the plugging yields indeed the original tree. So if we
happen to encounter a USRu = [I[; L1 ; C [With the labeled formulas L such that the
tree plugging p is admissible (i.e. such thatC [/J ), then , (D= and hence is
licensed byu.

Reasoning in the opposite direction, if u is a USR that licenses some tree (possibly
among others), then this is due to some admissible pluggingp such that (D _F
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Because of the unique functor/labeled formula-relationship it holds that p = p (mod-
ulo renaming of variables), i.e. this plugging must necessarily be the tree plugging p
corresponding to . Hence, as in the case of the NDC approach, checking whether soen
tree is licensed by a USRu (where '(u) is a set), does not require a search for an
admissible plugging, but rather a test whether the plugging p is admissible. To check
whether the plugging is admissible we just have to see whethe C [ .

Now we are close to a form criterion. In order to check whether some tree is licensed by
a USR, we have to see if it contains the functors mentioned in thelabeling literals and
compare the constraintsC to the 'new type' tree relation /, . As in the Form Criterion
for the NDC approach, we can extend this result to the entire licersed setP . For each of
the licensed trees [P, it holds that C [/ and therefore we getC [ 1,5/, .

This makes it possible to state the following Form Criterion which relates the form of a
USR to its licensed set.

Form Criterion 4.17
Letu = OEILJC Cbe a USR that licensesP (where each functor in I'(u) occurs only
once). Then the following holds (modulo the renaming of variab les):

T

Proof. Asthere is one labeled formula for each functor and as all labe$ and holes in some
USR are mutually different by de nition, the claim about L follows straightforwardly.
Concerning the constraints, each [Ll;s(u) comes about by some admissible plugging
p which coincides with p as discussed above. Due to the de nition of admissibility,
C [CIJ forall thesep . O

This Form Criterion is much simpler than its NDC counterpart as we orly have to deal
with one type of constraint (dominance) instead of two (inequa lity and dominance).

Furthermore, the NDC approach allowed sharing of meta-variables sgh that additional

restrictions could be placed by sharing variables in the labelirg literals. In H this is not
possible as all labels and holes have to be mutually distinctsee however the discussion
of an extension Hghare Of H below where sharing of meta-variables is allowed).

In the following section, the Form Criterion will be used to show the incompleteness of
the Hole Semantics approach.
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4.4.3 Hole Semantics is Expressively Incomplete
In showing the incompleteness of the Hole Semantics | will this time start with a more
abstract counterexample and move to more linguistically motivated examples later on.

Let X be a signature containing three unary functors and a constant. W.lo.g. let them
bel” = {f;g;h;x}. Then there is no underspeci ed representation of H that licenses the
set

(4.62) P = {fghx; hgfx }:

In this set, the sequence of functors (i.e. quanti ers) in one term (i.e. reading) is the
reverse of the sequence of the other term.

Assume that there is a USRI L] C Cof H such that Lys G LJC [C1= P. According to
the Form Criterion 4.17, the set of labeled formulas L coincides with L :

(4.63) L=L = 1":f(h); 19:g(h)); I":h(hD); 1%:x

Concerning the constraints C, we rst need to compute the plugging dominances cor-
responding to the elements of P. Let us rst compute the pluggings pignx and Pngrx
corresponding to the elements of P as detailed in the preceding section.

Prghx Phgfx

I "
hifs 19 nhgie
hio I higlIf
hfg X  hig I
From this plugging we have to compute the corresponding plugging dominance relations

! pigne @Nd /., @ccording to De nition 4.16. Intersecting these plugging domin ances
yields the following.

\
(4.64) e L L L i L 0 O L L s VR L
2P

R I ) R G [ ) G o 1 S 1 N R
1";hE 5 19hg 5 1Al

Note that only some of the pairs in the intersection can correspord to actual constraints
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of the representation, because according to De nition 4.10 constraints must be of the
form h < | such thath is a hole and| is a label. Let us write Cp for those pairs, which
have been underlined in the listing above.

(4.65) Cp = his;h<IXhi<r =" =9 =", =

Although Cp looks fairly complex at rst sight, all constraints are vacuous w.r.t. the
elements of [I'] as the following graph of Cp indicates:

(4.66) -

If:5¢hl)  19:g(h9) 1" h(hY)

[X:x

The constraints of the form h < I* do not impose any proper restriction asx is a constant
and must therefore be dominated by every other functor of a term in which it occurs.
Neither do the constraints of the form [ | rule out any plugging because Lisl the
top hole which dominates all other labels by de nition of USRs. Therefore we have that
Cp [IJ for anytree L[IO]. This means thatL,s CIGLI ; Cp = [I] as every plugging
p is admissible.

Recall that according to the form criterion, Cp is the maximally possible set of con-
straints for potential licensers of P, i.e. it holds that C [_C}. Analogously to the case of
NDCs we can use the monotonicity of the licensing mapping (cf.Lemma A.6) to derive
the following contradiction:

(4.67) [ = Lus LELT;Cp 0 L1l LELT;CLI= P L)

This is an obvious contradiction asP is a proper subset of[[']. Hence the initial as-
sumption was wrong, and there is no USR of Hole Semantics that lkensesP. The only
constraints that both elements of P have in common are too weak to impose any proper
restriction and therefore classify all pluggings as admissible This counterexample im-
mediately shows the incompleteness ofH.

Theorem 4.18
H is not expressively complete.

Note that we can use the same reasoning to show thatH cannot license P° =
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{gfhx ; hfgx } and P%° = {ghfx;fhgx}. These sets parallelP in that the sequence of
functors in one term is reversed for the other term.

Due to the fact that the intersection of plugging dominances/ limits the set of con-
straints, adding further terms to P can only make the intersection smaller. As the in-
tersection for P is too small in the sense that it contains only vacuous constriants, this
holds for any superset of P (except for the entire set of possible readings[I']). Hence,
none of these supersets can be represented il either. This result is generalized and
made precise in Proposition A.8. H fails not only to provide a representation for P;P°
and P %but for any of their supersets (except[I]).

Two Linguistically Motivated Examples. One of those supersets whichH cannot rep-
resent is the set

(4.68) Q = {fghx ; fhgx; hgfx ; ghfx ; hfgx };

because it comprisesP (and P%. In fact, Q is a set of terms that correspond to the
ve remaining readings of the contextually disambiguated chocolate company example
(3.22) from Section 3.3.2, which has been used in Section 4.3.3 to slow the incomplete-
ness of the NDC approach. Therefore Hole Semantics has the same akness as the NDC
approach w.r.t. this contextually disambiguated example.

Even worse, Hole Semantics cannot represent the ambiguity of tk individual sentence
example (3.18) from Park (1995), repeated here as (4.69).

(4.69) Two representatives of three companies saw most samples.

As has been pointed out in Section 3.3.1, Park (1995) argues that his sentence is only
ambiguous between the four readings in (3.21), repeated here as {.17).

(4.70) two(x; three(y; comp(y); rep.of(x; y)); most(z; sampz); saw(x; z)))
three(y; comp(y); two(x; rep.of(X; y); most(z; samp(z); saw(x; 2))))
most(z; samp(z); two(x; three(y; comp(y); rep.of(x; y)); saw(x; z)))
most(z; samp(z); threg(y; comp(y); two(x; rep.of(x; y)); saw(x; z)))

Concerning the more abstract term representations we use, note thatwo has to be
construed as a binary functort in this case. In the rst argument (the restrictor) there
is an interaction with the quanti er threeand in the second argument (the nucleug with

most The latter quanti ers threeand mostcan be encoded as unary functoré d and mas
in the preceding cases, because their restrictor position is avays lled by comp(y) and

SUnfortunately, two and three start with the same letter, so | uset to encode two and d to encode three.
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samp(z), respectively. Using the constants and s to stand for rep.of(x; y) and saw(x; z),
respectively, the readings in (7.17) are eventually encoded in the following set R of
terms (using parentheses to enhance legibility).

(4.71) R ={t(d(r);n(s)); d(t (r;n(s)); n(t (d(r);s)); md(t (r;s))) }

Intersection of the corresponding plugging dominances and seéction of the well-formed
constraints gives the following set Cr of constraints that any potential licenser of R can
maximally have.

(472) Cr={hi<I";hi<I5;h{<I"; hP<IS;
=t =219 =™ C="; C=18}

Again these constraints are vacuous w.r.t. the elements iff{t; d; mr;s}] as the graph of
Cr indicates.

(4.73) 1
19:d(h9) It:t (h}; hy) I™ m(h)
I":r IS:s

Assume now that [I L] C Clis a licenser for R. Using the Form Criterion 4.17 we can
conclude that L = Lg.q.mr;sg @and C [CCr. Hence we get a contradiction similar to
(4.67) (where we let ' = {t;d; mr;s} denote the set of functors)

(4.74) [ = Lus(OEL ; CrOY CLLs(HEL ;COI= R L]

So we must conclude that the assumption was wrong and thatR cannot be represented
in H. Therefore H is not capable of representing the ambiguity of a simple senterce such
as (4.69). In particular, the unwanted reading corresponding to d(n{t (r;s))) cannot be
ruled out.

Some Combinatorics. To get some idea of the magnitude of the inexpressivity result,
note that P has2* — 1 = 15 supersets, excluding['] but including P itself. The same is
true for P%and P In order to get the total number of non-representable sets, we reed
to take care to avoid counting some sets more than once.



4.4. Hole Semantics 77

For instance, {fghx ; hgfx ; gfhx ; hfgx } is a subset of bothP and PC Overall, there are 9
such shared superset§

In conclusion, H does not provide representations for3(2* — 1) —9 = 36 potential sets of
readings. Comparing this to the maximal number of possible se$ of readings for three
quanti ers 2% = 64, we see thatH does not provide representations for more than half
of the potential ambiguities.

(Bos, 2002, p. 38) is also aware of the limited expressive powerof his approach as he
states (without proof) that Hole Semantics® is not able to represent the entire range
of subsets of readings. Bos neither discusses this fact any fther nor does he seem to
regard it as a problem for the Hole Semantics approach. However, showed above that it
is indeed problematic as Hole Semantics fails to provide underpeci ed representations
for contextually disambiguated as well as isolated sentenes. Therefore it is legitimate
to say that Hole Semantics is not expressively complete.

4.4.4 Shared Meta-Variables in Hole Semantics

In this section | shall briey add the missing explanation for strengthening the well-
namedness requirement to the one given in De nition 4.11.

In (Bos, 2002, De nition 6, p. 30) a pre-USR is de ned to be well-namediff each meta-
variable except the top occurs in a labeled formula and each labé occurs only once.
Now (Koller et al., 2003, footnote 1) note that this well-name dness requirement is too
weak to really rule out unwanted pre-USRs. For instance, conside a USR with two
labeled formulas that sharea meta-variable. First suppose that the shared meta-variable
occurs as a hole in both labeled formulas, i.e. there are two labelel formulas of the
form [:f (:::h:::) and 1% g(:::h:::). Then this shared holeh has two distinct mothers
(because the two labeled formulas will have distinct labels and therefore be plugged
into different places), which obviously cannot lead to a proper tree-shaped structure.
Furthermore, labeled formulas of the form |:f (:::1:::) need to be excluded. Such a
formula would specify that the hole | isits own mother which again cannot be the case in
a tree and therefore needs to be ruled out. The only possibility ofshared meta-variables
that we could allow is the case of a label of some labeled formuh that occurs as a hole
in some other labeled formula, i.e. we could allow for two label ed formulas of the form
[:f(C::h:::) and h:g(:::). This would specify that g needs to occur as daughter off
exactly as in the case of the NDC approach. Eventually we could € ne well-namedness
as follows.

"For P and P °the three common supersets areP [ P°, P [ PO[f ghfxg, and P [ P°[f fhgx g and similar
for P and P% and P°and P
8Bos (2002) talks about PLU, which is Hole Semantics applied to First Order Logic a object language.
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(Dd If a variable occurs more than once in the set of labeled formulas
then it occurs exactly once as a label and once as a hole of two diinct
labeled formulas.

Unfortunately, (Dis not straightforwardly compatible with the remaining de niti on
of pluggings® in Bos (2002). So we are faced with two options. The rst one is to
strengthen the well-namedness de nition of Bos (2002) to the one of mutual distinct-
ness in De nition 4.11 while keeping the original de nitions of pluggings as in De nition
4.12. | have taken this option in the preceding sections, whichresulted in the approach
H. The second option is to adopt the alternative well-namednes de nition in  (DJand
to change the de nition of a plugging accordingly. | will take this option in the follow-
ing, which will result in a different formalism Hgpare, that resemblesH but additionally
allows for shared meta-variables.

For the amended de nition of pluggings, suppose that k is such a shared meta-variable of
two labeled formulas I:f (:::k:::)and k:g(:::). Then any USR containing these labeled
formulas should be interpreted in a way that ensures that g ends up as daughter off
in the corresponding licensed term. To achieve this, the De nition 4.12 of a plugging
needs to be changed to include the speci cation that

(0 p(k) =k, if k CRVar(L) n LVar(L).

This ensures that labels are plugged into the corresponding sharé holes. All other

de nitions (in particular that of licensing) can then remain u ntouched. Let us write
Hshare for the URF that arises when point 3 of De nition 4.11 and De nition 4.12 are
modi ed by (DJand (LI}, respectively. Hgshare is then like H with the exception that

shared label/hole meta-variables are allowed. Those are interpreed in the same way as
shared meta-variables in labeling literals in the NDC approach.

Concerning the necessary amendment of the form criterion, the rst point of the Form
Criterion 4.17 re ects the fact that all labels and holes had to be mutually different. If
we allow for shared meta-variables in label/hole positions, the set of labeled formulasL
of some USRu will not coincide with L () in the general case. Therefore, we can only
make the following weaker statement in this case instead of he rst statement in the
Form Criterion 4.17:

1%. L = 1":f(vyiinv) | £ CT(m)

where eachvy; is either of the form hif or |9 for some g [T{u)

®Actually one would have to change the de nition of USRs in Bos (2002) altogether, as there the holes
and labels are collected in a set (thedomain, cf. footnote 4 on p. 65) which makes it impossible to
distinguish label from hole occurences of the same meta-variable. As | have ened (pre-)USRs slightly
differently my de nitions don't run into this problem.
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\ .
Mgrr1 /!
2L Hs(u)

These two points correspond exactly to the rst points in Lemma 4.5 and Form Criterion
4.7, which make statements about the labeling literals of an NDC This is no suprise, as
labeling literals of the NDC approach allow for shared variables n the same way as the
labeled formulas of Hgnhare. Therefore Hgnare can be identi ed with normal dominance
constraints without inequality literals.

Concerning the expressive completeness oHghare, Note that the counterexample set
P = {fghx;hgfx} from the preceding section cannot be licensed either. Assume Hhat
LI L) C Cis a USR ofHghare Which licensesP. In this case we cannot straightforwardly
conclude thatL =L as some of the meta-variables may be shared. But we can observe
that  ,p /1 = [CUsing the variant 1°of the Form Criterion we can therefore conclude
that there is no pair [fJg [C3uch that some labeled formula is of the form|If :f (:::19:::).
Hence we deriveL = L () from the fact, that there are no common mother-daughter
relations in the terms of P. Eventually we can reason as in the case oH above which
proves the incompleteness ofHghare -

Theorem 4.19
Hshare IS NOt expressively complete.

In particular, Hsnhare also fails to provide representations for the ambiguity of the contex-

tually disambiguated chocolate company example and the iséated sentence example of
Park (1995) from Sections 3.3.2 and 3.3.1, respectively. ThatHgnare is in fact more ex-

pressive thanH will be shown in Chapter 5, where the expressive power of the different

formalisms is compared.

4.5 Minimal Recursion Semantics

Minimal Recursion Semantics (MRS) is the last approach in the fanily of vari-
able/constraint approaches which | shall investigate in detail. The exposition | will
give here sticks to the presentation in Copestake et al. (1999) In this paper, the authors
de ne the MRS approach on top of FOLGQas object language, but they explicitly men-
tion that MRS can be de ned over arbitrary object languages!®. However, this is not
straightforward as they make use of a method of sharing labels to rgpresent conjunction

10(Copestake et al., 1999, p. 2)
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Clearly, this is a problem if the object language does not provice for anything similar
to conjunction. Therefore | will de ne the MRS approach without t hose conjunctions
and discuss this issues in a separate section in more detail athie end. | will rst give
a formal de nition of the representations of the approach that is more explicit in some
points than the rather informal presentation in (Copestake et al., 1999).

4.5.1 Representations and Licensing

The de nitions of the basic building blocks of MRS are similar to the ones of Hole Se-
mantics. Again there are parts and constraints, which are de ned over a signature
and a set of meta-variablesV .

De nition 4.20
Let > be a signature andV be a set of meta-variables. Then

(4.75) P={l:f(hy;:::;hy) | f" = I hy OV}
is the set of elementary predicates (EPS)

Elementary predicates are exactly what has been called 'label@ formulas' in Hole Se-

mantics or 'parts' in (4.1). In MRS, the meta-variables are called handles Again the

labeled variables LVar(E) (again called labelg, the argument variables RVar(E) (again

called hole9, and the set of functors I'(E) are de ned exactly as in (4.2) for some set

of elementary predicatesE. Furthermore, MRS makes use of a top hole as well, which
serves the same purpose as the top hole in the USRs of Hole Semans. Constraints are
de ned exactly as in Hole Semantics, relating a hole to a label

De nition 4.21
A constraint (over a set E of elementary predicates) is an equation of the formh =q |
where h [CRVar(E) LI} a hole including the top holeand | [IVar(E) is a label.

In order to de ne the basic underspeci ed representations, some auxiliary de nitions
are needed rst. An important concept is the outscopeselation, which is actually just a
simple dominance relation on the handles occurring in some set d EPs. Again | will use
the terminology of the original paper.

De nition 4.22
For a set of EP<E the outscopeselation /g is de ned as follows. k /g k°holds iff

1. k:f(::;k%::0) CE, or
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2. there is ak®such that k / ¢ k%and k%% ¢ k°

One of the most important differences between MRS and other appr@aches to underspec-
i cation is a subdivision of the functors of the signature into oating-scopal and xed-

scopalfunctors. In order to illustrate the difference, assume that | :f (:::h::2);1%g(:2)

are two labeled formulas of some USRu of Hole Semantics andh < 1%is a constraint
restricting their composition. This constraint is then interpre ted such that only those
terms occur in Lys(u) in which f dominates g, disregarding any functors that may pos-
sibly occur betweenf and g. For instance, if h is another unary functor and ¢ a constant
of some labeled formula, then the set of terms licensed byu is {fghc ; fhgc ; hfgc }.

In MRS however, a similar constrainth =g I°requires that f dominates g, but with the
additional requirement that all functors in between f and g are oating-scopal. There-
fore, if h happens to be oating-scopal the MRS representation correspondng to u will
license the same set{fghc ;fhgc;hfgc }. If h is construed as xed-scopal however, the
term fhgc will not occur in the set of licensed terms, as hereh ‘intervenes in the con-
straint’. Thus the MRS constrainth =g 1% requires dominance of f over g but without
intervening xed-scopal functors. In Copestake et al. (1999) the most prominent ex-
amples of xed-scopal functors are sentential adverbs (such asprobably) whereas all
guanti ers are taken to be oating-scopal functors. The latter de nition motivates their
choice to call the requirement of a constraint equality modulo quanti ers, abbreviated as

gedt.

In order to account for these speci cations formally, the foll owing de nition de nes
what it means for a relation on handles to be insensitive to oating-scopal functors,
but sensitive to xed-scopal ones. Given some relation on harlles R, the geqg-restriction
RY4 of R lters out those pairs [Kt k°CI_R which are not connected by oating-scopal
functors only, i.e. which are connected such that there is an intevening label that labels
a xed-scopal functor.

De nition 4.23
The geq-restrictionR9€% of a relation R on handles w.r.t. a set of elementary predicates
E is de ned as follows:

(4.76) RY9 = [k k°Jk Rk%and if there are labels|y;::: ;I such that
kRI1R - Rl Rk then k;l1;:::1, label

oating-scopal functors in E

As a rst step towards the de nition of the underspeci ed represen tations, MRS struc-

Halthough it is rather dominance modulo oating-scopal functors
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tures are de ned as triples consisting of atop hole a set of EPs and a set of constraints
together with some well-formedness requirements.

De nition 4.24
An MRS structurem is a triple CIGEL C [ where [iskhe top handle E is a set of elemen-
tary predicates and C is a set of constraints, which satis es the following conditi ons:

1. There is no handleh such thath/g C 1

2. The outscopes-relation respects the constraints, i.e. for esry constraint h =4 | ]
C, which is non-trivial (i.e. for which h & 1) the following holds:

(@) Itis not the case that |/ g h and
(b) if h/g | then h/g%

3. All labels of the EPs inE are mutually distinct.

Point 2. of the MRS structure de nition actually expresses that the constraints are
not contradicted Let h =4 | be a constraint in C. According to the de nition of geg-
constraints in Copestake et al. (1999), h must be (equal to) | or there must be a chain
of oating-scopal EPs E1, ... E, such that h is (equal to) the label of E; and | is (equal
to) a hole in E,, and for all pairs Ei; Ej+1 the label of Ej+1 is (equal to) a hole in E;.
Note that the rst case (equality of h and I) is a special case: ifh actually is | then the
constraint would be of the form h =y h and thus meaningless. Therefore the second
case is the interesting one. Ifl and h do not stand in the /g relationship in either way;,
the constraint is not ful lled yet, but it is not contradicted ei ther — it may be ful lled by
a further re nement of the MRS structure. However, it is clearly not fullled if /g h
so this case (a) has to be ruled out. In case (b) whereh outscopesl! (h/g I), it is not
ful lled if one of the intervening quanti ers in the chain (whi  ch causesh and | to stand
in the outscope relation) is a xed-scopal one. So this secondcase has to be ruled out as
well.

The third point is a well-namedness requirement that rules out shared labels between
EPs. These shared labels have been utilized by Copestake et. d[1999) in order to
form EP conjunctions In a separate section below | will show why EP conjunctions are
problematic for a general investigation which is independent of the underlying object
language. Nevertheless MRS allows for other shared meta-varides. For instance, there
may be labels which occur as holes at the same time. In this respct MRS behaves like
Hshare OF N.

MRS structures as de ned above are not yet the underspeci ed represemations of Mini-
mal Recursion Semantics. Only those structures which can be re rd to MRS structures
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that represent trees/terms of the object language are legitimate representations. The
way to re ne MRS structures is to successively identify some hande with some other
handle while taking care not to violate any constraint. This process is repeated until
every label has been identi ed with a hole in the set of EPs and tus the EPs have been
‘plugged’ together. Different ways of identifying labels and holes lead to different result-
ing MRS structures. Those resulting MRS structures uniquely correspiad to a tree/term
and are called scope-resolvedVRS structures that can be re ned such that they result in
a scope-resolved structure are then calledvell-formed Well-formed MRS structures are
the underspeci ed representations of the MRS approach. Let us wrie Uygs for the set of
all well-formed MRS structures.

In the following I will illustrate these concepts with an exam ple. The formal details are
spelt out in the Appendix in Section A.3.1.

Example 4.25
Let us look at Example 4.15 from Hole Semantics again, where the sntence

(4.77)  Every child told two teachers a story.

has been disambiguated by context in a way that restricted the readings to those in which
every child takes scope overa story. Hence only the three readings ([I2); ( (2112 [T
remained and the setP = {aetc;atec ;taec } was the corresponding set of terms that
needed to be licensed. The following MRS structure serves this prpose.

8 9
* |ola(ho);§ +
(4.78) m= g e " ho =q | °
' - 3 Lit(ho) 3 07at

lz:c

Obviously, this is an MRS structure according to De nition 4.24. It resembles closely the
USRu from Example 4.15. There are several ways in which the handles of theEPs can
be identi ed. In the following, one such sequence of identi cations of handles is shown,
where h 3 | stands for the identi cation of h with | (renaming h to |). The resulting
MRS is shown to the right.

ho B I (Gl lo:a(l2);lr:-e(hy); l2:t (h2);13:c }; {l2 =q 1}
h2 [ |1 Eﬂ.;__ﬂ|0:a(|2);|1Ze(h1);|2:t(|1);|3ic }; {|2 =q |1}|:|
hi B I3 Gl lo:adl2); li:e(s); 2t (1);13:¢ }; {l2 =q 11}

g gd; {lo:a(l2);11:e(3);l2:t(I1);13:¢ }; {l2 =q 1}
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In the last MRS structure each hole (including the top hole) has been identi ed with a
label. Therefore this MRS structure is scope-resolved and correspais to the tree/term
atec in a straightforward manner. Concerning the original constraint hg =q |1, that
demanded a to dominate e, we can see that in the resulting term atec the functor
t intervenes in the dominance as it occurs in betweena and e. This should only be
possible ift is a oating-scopal functor.

First note that the constraint hg =q |1 has changed tol, =4 |1. Starting with the second
MRS structure it holds that I, / g 11 (due to the presence ofl,:t (I1) in the set of EPS).
Furthermore, if and only if t is construed as a oating-scopal functor, it holds that |2/geq
l1. Thus the constraintl; =q I is only ful lled if t is oating-scopal. So the triples given
above are MRS structures only ift is oating-scopal, otherwise they violate point 2(b) of
De nition 4.24. Assuming that t is oating-scopal, this illustrates that the original MRS
structure is well-formed as we could arrive at a scope-resolved streture by successive
identi cation of handles.

To illustrate another effect of the gegconstraint hg =q |1, consider the following identi-

cation of the top hole with the label |1 for e.

L, 03; {lo:ache);l1:e(hy);l2:t (ha);ls:c }; {ho =q 11}

Now consider the identi cation of hq with Ig. This would lead to the following triple

h1 B 1o  04; {lo:a(ho);l1:e(lo);12:t(h2);13:¢ }; {ho =q 11}

We can read off from the EPs thatl; outscopesly and |g outscopeshg and hence |1
outscopeshg due to the transitive de nition of the outscopes relation. But the fact that
l1 /e ho conicts with the gegconstraint hg =q |;. Therefore this latter triple is not a
MRS structure in the sense of De nition 4.24 as the constraint is exdicitly contradicted
thus violating 2(a). Therefore the identi cation of hj; with |g is ruled out at this point.

Considering all possible sequences of identi cations that kad to MRS structures, we see
that we can arrive only at those scope-resolved MRS structures thatorrespond to the
set of termsP = {aetc ; atec ;taec } as desired.

The following translation  of scope-resolved MRS structures into terms is the MRS
counterpart of De nition 4.14 of Hole Semantics.

De nition 4.26
Let m = [, EL C [be a scope-resolved MRS structure. Then

(4.79) . RVar(E) [{I¥3- [[(E)]
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is de ned as follows:
1. (h)=xiff h:x CH

2. (=1 ( (h);:::; (hy)) iff h:f (he;:::hy) CHE

Obviously, by de nition of , every EP in a scope-resolved MRS structuren corresponds
to exactly one node in (m). If we let '(m) again denote the multiset of functors oc-
curring in EPs in m, all terms (m) will be in [F(m)]. The set of licensed terms of a
well-formed MRS structure m can then be de ned as follows.

De nition 4.27

(4.80) Lurs(m) = { (DIm Cmf* m%is scope-resolved with top [}1

Finally the MRS approachM can be de ned along the lines of De nition 2.8 as

(4.81) M = [Uygrs; Lurs[]

4.5.2 Form Criterion

Similar to the NDC approach and Hole Semantics we can derive anagous results con-
cerning monotonicity and independence of meta-variable names which are elaborated
in Lemma A.13 and Lemma A.14 in the Appendix. Therefore we can makeuse of the
indexing scheme for renaming meta-variables we have used befie.

The formally spelled out derivation of the actual Form Criterion i s rather tedious as the
process of successive identi cation of handles is a cumbersom method of plugging EPs
together. It should be clear however, that in the end this process achieves the same as
a plugging in the sense of Bos (2002) for Hole Semantics. Thisis proven in Section
A.3.2 in the Appendix and used in the derivation of the Form Criterion for MRS. Again

| restrict my attention to sets I', i.e. to well-formed MRS structures where each functor
occurs only once.

Form Criterion 4.28
Let m = [ EL C [be a well-formed MRS that licensesP such that '(m) is a set. Then
the following holds (modulo renaming of variables):

1.E = If:f(vyiii;vn) | £0 CT(mM)
where eachv; is either of the form h{ or 19 for some g [Tm)
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\
o I I
2p

3. If C%are the non-trivial constraints in C, then

\
cOr—1 /g
2P

Compare this result to the Form Criterion 4.17 of Hole Semantics andits variant with
shared meta-variablesHshare. As has been mentioned before, MRS allows for shared
meta-variables like the N and Hghare. Therefore the statement about the form of E (1.)
resembles the corresponding statements for these approaches.f some hole in the ith
argument position of an EP is actually a label, then this imposes a requirement on the
i-dominance relations of the licensed terms (2.).

Concerning the set of constraints, Hole Semantics and MRS make istually identical
statements (3.): the pluggings corresponding to the licensed trms restrict the form of
the constraints. However, as constraints are interpreted differently from Hole Semantics
(by distinguishing xed and oating functors), only the qgegrestrictions of the actual
pluggings have been taken into account. In summary, one may sg that MRS is Hgpare
with the additional xed-/ oating-scopal functor distinct ion.

4.5.3 MRS is Expressively Incomplete

Before we can think of a counterexample to the expressive compleeness of Minimal
Recursion Semantics, we are faced with two options. In the de nition of terms and sig-
natures in De nition 2.1, nothing has been said about oating-s copal and xed-scopal
functors. Indeed this distinction is irrelevant for the Normal Do minance Constraint ap-
proach and Hole Semantics as they evaluate constraints on the &sis of the tree rela-
tions without consideration of the very nature of the involved f unctors. This is different
in MRS where the oating/ xed scopal distinction is crucial to th e evaluation of con-
straints.

The choice we are faced with is whether to assume this distincion to be given a priori,
i.e. in the very de nition of the signature, or whether we grant ou rselves the freedom to
specify, which functor we want to regard as oating or xed-sco pal. The rst option is
linguistically the more plausible one. Whether a functor is oating-scopal or xed-scopal
may be simply a linguistic fact. For instance, in Copestake eal. (1999) sentential ad-
verbs are assumed to correspond to xed-scopal functors, whereas lhother scope taking
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elements (quanti ers in particular) correspond to oating-scop al functors. However, the
authors do not discuss or give a decisive argument that speci & when some scope taking
element should be construed as xed- or oating-scopal. In fact, all examples involving
instances of xed-scopal functors in Copestake et al. (1999) could be modi ed to work
without the xed/ oating distinction. So from a linguistic po  int of view it is unclear why
there should be such a distinction anyway.

From the formal language point of view however, it is interesting to see whether this
distinction actually increases the expressive power. In thiscase the second option to
freely specify the nature of the functor seems to be the more reasoable one. If we are
interested in decisive statements about the expressive powebf the formalism as such,
we should go for the option which maximizes the expressive power. For this reason |
will choose the second alternative and assume that — given a gjnature — we are free to
treat a functor as xed-scopal or oating-scopal.

For the case of nding a counterexample, using this second opton means that we have
to ensure that the counterexample remains one forany selection of xed-scopal functors.
Such a counterexample is not hard to nd. Supposing an appropriate signature, recall
the counterexample (4.62) for Hole Semantics, which is repeated here:

(4.82) P = {fghx;hgfx }

The reasoning for showing that P cannot be licensed byM is very similar to the case
of Hole Semantics (in particular Hghare) due to the resemblance of the two form cri-
teria. Assume that there is an MRS structurem = [ C E [hat licenses P. Setting
I = {f;qg;h;x}, the set of EPs looks as follows, according to the rst point of the Form
Criterion 4.28.

E = IT:f(v)]|f O
where v, is either of the form hf1 or |9 for some g [T1

The question, which of the EPs has arguments; of the form 19 can be settled by applying
the second point of the criterion. We only need to compute the intersection of the i-
dominances. Obviously we have

(4.83) /1t =1

2P
With the second point of the Lemma we can now conclude thatnone of the v, can be
of the form [9. ThusE = E is the set of EPs, where all holes and labels are mutually
distinct.
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Concerning the constraints, we have shown in Section 4.4.3 on theincompleteness of
Hole Semantics that the intersection of plugging dominancesin (4.64) is such that the
maximal set Cp of constraints (4.65) in this intersection is as follows:

(4.84) Cp = hi<I;nd<ix; i< =" =19 =", =%

Note that the constraints of Hole Semantics are of the same form & the constraints of
MRS (relating a hole to a label) and thus the setCp is the maximal set of constraints for
both approaches. Unfortunately this set of constraints is alsovacuous for MRS, i.e. the
constraints are ful led by anyterm in [I]. Therefore we have againLygrs(LIGEl ; Cp DI=

[r].

Recall that the gegrestriction of a relation is just a subset of the original relation. In
particular, this holds for the intersection of the plugging do minances and thus we have

\ \
(4.85) /959 /o

2L MRS(m) 2L MRS(m)

for any choice of xed-scopal functors (where equality holds if none of the functors is
xed-scopal). Therefore we can conclude that C [CQOp. Applying the monotonicity
Lemma A.13 we get the same contradiction as in the case of Hole Seantics.

(4.86) [N = Lwrs(OLHE ; Cp LI Lrs(GHE ;CDI=P L]

Hence we can conclude that there is no underspeci ed representaion of M that licenses
P, which proves the expressive incompleteness of the MRS approach

Theorem 4.29
M is not expressively complete.

Again, the same reasoning can be applied to show that the correspnding sets P° =
{gfhx ; hfgx } and P%°= {ghfx;fhgx } cannot be licensed in M. Furthermore we can
derive the same result concerning the supersets oP. Adding additional terms would

only make the involved intersections smaller. As ,, /1 = [already and Cp is vacuous
w.r.t. the entire set of terms in [I'] the addition of further terms to P would not change
this. Therefore no superset of P (and P°%and P %} except for [I'] can be licensed byM.
As in the case of Hole Semantics (cf. Section 4.4)M fails to provide representations
for more than half of the sets of readings with functors I'. In particular, MRS also
fails to provide a representation for the ve readings of the cont extually disambiguated
chocolate company example (3.22) from Section 3.3.2. Recall thd this set of readings
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was encoded by the set of terms
(4.87) Q = {fghx; fhgx ; hgfx ; ghfx ; hfgx };

which comprisesP (as well as P%). Furthermore, M cannot license the setR encoding
the four readings of sentence (4.69) from Park (1995)

(4.88) R = {t(d(r);n(s)); d(t(r;n(s)); nit (d(r);s)); md(t(r;s))) }:

This can be seen straightforwardly by inspection of the maximal set of constraints Cr
which have been shown to be vacuous w.r.t. the elements of'] in Section 4.4.3. Again
we found fairly simple counterexamples to expressive complet@ess of the approach
under investigation.

4.5.4 EP Conjunctions in MRS

Copestake et al. (1999) devise a method for grouping EPs togédter by allowing them

to share the same label. Those so-calledEP conjunctionsare translated using the FoL
conjunction connective [_Hor instance, the MRS structure from (Copestake et al., 1999,
p.6, (18Db))

(4.89) [ gy :everyX; hs; hs); hs:dog(x); h7: white(y); h7: cat(y);
hs: somdy; h7; hg); hga:chaséx;y)}; [T

is taken to stand for the FOLGQexpression
(4.90) every(x; dog(x); somdy; white(y) Ccat(y); chaséx;y)))

representing the universal wide scope reading ofEvery dog chases some white catThe
EPshz: white(y) and h7: cat(y) share the same labelh; and are translated using the
conjunction L1

In this section | will show how this extension can be incorporated into the formal de n-
itions of the preceding sections and discuss problems with EP @njunctions that cannot
be easily reconciled with a general approach of underspeci cation of arbitrary object
languages.

First, 1 will generalize the translation of Copestake et al. (1999) somewhat and de ne
that those EPs with shared labels will be interpreted via some binary functor [Cafl the
signature . For instance if |:f(:::) and I:g(:::) share the same labell, they will be
taken to representf (:::) gl ::) (using in x notation). Therefore, the translation of
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a scope-resolved MRS structure will yield a tree in[l"(E) [ 1:; [Hi.e. a tree that
consists of the functors mentioned in the EPs and some additinal number of the bi-
nary 'conjunction' functor [_due to possibly occurring EP conjunctions/shared labels.
The translation of scope-resolved MRS structures into terms of the object languag in
De nition 4.26 can be adapted as follows to cope with EP conjunctions.

De nition 4.30
Let m = [ EL C [be a scope-resolved MRS structure and let_hé that functor in X that
is used to interpret EP conjunctions. Then

(4.91) . RVar(E) LIL¥3- [[(E) C{L:; O

is de ned as follows:
1. (h)=xiff h:x CE
2. (h)=(@F1( (ha);:izy (hymy)) 21 CEAC (bno)sicis (Namy)))

| deliberately phrased the translation of EP conjunctions without any particular bracket-
ing of the [falindicate the nondeterminism that is involved here.

As has been pointed out above, EP conjunctions cause certainrpblems. The rst con-
cerns the dominance relation and the constraints. As EP conjuntions are translated
using a binary functor [Chy , the dominance relations of the resulting tree will look
different from what can be read off the MRS structure. This poses a prdlem in eval-
uating constraints as follows: Take an MRS structure containingtwo EPsl:f(:::h:::)
and | : g(:::h9::) sharing the same labell and the constraint'? | = h. Considered sepa-
rately, the rst EP ful Is the constraint and the second EP does not, becausef but not g
dominates h. However, technically speaking the constraint is ful lled b y the second EP
as well just because it shares its label with the rst EP. What basically happens by form-
ing EP conjunctions, is a transition from two separate EP$:f (:::h:::)and|:g(:::h%:::)
to one new, complex EPI: [(fk:::h:::);g(:::h%::)). In EP conjunctions such as this
one, there is therefore no possibility to restrict dominance for the conjuncts separately
but only for the entire conjunction. This is one unattractive f eature of EP conjunctions.

But there is still a more substantial problem. The translation of EP conjunctions using
a binary functor L[isldependent on the interpretation of [Cinlthe object language: the
operation denoted by [Chas to be associativeand commutative i.e. it has to hold that
certain expressions are somehow regarded asquivalenton the object level. To see why

2As constraints are of the formhole =, label we have to assume thatl occurs also as a hole anch as a
label in some other EPs. This has no impact on the presented argument.
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this is indeed important, consider an EP conjunction of three BPsl:x, |:y, and |:z. As
indicated above, this EP conjunction will be translated using the binary functor [_But
there are several ways to do so: the EP conjunction could be transleed as ((x [l CZ)]
oras ((y &Xx)1[Z2)), or as (x [L(yI[Z)), etc. This means that there are several translations
in the object language for one expression of the meta-languag. Strictly speaking, this
means that the MRS meta-language isambiguous This of course is unacceptable for
a formal representation language. We can only overlook this shortoming, if we know
that those expressions are somehow regarded as equivalent on thebject level, i.e. if [
is associative and commutative. In this case, we could freelychoose any order of the
EPS and any bracketing of the [Cfekms, knowing that all terms are equivalent in some
respect.

Copestake et al. (1999) do not encounter this problem as they tse FOLGQ as object
language. They translate EP conjunctions usingFoL conjunction [Cwlhich is indeed as-
sociative and commutative according to the standard semantis of FOL. But as this is
clearly a very strong dependence on the object languag®®, sharing labels and EP con-
junctions can hardly be reconciled with the general view of abstract signatures pursued
in this thesis. For this reason EP conjunctions have been setside in the discussion about
MRS.

4.6 The Unbound Variable Constraint

In this section | shall brie y discuss a type of general and implicit constraint that may
be employed to restrict the set of represented readings further. It @n be termed the
Unbound Variable Constraint(cf. Park, 1995) and has been discussed rst in Hobbs and
Shieber (1987). As Hobbs and Shieber (1987) point out, the naive permutation of
quanti ers for a sentence with embedded NPs such as (3.18) (repeated here as (4.92))
generates a logical formula (4.93), in which a variable occurs free.

(4.92) Two representatives of three companies saw most samples.
(4.93) two(x; rep.of(x; y); most(z; samp(z); threg(y; comp(y); saw(x; z))))

In the formula above the rst occurence of y in rep.of(x;y) is free as the corresponding
quanti er threetakes scope belowmost For this reason, it has to be ensured that these
kind of illicit formulas are not produced in the course of the construction of the inter-
mediate logical representations. For instance, Cooper Storag in its original formulation
(Cooper, 1983) suffered from this problem which was the reason for Keller (1988) to

Bin fact on the interpretation of the language
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extend Cooper Storage with nested storage structures.

For underspeci ed representation formalisms this imposes an exra requirement on li-

censing. It has to be ensured that no readings are licensed that entain unbound vari-

ables. In Minimal Recursion Semantics this constraint is expicitly mentioned in Copes-
take et al. (1999) and formalized in the version of MRS de ned in F uchss et al. (2004).
For each variablex occurring in some EPI:f (:::x:::), there must be an EPI% Qy (h1; hy)

corresponding to a quanti er Q binding x such that this latter EP dominates the former.
If this information is made explicit in the MRS structure, for ins tance as a new type
of 'binding constraint’, the licensed formulas would indeed be ensured to exhibit only
bound variable occurrences.

Although this requirement may be important in practice, it is less important in the con-
text of the discussion on expressive power as it affects all fomalisms alike. For instance,
one could simply realize the unbound variable constraint as an alditional Iter on the
readings that are licensed by each formalism. Given a de nition of the licensing relation
L of some formalism one could de ne a re ned version LO°that rules out terms with
unbound variable occurrences.

(4.94) LYu)={ | [IXAu)and does notcontain unbound variables}

Even more important for the present discussion is the fact that he unbound variable
constraint does not help to achieve expressive completenesof any of the formalisms
discussed above. Recall that none of the formalisms provided aepresentation for the
set

(4.95) Q = {fghx ;fhgx ; hgfx ; hfgx ; ghfx }

corresponding to the readings of the contextually disambiguated chocolate company
example (3.22) from Section 3.3.2 (repeated here as 4.96)

(4.96) Every marketing manager showed ve sales representatives a samp.

First note that 4.96 is a simple sentence containing a ditransifve verb and three quan-
ti cational NPs that provide the arguments of the verb. In partic ular, there are no em-
bedded NPs that caused the problems in the case above. Therefotbere is no way that a
formula containing an unbound variable could be generated. In this example, unbound
variables occur only in the representation showedx; y; z) of the verb. But due to the fact
that all involved NPs are arguments to this verb, this representaton must necessarily be
dominated by all quanti ers (in different orders). This can be rea d off the abstract term
representation as well. There are three unary functorsf, g, and h but only one constant
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X, which therefore must necessarily be dominated by all those furctors.

Due to the abstract approach | pursued here, it is not even necessaryhat f, g, and h
correspond to quanti ers as they can be seen as abstract representeons of any other
unary scope taking element such as negation, modalities, etc As | have pointed out in
Section 3.5, an abstract set of terms such ag) above stands for an entire pattern of
ambiguity, for instance for some set of readings of a sentencesuch as (4.97) (where the
unary scopal elements have been underlined).

(4.97) John probably did not want to leave.

For instance, identifying f with probably, g with not, h with want and x with leave, the
term fghx stands for the reading

(4.98) probably(—want(j; leavd])))

There is no quanti cation involved in this case and hence the readings of this sentence
are not subject to the unbound variable constraint. The failure to license a set of terms
(such asQ above) proves the lack of a formalism to represent an entire class breadings,
only some of which may contain quanti cational elements. He nce the unbound variable
constraint does not have an impact on the discussion on expresge completeness.

4.7 Other Approaches

After the detailed investigation of three variable/constraint approaches in the preced-
ing sections, | shall brie y discuss the expressive completeress of a few other under-
speci cation formalisms in this section. First, | will discuss Underspeci ed Discourse
Representation Theory (UDRT) which | also counted among the varable/constraint ap-

proaches. However, due to its close resemblance to Hole Semaius, the investigation

of its expressive power can be held rather short. Furthermore, | wil informally discuss

three approaches that differ in basic concepts from the variabléconstraint approaches,

namely the tree description approaches of Kallmeyer (1999) and Muskens (2001) and
the Glue Semantics approach employed in LFG.

4.7.1 UDRT

Underspeci ed Discourse Representation Theory (UDRT; Reyle, 199Bwas one of the
rst approaches to underspeci ed representations. As the name indicates, the UDRT
formalism constrains the combination of Discourse Representatin Structures (DRSS)
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(Kamp and Reyle, 1993) and is hence con ned to the language of DR as object lan-
guage. Therefore my general de nition of expressive completeness is not straightfor-
wardly applicable to UDRT. However, with respect to the de niti on and interpretation
of the constraints, UDRT is similar to Hole Semantics.

The constraints utilised for underspeci cation in UDRT are of the form | < 1%, expressing
the requirement that the DRS labeled with | has to be subordinate to the DRS labeled
with 12 Reyle (1993) requires the set of labels to form an upper semi-latice with top
element under <. This corresponds to the de nition of the < constraints in Hole Seman-
tics. In fact, Bos (1995) illustrates Hole Semantics' independence of an object language
by using the language of DRT as object language. With respect tdhe constraints and
their interpretation, the resulting formalisms (which he calls DRT Unpluggeliresembles
closely the original UDRT de nition from Reyle (1993).

The following example illustrates a UDRS representation that represents the entire set
of six possible readings for the sentence

(4.99) Every marketing manager showed ve sales representatives a samp.

The representation consists of tree components: an empty top DRS ith a label |y that
serves as the top element of the constraint latticé4, a set of labeled DRS conditions
that describe the involved DRSs, and the set of constraints, wherd only state those
subordination constraints that are not implicit in the DRS conditions or the transitive
closure. For instance, it also holds thatl, < |; as the DRS labeledl, is subordinate to
the DRS labeledl, because it occurs as the premise of the complex condition, [Tg bf

l1.

(4.100)  mg;{I1:1p CTsdl2:x; Io2:managefx); 13:Y; I3:salesrep(Y); I3:14 I
l4:y; 140y YL 1g:z; lg:sampl€z); |5:show(x;y;z) };

{|1S|0; 3<lg; lg<lg; Is<=lg; Is5<I7; |5S|8}|:|

This UDRS example becomes more perspicuous when illustrated grapbally as in Figure
4.2.

Due to the equivalence of the< constraints and their interpretations in both approaches,
UDRT suffers from the same weakness w.r.t. expressive power, i.e. ifails to represent
certain patterns of ambiguity. For instance, the set of ve readings of the contextually
disambiguated chocolate company example from section 3.3.2 canot be represented
by the UDRT approach, as the subordination information common tothe DRT represen-
tations of these ve readings is not suf cient to rule out the un wanted reading. More

In Reyle (1993) the top element is not explicitly stated as a separate commnent, but can be recovered
from the constraint lattice.
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l1
salesrep(Y)
Py lg: [Y]|=5
la: I7: 2
X : :
=L 2 ’ sampl€z)
manage(x) y —
y [Y]
|5Z
show(x;y; z)

Figure 4.2: Graphical illustration of (4.100)

precisely, UDRS allows for sharing of meta-variables (i.e. DRS labsl) and hence it is
equivalent in expressive power to Hghare if We restrict ourselves to the object language
of DRT. Therefore the UDRT approach fails to provide UDRS representatias for the
same sets of readings that are problematic forHghare -

4.7.2 Tree Description Approaches

(Kallmeyer, 1999). In (Kallmeyer, 1999) a (model-theoretic) description-based ap-
proach to underspeci cation is pursued. Tree Description Grammarshare the view that
the linguistic objects under consideration are to be describedin some logical language,
i.e. that they are the models of formulas stated in some logid®. Kallmeyer chooses a
guanti er-free rst order logic for describing trees, where the lan guage contains (among
other non-logical constants, e.g. for attributes and values)the predicate symbols/ (for
immediate dominance), / (for dominance), L[_(fbr precedence), = (for equality) for
talking about the con guration of nodes in a tree (cf. Kallmeyer, 1999, pp.159f). Fur-

5Prominent proponents of description-based approaches to syntax includeVijay-Shanker (1992) and
Rogers (1994), for instance.
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thermore, Kallmeyer uses complex attribute-value structures asabels of the trees. Sat-
isfaction is then de ned w.r.t. labeled trees (Kallmeyer, 1999, De nition 7), where the
free variables of the formulas are implicitly existentially bou nd.

The language is de ned over the logical connectives [T, +. However, although she
de nes the semantics and a calculus for the full language, the de nition of a description

' used in a tree description grammar is restricted such that® does not contain any nega-
tions or any disjunctions (Kallmeyer, 1999, p. 172, De nition 20, item 3.). Disregarding
the formulas talking about the complex labeling of the trees, this restricts the available

tree descriptions to conjunctive formulas over the predicate synbols/;/ ; [L-ahd =.

Due to the restriction of descriptions to only positive and conjunctive information it

seems that this approach runs into the same problems as all the dter approaches dis-
cussed above. For instance, as | have shown in Section 4.3, thdominance information

common to the trees in P = {faes;feas;eafs;aefs;afes } is not enough to rule out
the term efas. In other words, a positive, conjunctive formula that re ects o nly the

dominance information about /, / , etc. common to the elements in P cannot exclude
the term efas as this term also shares this information. Note that the additional rela-
tion of precedence [Lddes not help here, as the common precedence information is nil.
Using the notation from Section 4.3, [ =3 [for each [P and hence [p= [IThere-
fore P constitutes a counterexample to the expressive completenessf the approach of
Kallmeyer (1999).

Muskens (2001) de nes another tree description approach that resorts to a full rs t-
order language'®, extending the earlier versions in (Muskens, 1995) and (Muskens,
1999). As means for talking about the structure of trees, Muskers (2001) employs
dominance (/,/*,/ ) and precedence predicates[._Due to the presence of disjunction,
it is in principle possible to achieve expressive completenes, although Muskens (2001)
neither elaborates on underspeci cation beyond a very simple example nor discusses
constraints on readings at all. | will not go into further detail about the approach, but
defer a discussion of expressively rich languages to Chapter,Avhere another rst-order
system for underspeci cation, namely the PTCT approach of Fox ad Lappin (2005a,b),
is investigated thoroughly.

18|n particular, it contains an axiomatization of trees close to the one of Backofen et al. (1995)
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4.7.3 Glue Semantics

Crouch and van Genabith (1999) show how the Glue Semantics appoach of LFG natu-
rally leads to underspeci cation *”. In Glue Semantics, the assembly of semantic meaning
representations is controlled by formulas of linear logic, the glue language(Dalrymple
et al., 1995). Dalrymple et al. (1997) show how different readings o f scopally ambigu-
ous sentences can be assembled through different derivationsrbm the same set of glue
language premises. As Crouch and van Genabith (1999) elaboratethe order in which
meaning representations of quanti cational NPs are used in the derivation process cor-
responds to the order in which they take scope in the nal meaning representation of the
sentence. Therefore, imposing constraints on the possible deviations (i.e. on the order
in which the NP meanings are used) is a means to constrain the geerated readings.

Whether this leads to an expressively complete formalism hinges on the choice of con-
straints on derivations. For instance, Crouch and van Genabith(1999) mention that one
could translate the glue language derivation node orderings into UDRS label orderings,
which has been realised in (Crouch et al., 2001). However, this would not lead to an
expressively complete formalism, but to one which is restrictedin expressive power in
the same way as UDRT (and hencéHgpare, Cf. Section 4.7.1).

4.8 Summary

In this chapter | have discussed the expressive incompletergs of various underspec-
i ed representation formalisms. In particular, the four promine nt variable/constraint
approaches introduced in Section 1.2 have been shown to be incagble of representing
certain patterns of ambiguity.

All four approaches fail to provide representations for the contextually disambiguated
chocolate company example, which has been used in Section 3.2 to illustrate patterns
of ambiguities that may arise due to contextual disambiguation. Furthermore, Hole Se-
mantics H (and its variant Hghare With shared meta-variables) and Minimal Recursion
Semantics M cannot represent the isolated sentence example of Park (1995) fom Sec-
tion 3.3.1. In fact, there is a whole range of non-representable paterns for H and M,
namely the supersets ofP = {fghx;hgfx } (excluding the full set of possible readings

[{f; g; h; x3]).

This settles the so-far open questiof® about the expressive completeness of these for-
malisms. At the same time it raises questions about their adegacy as representation

see e.g. (Dalrymple, 2003) for a recent introduction to LFG and Glue Semanics
18¢f. Konig and Reyle (1999)
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approaches. | will take up this question after elucidating the relationships of the vari-
able/constraint formalisms w.r.t. expressive power in the next chapter.



Chapter

A Comparison of Expressive Power

In this chapter | will investigate the relationship between t he variable/constraint for-
malisms that have been investigated in the preceding chapter Due to the resemblance
of the de nitions of labeled parts and constraints on one side, and the different ways of
evaluation of those constraints on the other, the results of a @mparison are not obvious.
However, from the discussions of the preceding chapter one mayhave some intuitions.
The Hole Semantics formalismH seems to be the simplest approach, allowing for only
one type of constraint, interpreted by dominance. Its cousinHgpae S€EMS More powerful
as it allows for shared meta-variables in the labeled formulas. Shared meta-variables are
also allowed for in the NDC approachN and Minimal Recursion SemanticsM, but each
of these two formalisms brings in some additional feature. N employs a second type of
constraint, interpreted as inequality of tree nodes, so it is rea®nable to assume that it
is more powerful then H and Hgphare. M employs a more re ned version of dominance,
namely gegdominance. Therefore it may be more powerful then H and Hgpare although
it is not obvious how it relates to N. Finally, as | have argued in Section 4.7.1, UDRT
is restricted to DRT as the underlying object language but has in priciple the same ex-
pressive power asHgspare due to the identical interpretation of the constraints. Therefore
I will not go into further detail about UDRT in the following inv estigation.

In the subsequent sections | will give formal proofs that theseintuitions are correct by
elucidating the relations between the formalisms in detail. More precisely, | will de ne
a translation from one formalism (e.g. H) into another formalism (e.g. N) and show
that this translation preserve licensing. So for each USR oH that licenses some set, the
translation of the USR is a NDC which licenses the same set itN. This shows thatN is
at least as expressive a$l, because it can license at least the sets that are licensed biyl.

Note that this translation is actually enough for deriving the expressive incompleteness

99
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of H once the expressive incompleteness oN is established. IfN is expressively incom-
plete and fails to license some setP, then H also fails to licenseP, as otherwise the USR
of H for P could be translated into an NDC for P. However, such a reduction argument
would give us only the statement of incompleteness and no predse result about the set
of readings which cannot be licensed byH. In addition to the translations, such results

are necessary to show thatN is strictly more expressive thanH. A counter-example set
that can be licensed byN, but that cannot be licensed by H will prove this. For this

reason, separate Form Criteria have been derived for each of the thre formalisms in the
preceding Chapter.

5.1 Translating Hole Semantics into NDCs

In order to compare Hole SemanticsH to the NDC approachN | will give a translation

t from USRs, the Hole Semantics representations, to normal dominane constraints, the
representations of the NDC approach. After showing thatt preserves the licensed sets
we are able to investigate the relationship betweenH and N more closely.

Let us start with the translation of the labeled literals and the constraints of Hole Seman-

literals of the NDC approach, these can be reused without any chage. The same is true
for the constraints h < |, which correspond exactly to dominance literals (changing < to
[ only).

(5.1) (h<lY = h/ |

However, we have to take special care of the top hole, which mayoccur in some of those
constraints. Luckily, we do not need the top hole in the resulting NDC and thus we can
omit it together with any constraint in which it occurs.

lows, where the T;; :::; Ty are those constraints among thecy;: : :; ¢, that do not contain
the top L1
(5.2) {fo;00fyY = o 0 H]

{c;::560Y = ¢ [ [T,

For the translation of a full USR LI, 1] C Ldf Hole Semantics we need to conjoin the trans-
lations of the labeled formulas and the constraints. However, we are not nished yet.
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Consider De nition 4.3, the de nition of the normality of domin ance constraints again.
Obviously, points (N1)—(N3) will be ful lled in the resultin g dominance constraint due
to the de nition of USRs. What still needs to be ful lled is (N4 ), which demands the
existence of appropriate inequality literals for all labeled variabels, i.e. labels. Therefore
we simply add the inequality literals

(5.3) N := 11°
I;102LVar(L);16 10

to the conjunction of translated labeled formulas and constraints. The translation of a
full USR of H is then as follows.

(5.4) (O C Fl= LY [T [N,

Example 5.1
The translation can be illustrated with a simple USR, that has besn used in Example 4.15
already:

8 9 8 9
* E lo:a(ho); E E C=llo; E+
(5.5) U= l1:e(hy); ~ ; C=llp; —
E l2:t(h2); E E C=lis;
) I3:C ! " ho<ly

First note that the additional conjunction of inequality lit erals N is
(5.6) N = 1Bl I8, (D& I3 [TE |, (8 I3 (T8 I3

because the set of labels idVar(u) = {lp;I1;12;13}. Then the full translation of u is as
follows:

(5.7) W = lg:a(ho) Chake(hy) CIakt (hy) Clghc Chy/ 1y CNy

This translation preserves licensing, i.e. it holds that Ls(u) = Lypc(u¥Y). The formally
spelled out proof shows how pluggings of H correspond to embeddings of N and is
given in Proposition A.18 in the Appendix.

The translation together with the preservation result shows that N is as least as ex-
pressive asH in the sense it has been de ned in De nition 2.10: Each underspeci ed
representation of H can be translated into an equivalent underspeci ed representaton
of N.

*Obviously, we could leave out the symmetric counterparts of each pair, e.g.I1° & I. when we already
havel & 1%in principle.
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To see thatN is strictly more expressive thanH consider the setP = {fghx ; hgfx } from
Section 4.4.3 again, where it has been shown thatP cannot be licensed by any USR
of H. However, P can be licensed byN as the following NDC shows (using variables
different from the standard naming scheme for simplicity):

(5.8) Ci= XCGfF(XY DY g(Y?) Lz h(z9 Ca:x
(5.8a) [XEY[XIEZ[XIEULYIEZ [YIEU [LZAEU
(5.8b) [Y°2 U [xX1°2 z [ZPE X

A closer inspection of' shows that indeed Lypc(' ) = P. Note that the inequality literals

in the second line (5.8a) have to be introduced to ful | point (N 4) of the normality

De nition 4.3, demanding that for each two distinct labeled va riables a corresponding
inequality literal must be present in the constraint. The actually restrictive literals are

the inequality literals in the third line (5.8b) that rule out the unwanted terms and leave
only those in P as constructive solutions.

Another example from Section 4.4.3 is the set

(5.9) R ={t(d(r);n(s)); d(t(r;n(s)); nt (d(r);s)); n(d(t(r;s))) }

Recall that R encodes the four readings of sentence (4.69) from Park (1995), repeated
here as 5.10.

(5.10) Two representatives of three companies saw most samples.

The NDC which licensesR is the following

(5.11) = X :t(X1;Xo) CYId(YY) [Z:m(Zz9 C:r CV:r
[(XEY[XIEZ[XIEUILXIEV [YIEZ [YIEU [YIEV
[AEU[ZEV [UEV
[Xi/ ULXL/ VLY ULCZPl Vv
=4

Again, the inequality literals in the second and third line need to be included to ful |
point (N4) of the normality de nition. The fourth line contain s the dominance literals
that have been computed in Section 4.4.3 already. The graph illugrating these con-
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straints is repeated here:

(5.12) 1

Y :d(Y9 Xt (X1;X2) Z:mz9

U:r V:s

Taking only these literals, would license the entire set of ve readingsin [{t;d;mr;s}].
The crucial literal at this point is the additional inequality literal YO & Z in the fth
line, which states that d cannot be the mother of m This excludes the unwanted term
d(m(t (r;s))) and hence the following unwarranted reading.

(5.13) three(y; companiegy); most(z; sampl€z);
two(x; representativeof(x; y); saw(x; z))))

and leaves only the desired four terms inR. It is striking thatin ' and above only in-
equality literals have been used to achieve this, which illugrates nicely that they indeed
increase the expressiveness of the formalism with respect tdH, where no such means is
available.

Strengthening the result about expressiveness from above, we rally get

Theorem 5.2
H@N

This concludes the discussion of the expressiveness dfl vs. N. The approach using
Normal Dominance Constraints is strictly more expressive than Hok Semantics.

5.2 Translating Hole Semantics into MRS

Translating the representations of Hole Semantics into the MRS suctures of Minimal
Recursion Semantics is not too dif cult if we grant ourselves the freedom to decide,
whether a functor is oating scopal or xed scopal 2. Comparing the second point of
the Form Criterion 4.17 for Hole Semantics with the third point of t he Form Criterion
4.28 for MRS, it is clear that we only have to assume that all fundors are actually

2¢f. the discussion in Section 4.5.3
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oating scopal functors. In this case the gegrestriction of any relation on meta-variables
coincides with the original relation itself. In particular, th e gegrestriction of the plugging
dominances/ §*% coincide with the plugging dominances / p and hence MRS constraints
are evaluated the same way as Hole Semantics constraints. If wéurthermore restrict
ourselves to MRS structures in which all labels and handles are mutally different, then
the second point of the Form Criterion 4.28 does never apply and hace it coincides with
the Form Criterion 4.17 of Hole Semantics.

The following simple translation ] and the succeeding proposition make use of these
observations. The only necessary translation concerns constrats and changes=< to =g:

(5.14) (h=)) = h=4l

Besides that, the translations leaves everything else (labelé formulas, the top hole)
untouched. On full USRs it is de ned componentwise and elementwise on the set of
constraints:

D E
(5.15) mgcti= oc!

This translation preserves licensing again as the following Prgosition states.

Proposition 5.3
Let u be a USR ofH. If all functors I'(u) are considered oating scopal in M, then

Lus(u) = LMRS(U])'

Proof. As noted above, if all functors are considered oating scopal, then /3% = Ip .
Furthermore, as all labels and holes are mutually distinct in u (and hence in ul) accord-
ing to the de nition of USRs, Form Criterion 4.28 coincides with Fo rm Criterion 4.17.
Hence Lys(u) = Lyrs(W). O

This immediately implies that H [CIM, i.e. that MRS is at least as expressive as Hole
Semantics. However, similar to the case of NDCs, there is an exaple that shows that
MRS is actually strictly more expressive than Hole Semantics. Casider the following set
of terms:

(5.16) S = {fghx; hfgx }

In the terms of this set, f dominates g and h takes widest or narrowest scope, but not
intermediate scope. In other words h does not intervene in the dominance of f and g.
The problem for the Hole Semantics approach is that there is no mans of preventing h
from intervening between the dominance of f and g and thus the unwanted term fhgx
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is among the licensed ones. This is shown in detail in Proposion A.19 in the appendix.

In the MRS approach, this of course calls for a de nition of h as xed-scopal functor.

Specifying that h is xed-scopal, we can take the translation [ Cs 0 which does
license S in the MRS approach due to the more re ned evaluation of the constraints. To
see this, note thatCs [73°%holds for = fghx and = hfgx, but not for = fhgx. In

the former two cases thegegrestrictions on the plugging dominance / 3°% coincide with

the plugging dominances/, while this is not the case with fhgx. Therefore we have
Lurs((E Cs ) = {fghx ; hfgx }.

This example additionally illustrates, that it makes a difference if we grant ourselves
the freedom to choose functors to be xed- or oating-scopal. |f we didn't have this
choice and h had been oating scopal by some a priori de nition, than we could not
have gone the way above. In this case, thegegconstraint between f and g would have
been insensitive to any intervention of h leading to the same way of reasoning as in the
case of Hole Semantics.

However, in this particular case, we still would have another option. Note that we can
make use of the fact that meta-variables can be shared in MRS struares. As the terms
in S are the only two terms in [I'] in which f immediately dominates g, the following

MRS structure does the job equally well:

(5.17) C" £ (19):19:g(h9); 1" h(hM); 1X:x ;[

In this MRS structure the hole in the EP labeled byl is the label I9. This causesg to
appear as daughter off in all licensed terms. As the set of constraints is empty and
therefore poses no additional restriction on the terms, we have Lygs((5.17) ) = S as
desired.

These two options show that these two mechanisms — the use ofjegconstraints vs.
sharing of meta-variables — independently increase the expresse power of an approach.
In any case they show that MRS is strictly more expressive than H@ Semantics as we
have found a set that can be licensed byM but not by H. Together with the existence
of a translation we get

Theorem 5.4
HoM
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5.3 MRS and NDCs

In this subsection | shall nally discuss the relationship between MRS and the NDC
approach w.r.t. expressive power. As the heading already indicags, there is no interesting
relationship — neither approach is more or less expressive thanhe other. | will again
show this by way of example.

Recall that we have already come across a set that cannot be licessed by MRS but by the
NDC approach, namely

(5.18) P = {fghx; hgfx }:

At the end of Sections 4.4 and 4.5, this set has been used as a coterexample to the ex-
pressive completeness of Hole Semantics and MRS, respectively Section 5.1 however,
the NDC approach has been shown to provide an underspeci ed represetation for this
set. We can hence conclude that MRS isiot as expressive ahe NDC approach.

On the other side we can nd a set which can be licensed by an MRS sucture but

not by any NDC. This set has to look more intricate than the previos example sets for
particular reasons. First note that M and N do not differ in the way they treat shared

meta-variables, i.e. meta-variables that occur both in a hole ad label position. Those
shared variables specify the mother-daughter relations of the hvolved functors in both

approaches. Therefore, this feature cannot be the source of a podsle difference in

expressive power. At second, note that the NDC approach casimulate gegconstraints
in a limited way by means of inequality literals. To see this, assume that there are three
unary functors f; g, and h and consider agectconstraint f =4 g where his a xed scopal

functor. This setting prevents h from intervening the dominance of f and g in MRS.
However, we can simulate this effect in the NDC approach by requiing h not to occur

as daughter off . We would do this with the inequality literal h{ £ I", which would give

us the same result. Alternatively, we could require h not to occur as mother of g with

hf & 19, which would again have the same effect. Therefore, in order to ®nstruct an

example that cannot be licensed by an NDC but by an MRS structure, w have to resort
to more complex terms which make it impossible to use inequalites in this way.

The terms of the counterexample setT are built on ve unary functors and one constant
such that the functors constitute the setl” = {f%;g*; h';i 1;j 1;x%}. Before | give the set
of terms, let me rst give the MRS structure m which licensesT:

D

n .0 E
(5.19)  m= L :f(hD);19:g(hd); 1" h(hl); 1t ci (hh); 1 :f(hh) ; hf =419

Let us take a closer look atm rst. We start by specifying that his a xed scopal functor.
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Then the three functors f ;g and h are as mentioned in the preceding paragraph:f geg
dominates g, but h is such that it does not intervene in this dominance, i.e. there is a
gectconstraint hf =q |9and his a xed scopal functor. The functors i andj however are
oating scopal functors and free to take scope even in betweenf and g.

Then entire setT licensed bym is as follows:

(5.20) T ={ hfgijx hfigix ; hfijgx ; hifgjx ; hifigx ; hijffgx ;
ihfgjx ; ihfijgx ; ihjfgx ; ijhfgx ; ijfghx ; ifjghx ;
fijghx ; ifgjhx ; figihx ; fgijhx ; ifghjx ; fighjx ;
fgihjx ; fghijx ; hfgjix ; hfjgix ; hfjigx ; hjfgix ;
hjfigx ; hjifgx ; jhfgix ; jhfigx ; jhifgx ; jihfgx ;
jifghx ; jfighx ; fjighx ; jfgihx ; fjgihx ; fgjihx ;
jfghix ; fighix ; fgjhix ; fghjix }

Note that the terms of T are those terms of[I"] in which
1. f occurs before/dominates g,
2. h does not occur betweenf and g, and
3. i andj occur at any possible place.

Now suppose we want to simulate this behaviour in the NDC approah and consider
the term fihjgx £11. In this term h intervenes the dominance off and g and thus it
is not licensed by m. But note that h is neither the daughter of f, nor the mother of g
and thus specifying corresponding inequality literals as mentioned above would not rule
out this term in the NDC approach. So we may be inclined to state siilar inequality
literals stating that h may not occur as the daughter ofi or the mother of j . This would
certainly rule out this term, but also other terms such asihfgjx or ifghjx , which arein
T, i.e. licensed bym. Either way, it is not possible to simulate the gegdominance in this
case andT cannot be licensed by any NDC. This is shown formally by using tle Form
Criterion for NDCs in Proposition A.20 in the Appendix.

As MRS provides a representation forT, we can conclude that the NDC approach isnot
as expressive aBIRS. Together with the observations from exampleP above this gives
us the following result.

Theorem 5.5
N ™M and M TN

There are sets of tems which show that the NDC approach and the MRS agpoach are
incomparable w.r.t. their expressive power.



5.4. The Common Sub-Formalism 108

5.4 The Common Sub-Formalism

In this section | will nally focus on the common core of all thre e formalisms. Let us
therefore take a closer look at Hghare @gain, which extends H by allowing for shared
meta-variables as discussed in section 4.4.4.

Concerning the relation between H and Hghare it seems clear that Hgpae is more ex-
pressive thanH as it adds an additional mechanism of sharing meta-variables vinich has
been shown in Section 5.2 to increase the expressive power. Notéhat the MRS structure
(5.17) from that section (repeated below)

(5.21) u= L :£719);19:g(h9);1":h(h");1X:x ; [

is also a well-formed USR ofHgnare. If we use the adapted de nitions for licensing for
Hghare from Section 4.4.4 we see immediately thatu licenses the setS = {fghx ; hfgx }.
This set has been shown to be not representable iH (see Proposition A.19) and there-
fore we have

Theorem 5.6
H @ Hshare

Again we see that sharing of meta-variables properly increases tb expressive power of
a formalism.

Concerning the comparison of Hghare With N we get the same result as forH. Because
the NDC approach also allows for shared meta-variables, we can rese the transla-
tion t, which translates USRs ofH into normal dominance constraints. Furthermore,
Proposition A.18 showing that t preserves licensing remains valid. HencelN is at least
as expressive asHghare. On the other side, recall that Hgpare can not license the set
P = {fghx;hgfx } (see Section 4.4.4), which can be represented by the NDC in (5.8).
Altogether we get that N is strictly more expressive thanHgpare -

Theorem 5.7
Hshare @N .

The comparison of Hghare With MRS is also straightforward. Here, the translation ] and
the Proposition 5.3 showing that licensing is preserved can be resed as well. Further-
more, Hshare Cannot license the setT from the preceding chapter asT could not even be
licensed by the more powerful N. Therefore M is strictly more expressive thanHgpare -

Theorem 5.8
Hshare @ M.
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A closer look at the Form Criteria of Hgshare and N shows that if we restrict the latter
formalism to labeling and dominance literals only (i.e. if we do not allow for inequality
literals) then the resulting variant of N is as expressive adHghare. The same holds for
a restricted version of M if we drop the xed-/ oating-scopal distinction. Therefore
Hshare Can be regarded as the formalism both approaches have in common.

5.5 Conclusion

5.5.1 Related Work

Koller et al. (2003) compare Hole Semantics to Normal Dominance Constraints and
claim that H and N are equivalent (their Theorem 4). As we used the exact same de n-

tion for NDCs as Koller et al. (2003), Theorem 5.2 from above provestheir result wrong

as we found sets that could be licensed byN but not by H. To save the equivalence
between Hole Semantics and Normal Dominance Constraints, Ko#ir (2004) changes the
de nition of normality such that an inequality literal X £ Y occurs in a normal domi-

nance constraintif and only if X and Y are distinct labeling variables (Koller, 2004, p.

75, De nition 5.4). Essentially, this deprives N of the possibility of constraining rep-

resentations by inequalities as those are completely determied by the labeling literals

according to the amended de nition. As inequality literals we re the decisive feature
that allowed us to establish the difference between N and H, it is not surprising that

this restriction of the normality de nition works towards establ ishing the equivalence
of the two formalisms. In fact, as | have pointed out in the preceding section on the
common sub-formalism, the equivalence actually holds betwen N without inequalities

and Hghare (instead of H) due to the fact that N allows for shared meta-variables.

In Niehren and Thater (2003) the authors compare a restricted version of MRS to the
approach using Normal Dominance Constraints. They restrict the denition of MRS such
that it does not make use of EP conjunctions and interpretsgegconstraints as standard
dominance constraints, i.e. without distinguishing xed from oating scopal functors.
The focus of the work in Niehren and Thater (2003) lies in the ide nti cation of sublan-
guages of MRS and NDCs (callechety such that the solutions of the two approaches
correspond in certain respects. In this Chapter, | was rather intgested in the expressive
power of the language of MRSwith the gegdistinction 3. The results above show that this
distinction actually yields an increase in expressive power, lut that it can be simulated
in the NDC approach (with proper inequality literals) to a certain limited extent.

3put without EP conjunctions
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5.5.2 Summary

In the foregoing section | have derived several Theorems comparig three prominent
approaches to underspeci cation. The formalisms which have been investigated are the
following:

M  Minimal Recursion Semantic$
N Normal Dominance Constraints’
H Hole Semantics
Hshare Hole Semantics with shared meta-variables

The results can be summarized graphically as in Figure 5.1, where tlke different ap-
proaches are ordered with respect to their expressive power with tte more expressive
ones on top. | have been able to derive that Hole SemanticdH is strictly less expressive

M N

Hshare

H

Figure 5.1. Comparing the Expressive Power of URFs

than Minimal Recursion SemanticsM and Normal Dominance ConstraintsN . The latter
two are incomparable w.r.t. expressive power as neither of them ismore or less expres-
sive than the other approach. | furthermore identi ed a common 'c ore' URF: This URF
can either be de ned by extending Hole Semantics such that it allows for the sharing
of meta-variables in the 'parts' (Hghare); OF by restricting Minimal Recursion Semantics
such that constraints are interpreted as 'standard' dominance castraints insensitive to
intervening functors; or by restriction of the NDC approach such that no inequality lit-
erals are used. This shows, that all these features (sharing of m&-variables/sensitivity
of constraints to intervening functors/inequality constraints ) independently increase the
expressive power of a URF and that neither can be 'simulated’ byany of the others. It
furthermore shows that the different modes of evaluation — satisfaction vs. plugging
parts vs. equating variables — are essentially the same.

4without EP conjunctions
Swith proper inequality literals
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5.5.3 Discussion

Considering the differences in expressive power of the formalisns discussed above, one
may wonder which one is best suited for the underspeci cation of the scope ambigui-
ties of natural language. As | have argued in Chapter 3, none of hem is due to their
expressive incompleteness.

In Chapter 4, | have given examples of fairly simple patterns ofambiguities that cannot
be represented by some formalisms. Those examples have been dtingly simple, as vir-
tually all of them contained only three unary functors, i.e. scope-taking elements. Hole
Semantics and MRS (and even NDCs in their restricted version withat inequalities)
have been shown to be incapable of representing more than half othese simple sets of
readings involving three scope-taking elements. Bos (2002) § aware of this limitation
of his formalism as he states that

'However, neither PLU [Predicate Logic Unplugged—CE] nor ary of the
constraint-based formalisms is able to representany subset of readings.’

(Bos, 2002, p.38, Bos' italics)

He continues with an example that essentially corresponds to he counterexample set
P = {fghx; hgfx }, but does not discuss the limitation of his system any further. Other
approaches do not touch the issue of expressive completenesd all.

The question that arises is:

Why is the failure to license certain sets of readings so little d a problem that
it does not need to be discussed or solved?

Due to the lack of answers, | can only speculate about potentialones.
A: The ambiguities encoded in those sets cannot occur in natueaiguage.

Q: Then, what are the sets that actually do occur? As | have pointed out in Chapte 3,
this answer implies the claim that natural language is so well-behaved that certain
ambiguities cannot be produced, i.e. neither by isolated senénces nor by entire
discourses. Why should discourse be so well-behaved? What aréhé regulating
factors that restrict disambiguation in context that support such a claim?

A: The underlying factors are not clear yet, but there is empigl evidence because no-
body has ever encountered these 'weird' patterns of ambiguit

Q: As | have mentioned in 3.4, | am not aware of any considerable enpirical work on
the actually occurring patterns of ambiguity. Without such work , how could one
talk about never encountering certain patterns of ambiguity?
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A: For instance, large-scale grammar systems have been devisedgrovide full- edged
analyses for a wide range of natural language expressions. Aefal study of these
analyses shows that only certain patterns of ambiguity arise

Q: The semantics component of such large-scale grammar systemis surely based on
some formalism. Obviously, the system will therefore never produce any pattern
of ambiguity that cannot be licensed by that formalism. More to the point, one
cannot evaluate the formalism by looking at it alone without re ference to some
independentlygathered data, nor can one derive any results about the actually
occurring patterns of ambiguity within an expressively incomplete formalisn?.

There is another way of answering the initial question above.

A: The ambiguities encoded in those sets actually occur, but dealt with differently in
systems for computational semantic analysis.

B: How would one detect that such a case arises, i.e. that the setence under consid-
eration is ambiguous between readings that cannot be representd? For instance,
consider a system which is based on MRS and assume that it receigePark's sen-
tence (3.18) as input.

(5.22) Two representatives of three companies saw most samples.

Most likely, it will not stop with an error but silently produce t he wrong result,
namely an MRS licensing the entire set of ve readings (of which actually only
four are available, as Park (1995) argues). How could this case le distinguished
from one where this ve-fold ambiguity actually occurs?

Yet another objection is the following.

A. Patterns of ambiguity for sentences are simpler and can bemegented by the for-
malisms. Disambiguation by discourse or context is a diffatematter and does not
involve the representations.

Q: The rst part of the rst sentence of this answer may well be true . As | have
pointed out in 3.3.1, the patterns of ambiguity arising from isola ted sentences may
indeed be restricted due to systemic restrictions such as scope l@snd constraints,
etc. Nevertheless, this leaves the question what the actuayl occurring patterns
of ambiguity for isolated sentences are. For instance, Park'&xample (3.18) is an
isolated sentence, which needs to be represented.

Furthermore, to have yet another mechanism for disambiguation is a strange thing,
conceptually speaking. In such an architecture there would be hree distinct levels.

5Cf. my criticism of Fuchss et al. (2004) in Section 3.4.
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The object-level of meaning representation, a meta-level of underspeci ed repre-
sentations of ambiguities of isolated sentences, and a metaneta-level to accom-
plish disambiguation in discourse. Why is it a better choice © have such a third
level? Moreover, what does this third level yield as result? As itdoes not yield
underspeci ed representations, does it result in an enumeration of the readings
that are left after disambiguation? How could this be reconciled with the idea of
avoiding enumeration of readings and dealing with underspeci ed representations
instead? In conclusion, if disambiguation does not operate s the underspeci ed
representations formalism, not very much is left of its initial m otivation.

Obviously, this nal section of the chapter raises more questions than it answers. Its
main point is to highlight the importance of a discussion about expressive completeness.
Any of the obvious objections to the de nition or assumption on expressive complete-
ness above immediately raises further questions, which themslves have only non-trivial
answers and implications. Eventually, it is supposed to showthat it is crucial for pro-
posals of underspeci ed representation formalisms to engage insuch a discussion and
provide answers to the questions above, in particular to the intial one.



Chapter

Compactness and Complexity

In Chapter 4, it has been shown that all three investigated formalisms are expressively
incomplete. The obvious question is now what a complete formdism would look like. In
the following | will discuss the naive proposal from Section 1.1.2, where a set of readings
was used to represent itself, and a straightforward expressively omplete extension of
the NDC approach. At both proposals | will illustrate that their e xpressive completeness
immediately leads to a problem with the compactnessequirement. These observations
will be used to locate the source of this problem in the Montagovian and underspeci -
cation frameworks from Chapter 2. The following sections will t hen elaborate on these
ndings, formalize the notion of compactness and derive a result relating it to expressive
completeness.

6.1 Two Expressively Complete Formalisms

A Naive Proposal First recall that | have already presented an expressively complee
formalism, namely the naive proposal from Section 1.1.2. There it has been proposed to

of readings' 1;:::;"' m. This formalism is obviously expressively complete: for everyset
of readings (of some term closure) there is an underspeci ed representation licensing it
— namely the set itself. But as | have brie y pointed out in Section 1.1.2 the reason this
approach seems so naive is its inability to avoid the combinatrial explosion problem.
The underspeci ed representations obviously do not save any '‘pace' compared to a
mere listing of the readings ' ;1 to ' . Therefore the construction of the underspeci ed
representations would take as many 'steps' as listing the entie set of readings and hence
suffer from the combinatorial explosion problem as the Montagovian/Cooper Storage

114
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approach of computing all readings separately.

Although this approach to underspeci cation is so blatantly absurd, it illustrates one

important point. A formalism that simultaneously encodes readings does notper sedo
any better than a Montagovian/Cooper Storage. In order to evaluate whether a URF
actually solves the combinatorial explosion problem we have b compare the size of
the representationsand hence the cost of their constructionwith the cost of listing the

readings.

Adding Disjunction to N Let me illustrate this point at another example which ex-
tends the NDC approach. Taking a closer look at the incompleterss results in Chapter
4, we can identify the source of the incompleteness of the investigated approaches. All
formalisms interpret constraints conjunctively Each tree that is licensed by some repre-
sentation must simultaneously satisfy all constraints of the representation. As a conse-
guence, each constraint is satis ed by all of the licensed trees. This results in problems
if the trees are such that they do not have any property in common that could be spec-
i ed by constraints. For instance, information about the domi nance of tree nodes can
be speci ed in Hole Semantics by means of the<-constraints. However, the information
about dominance which is common to the two terms fghx and hgfx (namely that f, g,
and h dominate Xx) is not enough to rule out any other term, which happens to share the
same dominance information.

A straightforward solution to this problem seems to be the introduction of disjunctive
information. Take the NDC approach, for instance, and suppose hat it is extended
with a further disjunctive connective [fdr conjoining literals. With the straightforward
extension of satisfaction

(6.1) ErCf if E "o E 'O

we get an expressively complete formalismN . To illustrate this, consider the contextu-
ally disambiguated chocolate company example from Section 33.2 again.

(6.2) Every marketing manager showed ve sales representatives a samnip.

In Section 4.3.3 it has been shown that the setP of readings in (4.28) (repeated here as
(6.3)) cannot be represented in N, the standard NDC approach.

(6.3) P = {faes ;feas ;eafs ;aefs;afes }

However, this set can be represented inN_ by forming a disjunction of the complete
speci cations for the terms of P. For instance, the termfaes can be completely speci ed
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by labeling constraints which share meta-variables in a way thd only licensesfaes .
(6.4) Lfaes = X :f(Y) [M:a(Z2) [A:e(V) [M:s

For the entire setP we only need to form a disjunction of the labeling literals L for all
in P. Finally, we arrive at the following dominance constraint.

(6.5) 'p = (X:f(Y) [XM:a(Z) CA:e(V) [:5s)
CX:f(Z2) Y a(V) CLd:e(Y) [M:s)
CX:f(V) [M:a(X) C:e(Y) [M:5)
CX:f(V) [M:a(Z) CA:e(X) [M:5)
C(X:f(Z) IM:a(X) C:e(V) [M:9)

Clearly, this dominance constraint licensesP . As we can adopt this strategy of disjoining
complete tree speci cations for any given set, N _is expressively complete.

However, if we contrast ' p with the representation of the naive proposal from above, it
is obvious that ' p is actually a worse representation than the setP itself as it consists
of elements of decomposed versions of the terms inP. Therefore one cannot avoid
the combinatorial explosion problem in computing ' p as the representation itself is so
complex.

6.2 Combinatorial Explosion and Complexity

To illustrate the crucial point of this discussion, consider the two processing frameworks
from Chapter 2 again. In the Montagovian framework (see Figure 1.1), ambiguity re-
ceives a syntactic treatment via the Quantifying In approach (cf Section 3.1.1). As-
suming that the syntactic analyses and the translations into the logical formulas can be
performed ef ciently, the combinatorial explosion problem nev ertheless arises due to
the fact that these two operations have to be repeated a possilyl huge number of times.
In contrast to this, only one syntactic analysis needs to be compted in the Underspec-
i ed Processing framework (see Figure 1.2). Then the underspeci ed representation is
constructed from this analysis. However, at this point the same problem arises if the
resulting underspeci ed representation is so complex that its construction cannot be
performed more ef ciently than the overall process of computing t he entire set of read-
ings. Therefore we may say that the combinatorial explosion prodem is implicit in the
Montagovian framework due to the very design of the framework, whereas it may occur
in the Underspeci ed Processing approach due to the de nition of the formalism itself.
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The naive proposal and the dominance constraint’ p of the disjunctively extended ap-
proach N are examples that cause problems in this respect. Of course there ay be
'simpler' representations than' p that license P. The question is whether it is always
possible to nd such simple representations. In other words, the interesting quest is
not only the search for an expressively complete formalism (jug take the naive pro-
posal or add disjunction to your favourite formalism) but for an expressively complete
formalism that does not suffer from the combinatorial explosion problem. So in order
to see whether a URF actually solves the combinatorial explogin problem we need to
investigate the complexity of the involved processes.

Previous Work on the Complexity of URFs Work on the complexity of underspeci ed
representation formalisms has focussed on thesatis ability problem of the representa-
tions, i.e. on the question about the ef ciency of determining whether an underspeci ed
representation licenses any term/tree at all. For instance, in Kdler et al. (1998) it has
been shown that for the language of dominance constraints ths problem is NP-complete.
Willis (2000) criticized the general approach to underspeci ca tion of Koller et al. (1998)
and devised a more restrictive formalism to underspeci cation based on the theory of
scope availability of Park (1995). Willis (2000) showed that for his approach the satis-
faction problem can be solved in polynomial time!. However, in (Althaus et al., 2001)
it has been shown how the dominance constraints can be restrictd to normal domi-
nance constraints (as they have been discussed in this thesisuch that the satis ability
problem is also polynomial.

As pointed out above, | am interested in a rather different problem, namely the problem
of ef cient constructionof underspeci ed representations in the light of expressive com
pleteness. Given that the generation of readings from an underspci ed representation
is the process that one would like to avoid as much as possible, it is somewhat surprising
that the satis ability problem has received so much attention, while at the same time the
construction procedure has been virtually neglected. In fact, the latter seems the more
natural process to consider if one is interested in avoiding conbinatorial explosion, as
a statement about polynomial satis ability of a representatio n does eventually not say
much if the representation itself is of exponential size w.r.t. the number of scope-taking
elements in the natural language input.

The only work on the ef ciency of the construction process | am aware of is (Dorre,
1997). Dorre deals with the concrete problem of constructing underspeci ed semantic
representations from parse forests and criticizes earlier work from Shiehlen (1996) on
the grounds that 'his method, however, may take time exponenial w.r.t. sentence length.

!see also Willis and Manandhar (1999a,b)
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Already the semantic representations it produces can be exponeimlly large[...] Itis
therefore an interesting question to ask, whether we can compue compact semantic
representations from parse forests without falling prey to exponential explosion.' (D orre,
1997, p. 386).

The question | raised above is similar: is there an expressively amplete formalisms
which does not fall prey to exponential explosion? In the following sections | will give
a negative answer to this question. In other words, | will show that an expressively
complete formalism cannot satisfy the compactness requiremehand hence avoid com-
binatorial explosion.

6.3 Technical Preliminaries

Before | come to a formal de nition of the compactness requirement | will brie y state
some fairly standard technical preliminaries, mainly to x the n otation and introduce
the terminology.

As this chapter is about compact representations, we need to tk about the complexity of
these representations and the processing of them in some way, aththis complexity needs
to be measured in someunits. Representations will simply be regarded as expressions
of some formal language. Let us specify that the symbols/lettersof the languages are
the units used for measurement. So we can measure the size of a natural langage
expression in the same way. For instance, the english sentere

(6.6) This sentence has 27 units.

has 27 units (including spaces and the full-stop) and we shal say that it is of size 27
The following USR of Hole Semantics

(6.7) CL:f(h);1%x};{h< 1%

is of size 24. Let us write || for the size of any expressione of some language.

Processes may operate on the expressions of these languages rkustance, the process of
Parsingin the Montagovian framework of Figure 1.1 (as well as in the Underspeci cation
framework of Figure 1.2) can be seen as a process that maps an expreies of natural
language to an expression of a formal language, which representshe syntactic analysis.
And the process of Construction takes one formal language expression (the syntactic
analysis) to another (the underspeci ed representation). In general, a process will map
an expression from one formal language to another. This mappingwill require a number
of stepsto be performed.
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At this point | will not specify what a stepis. The only crucial assumption | will make is

that it takes one step to read or output oneunit. So for instance, if the Parsingprocess
takes (6.6) as its input, it will take at least 27 steps to perform the parsing. And if we

know that the result of the Constructionprocess yields (6.7), we know that the construc-

tion needs at least 24 steps. In other words, the inputs and ouputs of the processes are
lower boundson the number of steps they need in order to perform their mapping.

Actually we are not interested in the concrete number of steps ittakes to process a given
input, but only in the worst casenumber of steps it takes to process inputs of a given size.
For instance, if the Parsingprocess takes 100 steps to compute the syntactic analysis for
all inputs of length 30 except for one input of that length, fo r which it needs 500 steps,
then 500 is the worst case number of steps for inputs of size 30.If we write Tp (n) for the
worst case number of steps needed by a proces® on inputs of length n in general, then
we have Tpars(30) = 500 in this particular case. The observations from the preceding
paragraph can now be stated as follows. As a process needs at leag steps for reading
an input of size n, we have Tp(n) = n for all n and processesP. The same holds for
the outputs of size m that the process computes for inputs of sizen, for which we have
Tp(n) =m.

As it is common practice we are not interested in the concreteTp, but only in their
asymptotic behaviour, which is usually given in terms of the big-O notation. The big-
O is used to de ne a class of functions as follows (wherec is a real and ng; n natural
numbers):

(6.8) f CA(g) iff > 0MMg>0IMMl=ngf((n)=<c- g(n)

For instance, 3n* + 2n + 1 CO(n*). If f is in O(n); O(n®); O(c") or O(n!) for some
constantc > 1 we say thatf is of linear, polynomial, exponential and factorial growth (or

complexity), respectively. Note furthermore that if two functio nsf; g are of polynomial
growth, then their composition (f - g) is also of polynomial growth.

It is commonly assumed that an algorithm or process is feasiblaf and only if it is of (at
most) polynomial complexity. In particular, processes which need a number of steps of
exponential (or even factorial) growth are usually regarded as infeasible. So the class
of functions with polynomial complexity will play an importan t role in the following
investigation.

One important observation is still missing, concerning the relation between an input
of size n and the number of scope-taking elements it can possibly cordin. Again we
shall consider the worst case, which means that given an expresion of sizen we shall
assume the maximal number of scope-taking elements it may pesibly have. | claim that
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this number is linearly dependent on the n. To see this, consider the following series of
sentences:

(6.9) Every woman watched a movie.
In three cities, every woman watched a movie.
In four countries, in three cities, every woman watched a movie.
On two days, in four countries, in three cities, every woman watched a movie.

In the sentences above, | added prepositional phrases to a coressitence. Each occurence
of such a PP introduces another scope-taking element which catributes to the ambiguity
of the sentence. The important point is that this procedure of pre xing PPs can be
iterated to introduce more and more scope-taking elements. Witheach addition of a PP,
the sentence grows in size by some number of symbols. If we lep be the minimal such
number (i.e. the size of a PP that can be repeatedly added to a coresentence in order
to increase the number of scope taking elements), a sentencefcsize n will have at most
n=p scope-taking elements. Therefore a sentence of lengtm will contain O(n) scope
taking elements in the worst case.

6.4 A Formal De nition of Compactness

Let us now investigate the cost of computing the entire set of readings of an ambiguous
expression more closely. First consider the Montagovian stratgy as illustrated in Figure
1.1. Here each of the readings of an ambiguous expression was deread by a different
syntactic analysis by means of the Quantifying In operation (cf. Section 3.1.1). Recall
that in the worst case of n scope-taking elements, there weren! different permutations
and hence n! different readings. As de ned above, let us use Tpars(|€]) to denote the
time needed to analyze an expressione of length |e| syntactically. In the next step this
analysis is translated into a reading (i.e. into an expression of ®me intermediate logical
language). Let Tyans (X) denote the time that it takes to translate a syntactic analysis d
size x in the input to an expression of the intermediate logical language. Then in the

(6-10) nt. (Tpars(lel) + Ttrans (Tpars(lel)))

The input to the translation is the output of the syntactic anal ysis process. As has been
pointed out in the preceding section the size of this output is bound by the stepsTyars(|€])
which are needed for the syntactic analysis. The term in (6.10) spdls out the criticism
of the Montagovian approach in a bit more detail. Usually we can assume that Tpars
and Tyans can be computed ef ciently. First of all, it is commonly assumed that natural
language is such that its sentences can be analyzed syntactittg in polynomial time
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of the input length. Polynomial recognition is one of the de ni ng features of mildly
context-sensitive languageand this class of languages seems to be a good candidate to
locate natural language in (cf. Joshi, 1985). Furthermore it is reasonable to assume
that the translation can be performed ef ciently, polynomially in the input for instance.
Then the time needed for analyzing and translating one single reading of an ambiguous
expression e (of size |e|) is polynomial in |e]. However, if e contains n scope taking
elements, there still is the additional factor n! which makes the entire term in (6.10)
factorial. Recall that in the preceding section | have argued that n [CQ(|g]), i.e. that the
number of scope-taking elements is linear in|g| in the worst case. Making use of this
observation, (6.10) eventually reduces to

(6.11) O(lel)! - O(lel) +0 O(lel)™ = O(lel"):

This factorial growth introduced by the enumeration of all readin gs is what combinator-
ial explosionrefers to.

Considering a framework for underspeci ed processing as illustrated in Figure 1.2,

things look different. As there is no enumeration of all readings, no n! factor is in-

troduced. Basically we end up with the following term for the ov erall processing costs of
deriving the underspeci ed representation, where T¢onstr denotes the time to construct
the underspeci ed representation out of a syntactic analysis.

(6.12) Tpars(|€]) + Tconstr (Tpars([€l))

Here we assume that the complexity for the syntactic analysis isthe same as in the
Montagovian approach. Therefore the time complexity Tconsyr Of the construction of the
representation is crucial in the comparison of the underspeci ed processing framework
to the Montagovian approach.

As a bad example consider the naive proposal from Section 6.1 abee. It has been
designed so that the construction must enumerate alln! readings given that the input
expression hasn scope-taking elements. Then the output representations of(Tconstr ©
Tpars) is of factorial size in n! for some n!-fold ambiguous input expressione. As detailed
above, the size of the output gives a lower bound on the complity of the entire process
and hence we have.

(6.13) Teonstr (Tpars(l€])) = O(n!)

If we use the observation thatn [Q(|e]) and make use of the assumption thatTpas is of
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polynomial complexity, we get the following.
(6.14) Teonstr (O(l€]%)) = O(lel")

This implies in turn that Teonsyr cannot be of polynomial growth and is hence infeasible.
Overall this means that the processing costs are not any betterhian in the Montagovian
approach and that in particular the combinatorial explosion problem is not avoided.
The crucial difference is that the exponential growth is not an obvious feature of the
underspeci ed processing framework, but hidden in the construction operation of the
formalism.

On these grounds it seems reasonable to demand from underspeci d representation
formalisms to have polynomial construction procedures. This in turn means that the
underspeci ed representations themselves cannot be of exponatial or factorial length,
which is exactly what the requirement of compact representatioiis about. The de nition
of compactness states that the maximal length (n) of a representation needed to encode
a set of readings with n scope taking elements must be polynomial inn.

De nition 6.1

Let U = [J,;L[be an underspeci ed representation formalism. Then y is de ned as
follows:

(6.15) u(n) = max{|u| | [I| =nand L(u) CIM}

An underspeci ed formalism is compactiff

(6.16) u(n) = O(n® for somec [N

u(n) denotes the maximal length of a representation of U, that licenses a set of terms
built from n scope taking elements. This number poses a lower bound on theomplexity
of Teonstr, @s it takes at least y(n) steps to output the representation. As above (and
under the assumption that Tpqars is of polynomial growth), we can conclude that if
is exponential/factorial in n, the complexity of the construction Teonsyr Will be at least
exponential/factorial, too. For this reason we require  to be of polynomial growth.
Note that this does not guarantee that Teonsyr IS polynomial as well. The construction
may be very involved and it may nevertheless take exponentialy many steps to construct
compact representations. To rule this case out, we could de ne hat T¢onsir Needs to be
polynomial, too. Unfortunately such a de nition would not be o f much use in the context
of this thesis, as | am only interested in the representational apects of underspeci ed
representation formalism. Reasoning about the construction pracess itself would lead
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too far astray from what | am concerned with. For this reason | will stick to De nition
6.1, which can still be used to derive lower bounds on the complexity of the construction
process. The following example illustrates an application ofthe De nition.

Example 6.2

De nition 6.1 classi es the naive approach as not compact. To see this consider any
number n and any selection” of n functors. Following the naive proposal, the repre-
sentation licensing some setP []M] is just P itself. Concerning the 'size’ (or 'length’)
of the representation P we may just take the length of the string we get after listing the
elements of P. So for instance, if P = {fghx ; hgfx } then |P| is the length of the string
'fghx hgfx '. Hence, if P hasm elements we have|P| = m-n+(m—1) (m terms of length
n and (m — 1) spaces in between). For (n) we are interested in the representation of
maximal size. This will be the case ifP is the entire set of terms[I'] and hencem = nl!.
Then (n) =n!-n+(n—1)andthus (n) = 0O(n!). Therefore (n) is of factorial (and not
of polynomial) complexity, which shows that this proposal is n ot compact. This example
illustrates further that the details of the output representati ons are not important. We
took a string of terms with intervening spaces, but we could have added curly brack-
ets, commas, etc. without changing the result. Eventually orly the dominating factor

n! introduced by the number of elements in P is important in the determination of the

proposal's non-compactness.

In the following section | will show that there is a problematic interdependence between
the requirement of expressive completeness and compactness ae ned above.

6.5 Compactness and Expressive Completeness

A problem for underspeci ed representation formalisms arises dueto the fact that there
is an interdependence between this compactness requirement ath the expressive com-
pleteness requirement. The rst requires the representations to bereasonably short and
the second requires there to be enough of them to represent all posble sets of readings.
Recall that by de nition of expressive completeness, every eyressively complete for-
malism must provide 2" different representations for each n in order to underspeci ed
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every possible subset of readings. The following table illustates the rapid growth of 2"'.

n n! 2n!
1 2
2

3 64
4 24 16777216
5 120 1;329 - 1036
6 720 5:516 - 10216
7 5040 1;553 - 101517
8 | 40320 | 3;384.10%2137

For instance, a sentence with5 scope-taking elements may be 120-fold ambiguous in the
worst case. Therefore, a URF needs to provide representations for bof the 1;329 - 1036

subsets of readings in order to be expressively complete. On theother hand, these
representations should be not any longer than a mere listing of he 120 readings. The
overall problem here is that the number of distinct representations which are within

the limit imposed by the compactness requirement is much smalér than the required

number of representations for all subsets of readings.

To esh this out assume that some signature X is given and let us take a languageG,
which models a very general formal representation languagé. As indicated in Section
4.1, variable/constraint approaches are based on languages over anite set of 'logical

symbols'S, an in nite set of meta-variables V and an in nite set of other symbols F
derived from the functors of . Now let Gs.v.p = (S M LEl) be simply the entire set
of all strings over the combined set of symbols fromS;V;and F. For instance, if

(6.17) S={, 31 V ={xg;xg:::} F={:f :9;::}
then
(6.18) Xak,:f/x 2:9g and X1:fx o [X3:9 (X3 /X 3

are in Gs.v.¢. Suppose further that there is some mapping
(619) L: Gs;v;p — POVV(T )

which assigns a set of terms to each string inGs.y.r. Then G = [Gs.v.; L5 an under-
speci ed representation formalism according to De nition 2.8. In the following | will
often drop the subscript on Gs.y.

hence G for 'general’
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Because of the fact that in the construction of the strings inG in nitely many variables
and derived symbols are involved, the number of different strings of a given length is
in nite, too. Therefore, under the naive assumption that each of these strings licenses
a different set, the number of licensed sets of strings of a givae length would be in nite
again.

However, rst of all we can make the reasonable assumption that a string licenses only
those terms that contain the functors that are mentioned in the derived symbols. For
instance, if S;V and F are as in (6.17), then the terms licensed by [Xgx1:f /X 2:0
or X1:fx o [xX}:9 [X} /X 3 contain exactly the functors f and g. In other words, the
licensed terms do not contain additional material not mention ed in the string, nor do
they ignore any of it. Let us call such a licensing mappingconstructivé. An inspection
of the licensing mappings of the investigated variable/constraint approaches shows that
they are indeed constructive in this sense.

Furthermore, the exact naming of meta-variables should not matter for licensing, i.e.

approaches should beindependent of meta-variable namesThis has also been shown to
be true for the investigated variable/constraint approaches from Chapter 3 (cf. Lemmata
A.2, A7, and A.14).

The constructiveness and the independence of meta-variable ames are the crucial fea-
tures that limit the number of different licensed sets of strings of a given length. If the
actual naming of the variables in a representation does not matter for licensing, the num-
ber of different licensed sets is nite even for the in nite nu mber of strings of a given
length that exist. Let us assume in the following that G is constructive and independent
of meta-variable names.

Now suppose we are givenn scope-taking elementsl". In order to achieve expressive
completeness we must nd representations (here: strings) for each setP []]. As we
assumed constructiveness, those strings must contain exagtin derived symbols corre-
sponding to the functors in I'. Hence each such string must at least be of sizen. To
those n derived symbols we can add further logical symbols fromS and variables from
V, such that we arrive at a string of length | = n.

In order to correlate expressive completeness and compactness evmust relate the size
of representations to the number of sets they can license. So, tw many different sets
P L[] over the n given functors I' can be licensed by strings of lengthl? Let us be
generous and assume thateverystring of length | licenses some different setP [[M].
Hence, we only need to count the number of different strings of length | in order to
get the number of different licensed sets. As the strings underconsideration consist

Sreminiscent of the notion of constructive solutionin the NDC approach.
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of | letters, we can choose one of then derived functor symbols, a symbol from S, or
a variable for each letter. As the string must contain all n derived functor symbols,
| — n variables can maximally occur in the string. Due to the fact that we assumed
independence of variable names we can x a set ofl —n variables as any other choice of
variable would not change the licensed set. Therefore we have tle following.

Lemma 6.3
For a given setl” of n functors, the number of sets P L[_]II] which are licensed by
representations of G of length | = n does not exceed(|S| +1)'.

Proof. Assuming generously that each string licenses a different setwe only need to
count the number of different strings which are built on n derived symbols,| — n vari-
ables, and the symbols inS to derive the desired upper bound. For each letter of the
string, we can either choose a symbol inS, one of the n derived symbols or one of the
| —n variables, i.e. we have(n + |S| + (I — n)) choices for each of thel letters. O

Now assume thatG is expressively complete. Then for a given numbem of scope-taking
elements, G needs to license2" different sets. What can we say about the length of the
representations, which license those sets? In favour ofs let us assume, that we can use
all strings of length n, all strings of length (n + 1), and so on, up to some maximal string
length g(n) to license these sets. This is a very generous (and unreasonableiew, but
it helps to keep (n) small*. Then due to Lemma 6.3,G can license at most

XM _
(6.20) (s| + 1)

i=n
sets with representations up to length (n). Let us again be generous and go to the much
higher number (n)-(|S|+ (n)) (M. As we assumed the expressive completeness 6,
this number has to be equal (or greater) 2"'. Thus the following inequality holds, if G is
expressively complete.

(6.21) () -(sl+ () ™ = 2"

This inequality relates the length of representations of G to the number of sets, which
have to be licensed. Now we can solve the inequality for (n) to get some result about
the maximal length of a representation which is needed to license all 2" sets of terms
for n scope-taking elements. Application oflog, gives

(6.22) log (n)+ (n)-log(]S|+ (n)) = n!

1 will drop the subscript G on Ag(n) from now on.
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Considering the asymptotic behaviour on both sides, the left kand side of the inequality
isin O( (n) -log (n)) whereas the right hand side is in O(n!). Now it is obvious that

(n) has to grow more than polynomially with n to satisfy the inequality for growing n.
Therefore we get the following result for G.

Proposition 6.4
If G is expressively complete, it is not compact.

Proof. Let G be expressively complete and assume it is compact, i.e.g(n) = O(n°) for
somec [N Then the left hand side of the inequality in (6.22) is in O(n®log n) which is
a contradiction as the right hand side is in O(n!). Thus the assumption was wrong and
hence G is not compact. O

Let me paraphrase this result. It basically says that the number érepresentations which
is needed in order for the formalism to be expressively completeis much larger than the
number of 'short' representations. So necessarily some 'long' neresentations have to be
used to make up for the lack of 'short' representations. Here 'lorg’ means exponentially
long in the number of scope taking elements.

This is bad news forG as a URF, if it is supposed to be expressively complete. Propogin
6.4 says that the maximal length ¢(n) of a representation which underspeci es a set
of readings of n scope taking elements cannot be polynomial inn for large n. This in
turn means that the construction operation, which constructs this underspeci ed rep-
resentation from a syntactic analysis, cannot perform its task in plynomial time in n
as has been detailed above. Thus the construction operation foG is infeasible. Hence
this URF would not perform much better than a straightforward Monta govian/Cooper
Storage approach to ambiguity.

As G is based on a very general formal language, we can conclude that my other URF
that shares the same basic features performs even worse. Recall @l the representations
of Gs.v:¢ are all possible strings over the vocabulary(S [V [El). In more realistic
URFs such as the investigated ones from the preceding chapterhe strings of the rep-
resentation language are much more restricted by basic de nitions and additional well-
formedness restrictions. For instance, in the Hole Semantics BF H, the representations
are expressions over the vocabulary with logical symbolsS = [IL{;};<;') , derived
symbolsF = {:f | f [} and meta-variables (holes and labels)V. But instead of all
possible strings of Gs.yv.¢ only those strings Uys [ Gk.y.r are taken as representations
(i.e. USRs) which adhere to De nitions 4.9—4.11. Therefore the number of well-formed
USRs of a given length is much smaller than the number given in lemma 6.3.

Second, more realistic URFs usually have synonyms w.r.t. licensingi.e. expressions of
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the representation language which license the same set of termsFor instance, in an Hole
Semantics USR the exact order in which the labeled formulas andhe constraints is listed
is not important for licensing. So the USRsCIC{N: f (h); 1% x}; (CAnd COICL%: x; |- f (h)}; [0
license the same set of terms, irrespective of the order in which he labeled formulas are
listed. This reduces the number of sets further, which can be Icensed by USRs of given
length.

Due to these two points, together with the fact that we have taken rather coarse upper
bounds at some points above, the actual number of different sés licensed by represen-
tations of size less than (n) is much smaller then the bound given in (6.21). Therefore

we can generalize the result from Proposition 6.4 to all URFs which ae constructive and

independent of meta-variable names.

Theorem 6.5
Every URF that is constructive and independent of meta-variablenames is either expres-
sively incomplete or not compact.

In other words, either the URF is expressively incomplete, i.e. i misses out on some
sets of readings which it should be able to represent, or it is notcompact, i.e. there are
representations which are too complex for the construction operaion to be feasible.

Note that Theorem 6.5 immediately applies to any extension of the investigated vari-

able/constraint approaches, which may be aimed at achieving eyressive completeness.
As long as the basic characteristics of constructiveness and @ependence of variable
names are not touched, it is impossible to have such an extensin without creating a

non-compact formalism.

6.6 Conclusion

In this Chapter | have brie y illustrated two expressively comp lete formalisms — a naive
proposal where all sets of readings represent themselves and an ¢&nsion of the NDC
approach with disjunction. A closer investigation of both proposals hinted at a problem.
Although they were expressively complete they seemed to be notompact.

To elucidate this problem further | have formalized the requirement for compact rep-
resentations of underspeci ed representation formalisms. The de nition is motivated

by the fact that URFs are supposed to solve the combinatorial eximsion problem from
which approaches suffer that compute all possible readings. h order to avoid combi-
natorial explosion, URFs must provide feasible construction pra@edures. Given that fea-
sibility is identi ed with polynomial complexity, this led t o0 a de nition of compactness
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which classi es a formalism as compact if the representations br ambiguities involving
n scope taking elements are of polynomial size inn.

Using both the formal de nition of compactness and expressive completeness | derived
the result that both requirements are incompatible. A formalism can be either expres-
sively complete or compact, but it cannot simultaneously ful | both requirements. This
is a rather disappointing result as it tells us that we can call off the search for an under-
speci ed representation formalism that is both expressively canplete and compact. On
the other hand, it is not very surprising. If ambiguity introduce s considerable complex-
ity, why should it be possible to fully account for the phenomenon at hand while at the
same time avoiding this complexity?

The vast majority of work on underspeci cation has focussed on € cient processing and

made avoidance of combinatorial explosion its major theme. This is presumably due
to the fact that the seminal work has been carried out in the context of computational

semantics. Somewhat surprisingly however, it seems that theras no elaborate discussion
on what combinatorial explosion actually refers to, beyond the informal statement that

one should avoid the full enumeration of readings. As | have ponted out in Section

5.5.3, the discussion on expressivity and adequacy has been uogtly neglected at the
same time. Theorem 6.5 actually brings out the tension between he two requirements,

which is the tension between expressive power and the cost of ehieving it.



Chapter

Expressively Rich Formalisms

Yet there is another view on underspeci cation, namely from the point of formal se-
mantics. Formal semantics has often ignored complexity issues in favar of expressively
adequate theories, such as higher-order logics which are even b@nd recursive enumer-
ability. From this point of view, one would make expressive completeness and the abil-
ity to formulate linguistically adequate descriptions of dis ambiguation the major topic,

thereby making complexity issues a secondary theme.

In this Chapter | will discuss two very recently proposed strateges for underspeci cation
which take this route. The rstis an ambiguity packingapproach of Crouch (2005) that
aims at representing fully scoped readings simultaneously in me packed structure. The
other is the underspeci cation approach in the PTCT system of Fa and Lappin (2005a).

7.1 Packing vs. Procrastination

Crouch (2005) describes a system that maps text to knowledge repreentations. In this
system, text is parsed and semantically interpreted in the Glue #mantics theory?, result-
ing in fully-scoped higher-order intensional logical forms. These logical forms are then
attened and packedtogether. Finally, these packed semantic structures are transted
in packed knowledge representation structures. As Crouch (2005)points out, packing
differs from underspeci cation in that it delivers a structure tha t records all completely
assembled analyses. In other words, individual analyses can beead off the structure
straightaway, without the need to combine parts of an object language subject to the
satisfaction of certain constraints on the combination. Crouch (2005) contrasts this with

IDalrymple (2003), cf. also Section 4.7.3

130
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underspeci cation as a form of procrastination, where the evaluation of constraints is
deferred to a later stage with the hope that this increases ef ciency.

Obviously, this approach does not avoid combinatorial exploson at the present stage, as
all fully-scoped logical forms have to be computed prior to the attening and packing

process. Concerning packed representations, Crouch (2005) ackowledges that it is

important to pull disjunctions of meanings out into the choke space, and not to represent
them explicitly [...] within the semantic representation. The latter approach tends to
multiply out the size of representations. . .].'(Crouch, 2005, Section 2.2). This argument

goes along the lines of the discussion on the size of representeons above: one can in

principle have richer representation languages to achieve exprssive completeness (e.qg.
by adding disjunction), but then the representations become too large to be handled

ef ciently.

Unfortunately a precise de nition and evaluation of packed st ructures vs. underspeci ed
representations is dif cult to give at the present stage due to the lack of explicit literature
on the subject. Yet some questions (and doubts) come to mind when packed stratures
are concerned.

First (and even disregarding expressive completeness for a mom), how ef cient can
the construction of such packed structures be for massive scogambiguities? In the case
of syntactic ambiguity, the construction of a correspondingly packed semantic structure
from a parse forest can be easily done, as e.g. Ramsay (1999) argués This is not
surprising as all the work of detecting and representing ambiguity has been done by the
parser during the construction of the parse forest already*. However, one may wonder
how the construction would work for a case of massive scope amljuity such as in case
of the notorious sentence

(7.1) A politician can fool most voters on most issues most of the tire, but no politician
can fool all voters on every single issue all of the time.

Ramsay (1999) concedes that in constructing the packed structues for scope ambigui-
ties, one cannot use the packing implied by the parse forest. Tkn, assuming that (7.1)

receives only one single syntactic analysis (i.e. the parse 'fordsreduces to a single tree),

one may wonder how ef cient one can perform the construction of m ore than ten thou-

sand fully-scoped readings in form of a packed structure. Again itseems, that a source
of infeasibility is lurking in the construction process, altho ugh the details depend on an
exact de nition of the approach, of course.

2'Packing has been relatively and unjustly neglecteds (Crouch, 2005, Section 2.2) puts it.

3His system is essentially a rst-order language where only the ambiguous information is expressed by
disjunction.

4cf. Dorre (1997) for a discussion of ef cient construction of underspeci ed re presentations form parse
forests
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Second, what effect does disambiguation of readings have on hlie packed structure?
Recall that one decisive feature of underspeci ed representatons was the ability to add
disambiguating information by some monotonic operation, e.g. the addition of further
constraints (cf. Alshawi and Crouch, 1992). One may wonder in which way a packed
structure needs to be altered in order to represent a subset of the iitial set of readings
and whether this operation can be performed ef ciently. Furtherm ore, it seems that this
cannot be realized as a simple monotonic operation and that sone possibly involved
restructuring on packed structure is required.

7.2 PTCT

In Chapter 8 of (Fox and Lappin, 2005a) and in (Fox and Lappin, 2005a) the authors

de ne an approach to underspeci cation as part of the Property Theory with Curry Typ-
ing (PTCT) model for the computational semantics of natural language. Fox and Lappin
(2005a) propose arich rst-order language which contains a sublanguage of terms and a
sublanguage of types that yield a Curry-typed -calculus when combined with an appro-

priate proof theory. The terms of the -calculus are used to represent the interpretations
of natural language expressions, while another part of the language (the well-formed

formulas (wffs)) is used to formulate type judgements and truth c onditions for those

terms that are judged to be of propositional type. For instance, the term

(7.2) t = [XB (manx) > [¥B (womar(y) & lovegx;y)))

is a representation of the universal wide scope reading for the satence Every man loves
a woman. B is constant which stands for a basic type. Note that the™ on top of some
constants of the term language serves to distinguish them from repective logical con-
stants of the wffs. A wff expressing the type judgement, thatt is of propositional type,

is of the form t [CProp. An example for a typing rule is

(7.3) t [Prop& t° [Prop - (t &t) CProp,

stating that (t & t9 is of propositional type if both t and t®are. The truth of t is expressed
by the wff ~ (t), which will be true if the proposition represented by t is true. An example
for a rule that governs the truth conditions for terms of propositi onal type is e.g.

(7.4) t CProp&t°[Prop - (&t «~ (1) &> (Y ;

saying that a term (t & t9 represents a true proposition, iff the subtermst and t°repre-
sent true propositions (given they are of propositional type).
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I will not go into further detail about the technical basis of t his system, but focus on
the part where underspeci cation comes in. In the following | wi Il discuss the PTCT
approach to underspeci cation in detail, sketch an extension and give an elaborate dis-
cussion on the issue of de ning Iters as a means to achieve disambiguation. Finally, |
will discuss some advantages as well as disadvantages congeng the issues discussed in
this thesis. To make the formulas more perspicuous, | shall drop he™ and return to the
standard rst-order notation which has been employed throughout the thesis, instead of
using the actual term language syntax of PTCT.

7.2.1 Underspeci cation and Permutations

An underspeci ed representation in the PTCT system as de ned in (Fox and Lappin,

readings of
(7.5) Every marketing manager showed ve sales representatives a samp.

is given in (7.7) with the generalized quanti ers abbreviated as in (7.6).

7.6) Qi = P: [X{manage(x) — P(x))
Q2 = P: ve(x; salesrep(x); P (x))

Q3 = P: X{samplgx) [PKx))

(7.7) [@1;Q2; Qs GIxy z: show(x;y;z)

Note the obvious similarity of these pairs with the storage strucures of Cooper Storage
(cf. Section 3.1.1), where a core component (the relation expressel by the verb) has
been paired with a set of quanti ers. Let us call those pairs QRc-pairs in the following.

In order to access single readings in these structures, functios perms_scopg, for each
k are de ned, which are applicable to QRg-pairs. The result of an application of
perms_scopg, is a k!-tuple, where each component is a QR-pair consisting of a permu-
tation of the k quanti ers and the relation with its lambda-pre x permuted acco rdingly.

SPairs and tuples in general are de ned in PTCT via product types. Genealized Quanti ers can be
represented in PTCT due to an incorporation of a number theory in the sysem. See again (Fox and Lappin,
2005a), in particular Chapter 6, for the details.
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For instance, for the QR;-pair in (7.7) we get

(7.8) perms scope,  [Q1;Qz; Qs Xy z: show(y;z) =

[Q1;Q2; Q3 GIxy z: show(x;y;z) ;
[@2;Q1; Q3 Gly xz:  show(x;y;z) ;
[Q1;Q3;Q2 GIxzy: show(x;y;z) ;
[@2;Q3; Q1 Gly zx:  show(x;y;z) ;
[Q3;Q1; Q2 Glz xy: show(x;y;z) ;
[Q3;Q2; Q1 Glzy x: show(x;y; z)

The selection of components of a k-tuple is then accomplished by functions
project_scopg,, which take a number i and a k-tuple of the form of (7.8) and return
the i-th component of the k-tuple. For instance, an application of project_scope to the
number 4 and the structure in (7.8) yields the fourth component, i.e. the QR 3-pair

(7.9) [@2;Q3; Q1 Gly zx:  show(x;y; z)

Finally, an additional operation apply, takes such a pair and applies the generalized
guanti ers successively to the relation in the reverse order they appear in the k-tuple.
For instance, the application of apply; to the QRz-pair in (7.9) yields the (5[I)Xteading,
ie.

(7.10) ve (y; salesrep(y); [z{sampl€z) [IX{manage(x) — show(x;y;z))))

Note that the application of the GQs is performed from right to left such that a GQ Q;
outscopes a GQQj iff i < j , where i;j are the respective indices of the GQs in the
k-tuple.

In (Fox and Lappin, 2005b) the perms_scopg, functions are de ned along the lines of
(Campbell, 2004). This method assigns a unique numerical incex between 1 and k! to
each permutation of k elements, which can be used to recover the permutationwithout
the need to enumerate all permutations. Therefore it is possibleto de ne a function
permute, (i) that combines the functionality of perms_scopg, and project_scopg,(i). For
instance, applying permutes(4) to (7.7) directly results in (7.9).

An Extension to Nested Structures. So far it seems that PTCT accomplishes not much
more than Cooper Storage. In fact, a QR-pair only contains one relation around which
the k quanti ers can take scope. This however is not suf cient to account for the scopal
possibilities of more complex sentences, for instance for (318), repeated here as (7.11)



7.2. PTCT 135

(7.11) Two representatives of three companies saw most samples.

In the determination of the readings of this sentence, two relations are involved®, namely
rep.of and saw In the restrictor of the determiner meaning (corresponding to two) there
is an interaction with the GQ three companiesw.r.t. the relation rep.of while in the scope
there is interaction with the GQ most samplesw.r.t. saw This seems to call fornested
structuresas they have been proposed by Keller (1988) for Cooper Storage rad by Willis
(2000), directly implementing the scope theory of Park (1995). For instance, the initial
representation of (7.11) could be construed as nested QR-pairs. Due to the structure of
the sentence, those pairs would need to include not only generdized quanti ers, but also
other objects such as determiner meanings. This is an extensi that would be called for
anyway, as one would like to include other scope-taking elements such as negation to be
involved in these representations. For the sentence in (7.11) he scope-taking elements
would be the following:

(7.12) Dwo = QP: two(x; Q(x); P(x))
Qthree = P: threg(x; comp(x); P (X))
Qmost = P: most(x; samp(x); P (x))

The nested QR-pair would hence look as follows.

D E
(7.13) [Mwo; Qthree 51X Y: repof(X;y) ; Qmost ; XYy: Ssaw(x;y)

The QRx-pair in (7.13) consists of the usual two components as de ned above: a2-tuple
and a relation ( xy z: saw(x;y;z)). The new feature is, that the 2-tuple in the rst
component contains another QR pair, which has been underlined above. Abbreviating
this embedded pair with P and the outermost pair with Q, the QR,-pair from (7.13)
simpli es to

(7.14) P = [Dwo; Qthree LIXY: rep.of(x;y)
= [P; Qmost LIXy: saw(x;y)

If we permute both pairs independently we get

(7.15) Pi1 = [Dwo; Qthree LIXY: rep.of(x;y)
P, = [(Qthree; Do L1y X: rep.of(x;y)
Q1 = [P; Qmost LIXYy: saw(X;y)
Q = [(Omost; P L1y x: saw(Xx;y)

S¢cf. the discussion of this sentence in Section 4.4 below (4.69) on page 75



7.2. PTCT 136

Substituting P71 and P> for P in both Q1 and Q yields the four nested pairs

D E
(7.16) [Diwo; Qthree LIX Y: rep.of(X;y) ; Qmost : XY: sawXx;y)
D E
[Qthree; Dwo 1Y X: repof(X;y) ; Qmost ; XYy: sawX;y)
D E
Qmost;  [Dwo; Qthree FIXY: repof(x;y) 5 yx: sawx;y)
D E

Qmost;  [Qthree; Do 1y X1 repof(x;y) 5 yx: saw(x;y)

Computing the corresponding readings by recursive application d the apply, function
yields the four readings in (3.21) (repeated below as (7.17)), tha t Park (1995) attributes
to sentence (7.11).

(7.17) two(x; three(y; comp(y); rep.of(X; y)); most(z; samfz); saw(x; z)))
three(y; comp(y); two(x; rep.of(X; y); most(z; samp(z); saw(x; 2))))
most(z; samp(z); two(x; threg(y; comp(y); rep.of(X; y)); saw(x; z)))
most(z; samp(z); threg(y; comp(y); two(x; rep.of(x; y)); saw(x; z)))

Thus the extension of the QR -pairs from Fox and Lappin (2005b) with nested structures
along the lines of Keller (1988) and Willis (2000) already all ows for the derivation of
the readings of (7.11).

From a technical point of view, the exact de nitions of the perm utation functions from

Fox and Lappin (2005b) need to be amended to work recursively on rested structures.
In particular, as GQs, determiner meanings and QR-pairs occur in k-tuples, one needs
to employ the polymorphism that is possible in the PTCT system. Hrthermore the op-
eration that 'lifts' a generalized quanti er in a way such that it can apply to relations

of arbitrary arity (see Fox and Lappin, 2005b, for detail) needs to be extended to work
with all scope-taking elements. Again, | will not discuss the technical details here any
further. In the following exposition of Iters, | will disregard nested structures and stick
to the de nitions in (Fox and Lappin, 2005b).

7.2.2 Filters

Due to its rich language it is possible to de ne complex Iters on the structures above
(Fox and Lappin, 2005b, Section 3.6). Filters are boolean funcions that make judge-
ments on QRc-pairs such as (7.9), i.e. they are of the form [Quants; Rel[t where
Quants is a k-tuple of generalized quanti ers, Rel a k-ary relation, and t is a term of
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propositional type. Hence, given a QR-pair, a Iter will yield a propositional term that
can be true or false.

Filters and Licensing

In order to de ne lters on QR k-pairs some additional auxiliary functions are needed.
To facilitate the access to single quanti ers in the k-tuple of quanti ers, Fox and Lappin
(2005b) de ne a function tuple_elementthat takes a numberi and a k-tuple of GQs and

they devise properties to identify GQs. In the following | will make use of this and as-
sume that for each GQ there is a property which is true of all and only the respective GQ.
For instance, ve (Q) should be true iff Q is a GQ corresponding to an NP of the form
ve N. Combining these two auxiliary functions, ve (tuple_element(2; [Q1;Q2;Q30D)
represents the proposition stating that the second element in[Q3; Q2; Q3[ik a GQ corre-
sponding to ve N.

To illustrate the form and use of Iters, consider a simple restriction concerning the
scope relation between two quanti ers. For instance, assume we want to restrict the six
readings of (7.5) to those where [fakes wider scope than ve. The corresponding lIter
expressing this restriction looks as follows.

(7.18) [Quants; R [T (every(tuple_element(i; Quants)
[V (tuple_element(j; Quants) 1% )]

The Iter (7.18) applies to a QR k-pair [Quants; RCand yields the representation of a
true proposition iff there are indices i;j of GQs corresponding toevery Nand ve N,

respectively, such thati is less thenj . In other words, the proposition is true for a QR-
pair iff there is a GQ for every N and a GQ for ve N such that the former outscopes
the latter. Note that this formulation of the Iter rules out al | QRg-pairs which do not
contain these two GQs. If one thinks of Iters as contextual contributions towards dis-

ambiguation, this may not be desirable as the constraint expresed by the lter should

not affect ambiguous expressions that do not involve the two GQs in question. However,
it is easy to change the de nition of lter (7.18) into a condit ionalized version.

(7.19) [Quants; R [T ((every(tuple_element(i; Quants)
Ve (tuple_element(j; Quants)) - i<j )]

This lter passes all QRk-pairs which do not contain either of the two GQs, and those
QR«-pairs in which both GQs are present such that the one forevery N outscopes the
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one for ve N.

Filters can now be combined with the permutation functions to eventually restrict the
set of generated readings. For instance, if we letlter stand for the function de ned in
(7.18), then

(7.20) lter permute;(4) [Q1;Q2; Qs GIxyz: showx;y;z)
= Iter  [@2;Q3Q1lyzx: showx;y;z)
= [ (every(tuple_element(i; [Q»,; Qz; Q1 I
[\e (tuple_element(j; [@2; Q3; Q1 DILI¥] )

As every holds of Q1 and ve of Q. (cf. (7.6) above), the proposition (7.20) is false
and hence the (5[[)JTeading is not among the licensed ones. In general, the actualy
licensed readings are those, for which the composition of lter with permute, (i) yields a
true proposition. We can generalize this further by allowing for an entire setF of lters
Iter ;. The set of licensed readings of a QR-pair [Quants; R[W.r.t. to some set of lters

(7.21) Lprcr [Quants;REIF =t [t = apply, permute, (i)([Quants; RO
[—Tter ; permutey (i)([Quants; RDJ
Lt
[—Tter ,, permute (i)([Quants; RO

This de nition says that a term t is licensed by [Quants; RLIf it is the application of the
quanti ers in Quants to R, permuted in a way such that the permutation passes allm
ltersin F.

Applying Filters

Due to the rich term language used to de ne lters, various sources of disambiguation
can be formulated in a natural and intuitively straightforward ma nner. Fox and Lappin
(2005b) illustrate this with an example of disambiguation du e to a lexical requirement
carried by a certain. | will repeat this example in the following section. Afterward s |
will add two more examples concerning disambiguation due to domain knowledge and
anaphoric reference and show how lters interact in complex casesof disambiguation.
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Lexical Bias. Fox and Lappin (2005b) point out that a certain N has a strong tendency
to take widest scope in scopally ambiguous sentences The strongly preferred reading
of (7.22) is the one, where every is outscoped bya certain.

(7.22) Every critic reviewed a certain book.

This can be accounted for if we assume thata certain comes with a contextual contribu-
tion in form of the following lter.

(7.23) Iter |ex ;= [Quants; RO 1 (a_certain (tuple_element(i; Quants))
[Ha_certain (tuple_element(j; Quants)))

- i<j

Iter 1ox passes all QR-pairs in which a quanti er corresponding to a certain N outscopes
any other quanti er (except those corresponding to a certain N). Again, it is condition-
alized in the sense that it passes all QR-pairs in which no such GQs occur. The set of
licensed readings of (7.22) is based on the QR-pair

(7.24) Q:= [P [X{critic(X) - P(x))]; P [xX{book(x) [PKx))]]
Xy: reviewx;y)

and restricted by the lter to

(7.25) Lerer Qi{lter o} = { IX{book(x) [LI¥{critic(y) — review(x;y))) };

assuming that a_certain holds of P [[X{book(x) [PI(x))]. The effect of the lter is to
restrict the readings to those, where the quanti er corresponding to a certain N takes
widest scope with respect to all other quanti ers, as desired.

Domain Knowledge. The contextual information of the chocolate company example
in Section 3.3.2 can also be encoded as a lIter. According to the dscription of the
companies policy preceding sentence (3.22) (repeated here as (5)), the marketing

managers want to avoid the situation where each of the sales reprsentatives is contacted
by all marketing managers, each of them showing the sales represgtative the same
sample. This knowledge about the company can be encoded as cwextual information

in form of a Iter on subsequent text. The lter expressing the f act that the ([5I)teading

"However, see Hintikka (1986) for a critical appreciation of such a claim.
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does not persist can be formulated as follows:

(7.26) Iter gom := [Quants; R LI TK{ (every(tuple_element(i; Quants))
[ Ve (tuple_element(j; Quants))

[axists(tuple_element(k; Quants)) )
- k<) ki)

Using lter 4om as the only lter, the set of readings licensed by the basic QR-pair (7.7)
is as desired.

(7.27)  Lprer [0Q1;Q2;Q3lIxy z: show(x;y; z)CI{ Iter 4om}

= [X{manage(x) — ve(y;salesrep(y); [Z{sampldz) Cshow(X;y;z))))
[xX{manage(x) — [Z{sampldz) [k (y; salesrep(y); show(x; y; z))))
ve (y; salesrep(y); [X{manage(x) — [z(sampl€z) [Cshow(x;y;z))))
ve (y; salesrep(y); [Z(sampl€z) [ TX({managefx) —» show(x;y;z))))
[z(sampl€z) [(TX{manage(x) - ve (y;salesrep(y); show(x;y;z))))

Hence domain knowledge can enter the picture in the same way aslexical disam-
biguation information, viz. via lters. Yet another source of d isambiguation concerns
anaphoric reference.

Anaphoric References. The case of disambiguation by anaphoric reference has been
used in Section 1.1.1 to illustrate the need for partial disambiguations. The example
given there is (1.4), repeated here as (7.28).

(7.28) Every child told two teachers some story. It wasAlice in Wonderland

The pronoun It refers anaphorically back to some antecedent in the rst sentene, in
this case to some story. In fact, it disambiguates the rst sentence in favour of a wid e
scope reading for some story i.e. in favour of the ([2) and ([2I) teadings.

Theories of Dynamic Semantics(Staudacher, 1987; Groenendijk and Stokhof, 1991;
Kamp and Reyle, 1993) aim at an explanation of these facts. Thereason why the other
four readings are excluded is explained with the inaccessibilityof the existential quanti-
er. In terms of Dynamic Semantics approaches, [Cand two are externally staticwhile [1
is externally dynamié. Without going into detail and simplifying somewhat, this me ans

8A note of clari cation is in order in the case of two. Note that in this thesis | have assumed a distributive
meaning construal of two N, represented by a generalized quanti er AP [two(X, N (X), P (x))]. In this form,
two is indeed externally static as it does not 'export' the individual variable x it quanti es over and blocks
off any dynamic effects of embedded dynamic operators (similar to 8). The fact, that plural anaphoric



7.2. PTCT 141

that the existential quanti er can bind variables beyond its syntactic scope, while the
other two quanti ers do not have this possibility. Hence [XJP(x)] CQ(x) is equivalent
to IXJP (x) CQ(x)] while IXJP (x)] CQI(x) is not equivalent to [X]P (x) [CQI(x)] under a
dynamic construal. In fact, the externally static quanti ers bl ock off the dynamic effects
of any externally dynamic quanti ers in their scope, such that IYIIXJP (x; y)]] CQ(x)
is not equivalent to LyJILXP (x;y) CQ(x)]], for instance. In other words, in order to
be accessiblei.e. show its dynamic effect, an externally dynamic quanti er m ust not be
outscoped by an externally static one.

This is the requirement a pronoun such asit can carry as contextual information in form
of the following lter stating that there is a dynamic quantie r and no static quanti er,
that outscopes it.

(7.29)  Iter ghapn = [Quants; R (Hynamic(tuple_element(i; Quants))
[=[ [static (tuple_element(j; Quants)) [jXi ))

Given that dynamic and static are PTCT properties that hold of dynamic and static GQs,
respectively, Iter jnqpn rules out the (LL2); ([ZD:(2 [LL(2 [ Teadings and leaves the
(L) and ([2I) teadings, as desired. Note that the formulation of this Iteris a straight-
forward and natural translation of the requirement that there must b e an accessible
dynamic quanti er. In particular, it is independent of any con crete QRc-pair the lter
might be applied to. Furthermore note, that although the lter h as been motivated by
the underlying concepts of dynamic semantics, the actual resoltion of the pronoun can
still happen differently, for instance in the way described in (Fox and Lappin, 2005a,
Chapter 7).

Interaction of Filters. Filters can be seen as the contextual contributions that place
restrictions on readings and can be accumulated in the course of &scourse processing. In
order to illustrate the interaction of the lters, consider the ¢ hocolate company example
again.

(7.30) Every marketing manager showed ve sales representatives a samp.

Without any context, the set of lters F is empty and hence all six readings correspond-
ing to the permutations of the quanti ers are licensed.

Making use of domain knowledge (the annual product presentation discussed above),
the set of Iters F contains the lIter lter 4., and hence only the ve readings in (7.27)

reference to two N is possible has to be explained differently, e.g. by introduction of a 'plural' discourse
referent as in (Kamp and Reyle, 1993), cf. Figure 4.2.
Swi.r.t. to the syntax of the logical formula it occurs in
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remain. Now consider that the following sentence is uttered subsequently.

(7.31) It was the sample we used last year.

As discussed in the preceding paragraphs, the contextual conthution of the pro-
noun is the lter Iter 4,0, such that the set of lters at this point is extended to
F = {lter ahapn; Iter gom}. Hence the set of licensed readings is reduced further to
the only remaining reading

(7.32) [Z(sampl€z) [(TX{manage(x) - ve (y;salesrep(y); show(x;y;z))))

where there is a unique sample that was presented, but not in the way that would have
embarrased the sales managers.

The same would happen if the example was slightly modi ed as to make the sample
speci ¢ by means of a certain.

(7.33) Every marketing manager showed ve sales representatives a certa sample.

Assuming that this sentence is uttered in the context of the amual product presentation
(and that we can hence make use of our domain knowledge), the ative lters are F =
{ Iter |ox; lter 4om} @nd the resultis as in (7.32). Uttering sentence (7.31) subsequently
adds the anaphoric Iter Iter ;... to F, which in this case does not change the licensed
set, though.

7.2.3 Expressive Power vs. Ef ciency

In this section | shall comment on the differences between an epressively rich approach
such as PTCT as opposed to constraint-based meta-level approlaes as mainly discussed
in the preceding Chapters.

Advantages of Filtering. The preceding sections illustrate that the provision of an
expressively rich language allows for a natural and intuitive formulation of contextual
disambiguation information. For instance, the anaphoric reference lter lter ..., States
the intuitive requirement induced by a pronoun that needs to be resolved, namely that
there be an accessible antecedent. In general, the ltering appoach has the following
advantages.

Monotonicity. Filters are collected in a setF in course of discourse processing. Fur-
ther contextual information may add new lters to F while all others remain ac-
tive. This is an instance of monotonic disambiguation (Alshawi and Crouch, 1992)
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which is a desirable property as already given information does nd need to be
altered.

Independence. Filters are independent of the underlying structures they are applied to.
For instance, all of the above Iters can be applied to any QR,-pair to impose the
respective restrictions they express. Contrast this with disamiguation in case of
the variable/constraint approaches, where disambiguation is adieved by adding
further constraints to the underspeci ed representations themselves. For instance,
in Hole Semantics the six available readings for

(7.34) Every marketing manager showed ve sales representatives a samp.

are represented by an underspeci ed representation such as

8 9
. - . 8 9
) I|o.- Kamgne:gem _r;o),é 8 =iy o+
(7.35) u= o \_’e(y’saelsrep(y)’ D =iy
2 [Zlsampléz) LR 3 °>
I3:show(x;y; z) '

A subsequent utterance of
(7.36) It was the sample we used last year.

needs in some way or other add disambiguating information in form of the two
constraints h, < lg and h, < |1 to u to enforce the wide scope reading of the
existential GQ. Obviously, these two constraints enforce ths reading only w.r.t. this
particular representation u and naming of meta-variables. They do neither express
any general contextual information nor achieve the same effe¢ when added to
some other representation.

Soft vs. Hard Filters. Filters can be formulated to be soft, i.e. de ned such that all QR -
pairs are passed when certain conditions are not met. For instane, the lexical
Iter Iter o is soft in that it shows its effect only on QRk-pairs containing a GQ
corresponding to a certain. All other QRg-pairs are unaffected by the constraint.
This contrasts with the anaphoric reference Iter Iter ,,,0,, Whichis hard. It shows
its effect on all QR-pairs, ruling out those that do not contain any dynamic GQs.

Of course, in the lters de ned above certain things have been simpli ed. Concerning
the anaphoric lter for instance, there are other dynamic and static elements (such as
logical connectives and negation) that need to be taken into account for an elaborate
statement of accessibility. However, | hope it is still obvious that the possibility to state
complex lters on readings is a clear point in favour of expressively rich systems.
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Representation at the Object Level. Another point concerns the distinction between
object- and meta-level. A closer look at the de nition of the set of licensed readings
in (7.21) shows that it is de nable in the same term language in w hich the readings
themselves are represented. In other words, PTCT is no meta-levepproach to under-
speci cation, in contrast to virtually all other approaches di scussed in this thesis. All
involved structures and functions (such as the lters) are de ne d in the very same lan-
guage and not as a separate constraint language on top of an obje language. Hence
they are subject to the same inferencing procedures that are ava#ble for the rest of the
PTCT system.

Expressive Completeness. Due to the rich constraint language it should in principle

be possible to achieve expressive completeness easily. Hower, as pointed out above,
the simple QR«-pairs cannot properly represent complex sentences with more thanone
involved relation. As a step towards expressive completeness| have given a sketch
of an extension of the system to nested structures which aims at slving the problem

along the lines of Keller (1988) and Willis (2000). Still muc h more needs to be done,
e.g. extending the de nition of Iters to work on nested structure s. | conjecture, that
eventually it should be possible to achieve expressive commteness in PTCT.

Ef ciency of Filtering. At rst sight it may seem that the enumeration of readings
in the Itering approach described above has essentially a geneate-and-test character.
However, as Shalom Lappin (p.c.) pointed out, the Iters can be directly used in the
process of this enumeration to cut down on the number of computed readings as follows.

taking elements, the algorithm starts with a 1-tuple containing only the rst element Q.

Then the next element Q, is inserted at each possible position in this ‘tuple’ yielding
two new 2-tuples [Q»; Q1[Cand [Q;; Q2[1This step is repeated iteratively with the next

scope-taking element, which is inserted in each of these tupés at each possible position
until all k scope taking elements have been used. The effect of this algathm can be

illustrated with a tree, where at each level i the insertion of Q; into the tuples from the

previous leveli — 1 is depicted.

(7.37) Q]
[Ql;“QQQ‘ ) [Qz;‘\QU\j\ \
[Q1;Q2; Qz[1Q1;Q3;Q2[1[Q3;Q1; Q2 L1 [Q2; Q1; Q31 [Q2; Q3; Q1 L11Q3; Q2; Q1 L
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Such a permutation algorithm can be straightforwardly extended such that it checks
at each insertion step whether the resulting tuple satis es the applicable lters. For
instance, consider the QR-pair

(7.38) [@1;Q2; Qs LIxy z:  show(x;y; z)

corresponding to the full six readings of the chocolate companyexample again, where

(7.39) Q1 = P: X{samplgx) [PI(x))
Q2 = P: X{managefx) - P (X))
Q3 = P: ve(x; salesrep(x); P (x))

Furthermore assume, that the anaphoric lter lter ;.5 in (7.29) is active, i.e. assume
that contextual information induced by anaphoric reference inf ormation rules out those
readings, where Q; is outscoped byQ», or Qs. If the permutation algorithm described
above checks each generated tuple for satisfaction oflter ,n,,n, the 2-tuple [Q2; Q1]
will be discarded during the insertion of Q, as it does not satisfy the lter. Hence, in the
subsequent insertions ofQ3 into the remaining 2-tuple [Q1; Q2[Cdnly three tuples will be
generated, of which [Q3; Q1; Q2 LWill be immediately discarded as it does not satisfy the
Iter. This particular instance of the permutation algorithm i s illustrated in the following
tree (7.40), where the discarded tuples have been boxed.

(7.40) Q0

[Q1;:Q2L] \
[Q1; Qz; Qs [ Q1 Qs Q2 1] [Qs; Qu; Q2L

Obviously, the algorithm performs only 6 insertions as opposed to the full9 insertions of
(7.37). Making use of Iltering information while enumerating th e readings can actually
prune the tree of intermediate results and hence yield an increasein ef ciency. In partic-
ular, it may not be necessary to compute the full set of readings Of course, this depends
on the particular order in which the scope-taking elements are inserted. For instance,
if the permutation algorithm was applied to the QR 3-tuple above with the quanti ers
ordered as in (7.6), immediate applications of the Iter lter ,,,,, Would not lead to any
reduction of intermediate results as the dynamic existential quanti er would be inserted
last. Therefore the approach still needs to generate all possil# permutations and thus
runs into the combinatorial explosion problem in the worst case.
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First-Order Issues As the entire system of PTCT is essentially a rich rst-order logi@al
system, it inherits the characteristics w.r.t decidability and enumerability. This is dis-
cussed in length in (Fox and Lappin, 2005a, Chapter 9 & 10). Fa instance, as (the set of
valid sentences of) rst-order logic is undecidable, PTCT is uindecidable. With the inclu-
sion of a full number theory based on the Peano axioms, PTCT imprts the full power of
arithmetic and hence fails to be recursively enumerable. As the athors point out, limit-
ing the number theory to Presburger arithmetic restores decidabiity. However, although
(Fox and Lappin, 2005a, Section 6.7) state that Presburger arithmetic is suf ciently ex-
pressive to characterize the truth conditions of generalized quanti ers, it remains to be
seen whether Preshurger arithmetic is expressive enough to dealith the computation
of the permutation indices needed for the underspeci ed representations. In any case,
the PTCT system is far beyond feasibility in the sense of polynonal computability that
has driven the design of the expressively weak formalisms discased in the preceding
chapters.

At this stage it is fair to bring the approach of Muskens (2001) back to mind, which
has been brie y discussed in Section 4.7.2. Muskens (2001) alsode nes a system with
the power of rst-order logic and is thus subject to the same discussion on rst-order
issues from above. The approach is expressively complete as e.gisjunction can be
used to conjoin complete speci cations of single trees, as inthe case ofN_ from Section
6.1. However, Muskens (2001) does not discuss the issue of dsmbiguation by imposing
additional constraints on the described tree structures at all, which is the reason | left his
approach aside in this discussion and focussed on PTCT, wheréhése issues have been
elaborated to a considerable extent in (Fox and Lappin, 2005a,h.

7.3 Conclusion

This Chapter is meant to show that there are clear bene ts of emgdoying an expressively
powerful formalism, namely the capability to make empirically adequate and natural yet
formally precise statements on issues of underspeci cation. e former point refers to
the fact that in powerful systems such as PTCT (or (Muskens, 20Q) for that matter) one
can achieve expressive completeness, i.e. characterizal naturally occurring readings.
The latter point refers to the ability to make intuitively reaso nable and descriptively
adequate statements about underspeci cation, such as generaformulations of lters
encoding contextual information about disambiguation. Unsurprisingly, one has to pay
for this increase in expressive power with increased computatonal complexity.



Chapter

Conclusion

8.1 Summary

In this thesis | have adopted a general and abstract view on scop underspeci cation

based on a formal de nition of underspeci cation formalism A URF was very generally
de ned as a set of objects — the underspeci ed representations —together with a li-

censingmapping that determines what each such object represents. Thisabstract view
facilitates a clean de nition of two requirements on URFs, which have been used only
vaguely in the literature so far despite their fundamental status.

The rst requirement about the existence of partial disambiguations carries not much

content, if it is not speci ed, which partial disambiguation s one talks about. The second
requirement of compactness is supposed to relate to the desire t@avoid combinatorial ex-
plosion, but again it is not clear what this means from a formal point of view. However,

in order to evaluate URFs w.r.t. these requirements, it is necessaryo provide formaliza-

tions.

To give the requirement on the existence ofpartial disambiguations some content, was
the purpose of the discussion onexpressive completenes3senerally speaking, a represen-
tation formalism is expressively complete if it provides representations for everything

that needs to be represented. In the context of underspeci cation, expressively com-
plete formalisms are capable of representing all ambiguities that can possibly occur in
natural language. Motivated by two concrete examples and geneal arguments about

disambiguation by context | argued in line with Konig and Reyle (1999) that disam-

biguation is unconstrained in principle and that therefore any set of readings can occur
in natural language at some point. This led to a formalization of the notion of expressive
completeness of URFs.

147
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| applied this de nition to four prominent approaches to unders peci cation, namely Nor-

mal Dominance Constraints, Hole Semantics, Minimal RecursiorSemantics, and Under-
speci ed Discourse Representation Theory. | dubbed this familyvariable/constraint ap-
proachesas its members share certain key features concerning the use of matvariables
and the interpretation of constraints on combination of object language parts. All these
formalisms turned out to be expressively incomplete, which anavers a long-standing
question raised by Konig and Reyle (1999). These results imply that the formalisms wn-
der consideration are not capable of representing certain ambigities occurring in nat-

ural language, which has been exempli ed with the two concrete examples mentioned
above. Due to the abstract approach | adopted, the failure to provide a representation
for a certain set of readings implies the failure to provide a representation for an entire

class of sets of readings, what | calledpatterns of ambiguity.

As a side effect of the incompleteness proofs, a comparison ofhte investigated for-

malisms is straightforward. Here it turns out that Hole Semantics, NDCs, and MRS
differ in expressive power. While the former is the expressivel weakest, the latter two

are incomparable. This shows that the different ingredients of these formalisms, such
as shared meta-variables, inequalities and sensitivity to tle nature of functors, indepen-

dently contribute to an increase in expressive power and cannotbe simulated by each
other. An extension of Hole Semantics with shared meta-varialtes has been shown to be
the core that is common to all the formalisms.

In order to achieve expressive completeness, two naive propoda have been put forward.
As it turned out, those proposals seemed to suffer from the combnatorial explosion
problem. In order to facilitate a detailed investigation, | pro posed a formal de nition of
the secondcompactnessequirement as a restriction on the size of the representations of
URFs. | then showed that under some natural assumptions, a URF e¢mot be expressively
complete and compact at the same time. This brings out the ten®n that is involved in
the two requirements, one asking for expressive richness while lhe other puts restrictions
on the complexity of achieving this. As | have pointed out, this seems to be a new
insight as the prevailing body of work has focussed on devisingef cient procedures
of underspeci cation while at the same time neglecting issues of expressivity or even
assuming that expressive completeness is achieved neverthess.

Finally | have shown that adopting the formal semanticists point of view, i.e. focussing
on expressivity and adequate linguistic descriptions, is cer&inly possible in rich expres-
sive languages. | used the system of Property-Theory with Curry-Typig, sketched an
extension towards expressive completeness and elaborated orhe issue of de ning ne-
grained and precise lters to precisely express the effects of dimmbiguation.

| think that it is in fact necessary to complement the prevailing body of work done from
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the computational semanticists point of view by such theoretical work on underspeci ca-
tion. First of all, it is essential to engage in a discussion onexpressive completeness, i.e.
the expressive power needed by URFs to qualify as adequate fornliams for representing
natural language ambiguities. Expressively rich formalisms ca contribute to this discus-
sion as they can be used to precisely describe effects of disanduation and the resulting
ambiguities. After such foundational issues have been clared to some extent, one can
think about the weaknesses and strength of existing URFs gearetbward ef ciency and
implementation and think about how to overcome the former.

8.2 Outlook

This latter point already hints at a direction for further researc h, namely an elaboration
of the underspeci cation approach of PTCT (Fox and Lappin, 2006a). As pointed out
in Section 7.2, further work needs to be done in order to make the PTCT approach
expressively complete. A step towards this goal has already beesketched in this section
by introduction of nested structures. This extension and the necessary adaptation of
the involved functions and lIters should be eshed out and form alized. With such a
rich system it would then be possible to precisely describe effets of disambiguation by
de nition of appropriate Iters as indicated. A thorough invest igation of those effects
and elaborate de nitions of lters are an interesting undertakin g that contributes to the
understanding of reasoning in discourse.

Considering expressive completeness it may be natural to exteth the incompleteness
results and the comparison to further approaches. In particular, it may be interesting
to have a closer look at the existential positive conjunctive fragmentoLg.. of rst-order
logic, which has been investigated in Kerdiles (2001) w.r.t. complexity and in comparison
with various extensions. The formulas of FOLg.~ are existentially quanti ed conjunctions
of atomic formulas. In fact, the NDC approach (cf. Section 4.3) and the approach of
Kallmeyer (1999) (cf. Section 4.7.2) are instances of this fragment. In order to use the
fragment for underspeci cation, one could start by restricting t he atomic formulas to
binary predications of the form R(x;y), where R is some tree relation among{/ ;/;:::}
and to unary predications of the form L; (x), where L¢ is a unary labeling predicate for
each functor f [3. The class of models could then be restricted to nite >-labeled
trees/terms and constructiveness could be achieved by de ning he licensed set of a
formula w.r.t. to its minimal models. Intuitively speaking, it seems reasonable to assume
that FOLg.~, when regarded as a URF in this way, is also expressively incompte. Due to
the positive and conjunctive construal, a formula can only 'talk about' the information
which is common to all the elements in some set that it is supposed to license. Hence
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if the common information is not suf cient enough to rule out un wanted terms (such
as in the examples in this thesis), then it seems thatFoLg.» should not be capable of
providing a formula for such a set. A proof of the expressive inconpleteness of FOLg-»
would subsume the proofs for various other approaches (e.g. NDCshnd indicate, that
indeed some means to talk about disjunctive or negative infaoamation have to be provided
by a formalism in order to achieve expressive completeness.

Another line of prospective work may aim to solve the problem of the missing empirical
basis, pointed out in Section 3.4. Of course the preparation of anappropriate large-
scale hand-tagged and fully disambiguated corpus of intricak ambiguity information is
a major undertaking for probably several research projects. But ona smaller scale it may
be instructive to start with an investigation of existing corpo ra, which could show how
pervasive the problem of massive ambiguity actually is. A further interesting question
concerns sentence comprehension. It would be interesting to alcidate why competent
speakers have no dif culties in understanding massively ambiguous expressions while
they seem incapable of attributing disambiguated meanings b such expressions. One
might think that the latter failure can be explained as a perform ance issue, but this would
still leave the question why comprehension works without any performance problems
whatsoever.



Appendix

Proofs

A.1 Normal Dominance Constraints

Lemma A.1 (Monotonicity)
Let' be an NDC andC be a set of dominance and inequality literals such that'" [Clis
a NDC. ThenLypc(" [CC) CLdpc( ).

Proof. Suppose is a constructive solution of * [CA. Then due to the conjunctive
interpretation of literals, E ' and | C. Therefore, if [Iypc(' [Q) then
C0hoc( ). o

Lemma A.2 (Independence of Meta-Variable Names)
N is independent of meta-variables names.

Proof. Let' be a dominance constraint and be a bijective mapping
(A1) Var(' ) — V

from the variables in ' to some set of variablesV. Let ~ be the extension of to
dominance constraints as follows:

Cmh o= )Y

T Xy X)) = (X)X (Xa))
X71'Y) = (X)I ()
XEyY) = X)E (Y)

Then the following holds: If | ' then | 1 ()andif | () then

151
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F¢ ) ' . This means that a tree/term  saties an NDC ' if and only if it satis es
the 'renamed’ constraint (" ). Thus we haveLyoc(' ) = Lyoc( () for each dominance
constraint ' and bijection form the variables of ' to V. O]
Lemma A.3

Let' be a NDC suchthatl'(" ) isasetand LIIO( )]. Then the following holds:

1. | XT:f(ve;ii:;v) iff for every v; of form X9 for some g LI ) it holds that
fllg.

2. E v 8 \Oiff v;\0are distinct variables and if {v;v%} = {X/;X9} for some
f;g [COC ) (i.e. if one is a argument variable and the other a labeled variable)
thenf/ ' gdoes not hold.

3. EX[/ Xx9iff f/1 g.
Proof. First note that the tree relations can be stated on the functors drectly, as each

functor occurs only once in' and hence any solution. Let us write d; for the unique
node in thatis labeled with f. If is a solution for ' , then

X' 3 o

A.2 :
(A.2) X! B dri

is the unique witnessing embedding, which is induced by the labeling in * . We apply
the de nition of satisfaction and the de nition of this indu ced embedding.

1. EXPif(uenv)iff ((XT) =fandforall l<i<n: (v)= (XP)i.
As (X')=df we have
(A3) (X)) =) =f
by de nition. Furthermore for every v; of the form Xif we have
(A.4) dri= (X{)= (X')-i
by de nition again. The only thing left to be checked is that f or all v; of the form
X 9it holds that dg = (X 9) = dr i. This is true excactly iff f / ' g.

2. EvEVIf (v) B (9. As the form of inequality literals is completely
unrestricted we look at different cases separately:

e if v=X':v0= X9 then v E VOiff d- i E dg iff f/ | gdoesnot hold. The
i g

same is true forv = X 9;v0 = Xif :
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- if both v;vPare labeled or both are holes then (v) & (v by de nition and
therefore = v £ vPholds.

In summary, [ v 2 VOiff v;v0are distinct variables and if {v;v% = {X/;X 9}
thenf/ ' g does not hold.

3. EX[ /1 X9iff (X[)/  (X9)iff d-i/ dgiff f/ 1 g.

Example A.4
Suppose thatl” = {f1: g% x%y%} is a setof functors and that we have a NDC' with
constructive solutions in [I']. For instance, we may have the following constraint:

(A5) " =X:f(Y) g(V;W) CSEx LTy 1
XEBUIXIBSIXIET [SIET [SIEU MO8 U [1
VEX W/ T

A closer inspection of the rst line reveals that ' contains exactly one labeling literal
for each functor in I, i.e. its constructive solutions will indeed be in [I']. Furthermore
the constraint ful Is all requirements of the normality de niti  on, such as the inequality
literals on labeled variables (N4) which are in the second line. The last line contains an
additional inequality literal V & X and a dominance literal W/ T, where W is a hole
and T is a root as required by (N3). Therefore we can apply our consideratons from
above and rename the variables accordingly as follows:

(A6) ' =XxXT:f(X]) X9:g(X ;X ) CX¥:x CXV:y [
X*gxXyYxXxrexixfexixfex*xif gxy xrex9r
xfexxgs xv

Now we can make use of the fact, that all information about the solutions is actually
encoded in the meta-variable names, and apply Lemma A.3. Let usheck, whether
the tree/term = gfxy (which has been used in Example 2.6 already) is among the
solutions of ' . According to the Lemma we need to inspect the tree relations/' and/'.
The tree diagram and the relations are as follows.

g /1 = {of;fx}
Q
Q 2 =
¢ y 1< = {agy}
| It = {of;fx;ox}

12 = {ogy}
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Itis clear that =" iff satises each literal. Let us check the labeling literals rst.
According to the Lemma, gfxy = X T :f (X 1) iff for every argument variable of the form
X 9 for some g [Tit holds that f /' g. Therefore this literal is certainly satis ed as the
only argument variable X{ is not of this form. The same holds for the other labeling
literals of ' as an inspection shows. Thus all labeling literals are satis ed by (and in
fact by any other tree in [I]).

Now consider the inequality literals which are imposed by the normality de nition,
shown in the second line. The Lemma tells us that | X* & XV iff X* and XV are dis-
tinct variables (which is obviously true) and if {X*; XY} = {Xif ; X 9} for some f;g [T
(i.e. if one is an argument variable and the other a labeled variable) then f / I g does
not hold (i.e. the functor corresponding to the argument variable does noti-dominate
the functor of the labeled variable in ). As both are labeled variables this if-case does
not apply and therefore the literal is ful lled. We can see at thi s point already that all
the inequality constraint imposed by (N4) of the normality de nition will be satis ed,
simply because the variables will be distinct as the corresponihg nodes carry different
labels. Again, this is true for any tree in [I].

This leaves us with the remaining two literals. The rst one is th e inequality literal

Xf 8 X' which is satis ed by if the variables are distinct (which again is obviously
true) and the following holds in addition: if one variable is an argument variable and
the other a labeled variable then the functor corresponding to the argument variable
does noti-dominate the functor of the labeled variable in . In this case the if-clause is
applicable as the literal relates the argument variable X { to the labeled variable X ' and
thus we have to see whetherg /! f does not hold. However, in it doeshold that g/ f.

Therefore this literal is not satis ed by and thus fails to satisfy the constraint' . If we

look at the term ©= gyfx however, matters are different. Again all the labeling literals

and the inequality literals imposed by (N4) in the second line are satis ed. And this

time, X{ 8 X' is also satis ed as can straightforwardly be read off the tree relations.

g It = {ay;fx}
Q
Q 2 .=
y ; 1% = {df}
| 1Y% = {gy;fx}
X

12, = {of;ox}
Here it does nothold that g/ % f. Now the nal literal X3/ XY needs to be checked for
satisfaction. According to the Lemma this literal is satis ed by © if g/ 2,y. Unfortunately,
this is not true in the present case and thereforegyfx is no solution either. One term that
actually satises ' is 9= gxfy . Here all the literals are satis ed, including XS’/ XY
as we haveg/2%,y. Eventually, the entire set of terms licensed by' is Lypc(') =

{gxfy ;fgxy }.
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Proposition A.5
Let' be a NDC withI'(" ) a set. Suppose thatP [JM(" )]. Letus write P ' if [
forall [Pl Then the following holds:

Vo
flgrr /!
2P

2. P £ v B \Oiff v;\Pare distinct variables and if {v; v = {X/ ;X 9} then

R

[’rjlgl:l:l[ /i
2P

3. PEX1 x9iff \

g /!
2P

Proof. Straightforwardly from Lemma A.3. Concerning 2., note that if {v;v%} =
{X!X9}then PEVEV® iff forall [PI: g EL] O
ifft foral [PI:@gCL

T
iff Mg,/
_ S———
iff Mgl ,p/!

A.2 Hole Semantics

Lemma A.6 (Monotonicity)
Let (I C [bBe a USR andCPa set of constraints such that[(I;1JC [CPCik a USR. Then

(A.7) Lvs COC [CP [Os(O5OC D

Proof. Lett [I,s(00ELJC [CCPOIdue to an admissible pluggingp (such that p(OD=1).
Then, by de nition of admissibility, (C [CCP) [7J. HenceC [IJand pis an admissible
plugging for I L] C [LdThereforet [CLls(CIGLIC D1 O

Lemma A.7 (Independence of Meta-Variable Names)
H is independent of meta-variable names.
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Proof. Letu = [ LJC [be a USR and be a bijective mapping
(A.8) : Var(u) — V

from the variables in u to some set of variablesV. Let  be the extension of to USRs
which is de ned pointwise as follows:

. D _ _ E
(toco = (O:A(L); (©)

“thsh) = ()= ()

ForL and C, ~is de ned elementwise. Let t [L},s(u) due to an admissible plugging p
(ie. C [TJ). Then® "(p) is an admissible plugging for “(u) as " (C) T_Up) =/ ~y)-
Furthermore (k) = ..(p)( (k) for all k [Mar(u) and thust [yg( (u)). Similar
reasoning proves the other direction and henceLs(u) = Lys( (u)). O

Proposition A.8
LetI" be a set of functors andP L[] be a set of terms that cannot be licensed inH. Let
Cp be the set of well-formed constraints in =, /p . Then no setP%such that

(A.9) P PP [ (O50;Cp N
can be licensed inH.

Proof. For perspicuity, let us in the following abuse notation and write L.s(C) short
flgr Lys (0L ; C Difor sets of constraints C. As P PI° we obviously have Cpo [
opolp 1,5/, . Hence Cpo [CQOp. Due to the monotonicity of the licensing

relation (cf. Lemma A.6) it holds that L.s(Cp) [hs(C3). Now assume thatu® =
[I;11 ; C%Is a licenser of P2 According to the Form Criterion 4.17 it holds that C° 1
Cpo. This leads to the following contradiction:

(A.10) Lus(Cp) [Chs(Cpo) [Cus(CY = PO Cs(Cp)

Therefore the assumption was wrong andP° does not have a licenser. As it is obvious
from the contradiction, this reasoning works for all sets P (22} CLls(Cp). O

Yn ﬁ(p) the plugging function p is understood as relation, on which ﬁ is de ned pointwise. E.g. if

p(h) = I then B(p)(B(h)) = B()).
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A.3 Minimal Recursion Semantics

A.3.1 Basic De nitions

Scope-resolved MRS structuraee those MRS structures that correspond to trees/terms:
the outscope relation is actually a tree dominance relation (1. & 2.) and all EPs are
connected as all holes (including the top hole) occur as labés (3.). Further all constraints
have to be ful lled (4.).

De nition A.9 (Scope-Resolved MRS Structure)
An MRS structure LI EL C ik scope-resolveif

1. /e is a tree dominance relation with root [ 1

2. the argument handles in each EP are mutually different,

3. Lvar(E) = RVanE) {1}, hnd

4. every constrainth =4 | Qs either trivial (i.e. of the form | =4 I) or it holds that
h/geql.

Now we can make precise what it means for some MRS structure to 'led to' a scope-
resolved structure. The crucial relation here islink-subsumption(Copestake et al., 1999,
cf.) which orders the MRS structures according to their degree of expicitness about the
dominance of EPs. An MRSn structure link-subsumes another MRS structurem?Cif there
are one or more holes that have been identi ed with labels in m° (i.e. the dominance
has been made explicit) but not yet in m. The formal details of these concepts have not
been spelled out by Copestake et al. (1999). | propose to realiz this identi cation of
holes and labels viasimple substitutions

De nition A.10 (Substitution on Handles)
A substitution on an MRS structureldl; EL C [k a mapping

(A.11) - Var(E) [{I¥ - Var(E) ({11

Let us write as[hi= (h1);:::hn= (h,)] where we omit all pairs of the form hij=h;. A
substitution is called simpleif it is of the form [h=h9 (i.e. it renames exactly one handle).
On MRS structures, is de ned componentwise, i.e.

(A.12) LG EL C U= LADI(E); (©)Td

and pointwise on E and C.
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De nition A.11 (Link-Subsumption)
Letm and m®be MRS structures. Thenm link-subsumesn® (written as m CmP) iff there

(A.13) 1¢(n(m))--)=m°

Thus m link-subsumesmPif mC@is the result of consecutively replacing one handle inm
by some other handle (and thus getting rid of the rst one). Note that this de nition,
which is based on a series of simple substitutions guaranteeshat handles are indeed
identi ed and not just 'swapped' as it would be possible using a (non-simple) substitu-
tion [h=h% h%h].

De nition A.12 (Well-Formed MRS structure)
An MRS structure is well-formed iff it link-subsumes one or more scope-resolved MRS
structures.

A.3.2 Deriving the Form Criterion

Lemma A.13 (Monotonicity)
Let [IZEL C Che a well-formed MRS structure and C°be a set of constraints such that
[ Et C [CPk still a well-formed MRS structure. Then

(A.14) Lurs CELC [CP  [Mies OCELC O

Proof. Let t [Ilyrs((OGEEC CCP by virtue of some series of simple substitutions
1;::7; n. Letus write = ,9:::o |, for the composition of these simple substi-

tutions. Then (OLELC CCPYI= [{ O;1(E); (C) C(CYis scope-resolved. Hence
LI D;1(E); (C)F (LLELC Dlis scope-resolved and [Ll,rs(LIGEL C D O

Lemma A.14 (Independence of Meta-Variable Names)
M is independent of meta-variable names.

Proof. Let m = L EL C [be a well-formed MRS structure and a bijective mapping
(A.15) :Var(m) — V

from the variables in m to some set of variablesV. Let ~ be the extension of to MRS
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structures which is de ned componentwise, elementwise and asfollows:

~(I:f(h1;:':;hn)) = O):F(C (h);::; (hp)
“(h=ql) = (h)=q ()
Let t [CLyrs(m) due to a series of simple substitutions 1;:::; n such that
nCoo(1(M))-) = mPand (MY =t. Then? “(1);:::; (n)is a series of simple

substitutions such that

(A.16) (n) =+ (1) (m - ="(mH

where ~(m9) is scope-resolved and hence (m) is well-formed. Obviously, (" (m)) =t
and hence L yrs(m) EE],,RS(~(m)). The other direction follows from similar reasoning.
]

As it is mentioned in (Copestake et al., 1999), there are several pssibilities for iden-
tifying handles (and thus for simple substitutions, in my term s): equating two holes,

same EP then this EP would contain the same handle twice in (m). This cannot be
undone by further substitutions and therefore we could never arrive at a scope-resolved
MRS structures which demands all argument handles in one EP to be ifferent according
to De nition A.9.

If on the other hand k and k° are from different EPs with labels | and 12 then both

| and 19 will share the hole k®in (m). This means that the hole k° is dominated by
two distinct mother nodes in  (m). This again cannot be undone by further substitu-
tions and thus we could not arrive at any scope-resolved MRS struaire because the fact
that k® has to distinct mothers contradicts the requirement on the outsmpe relations of
being a tree dominance relation in De nition A.9. Thus the equati on of two holes by
a substitution necessarily leads to an MRS structure, which canot link-subsume any
scope-resolved MRS structure i.e. which is not well-formed. This i turn contradicts the

well-formedness of m and hence no such simple substitution can possibly participge in

the process of takingm to some scope-resolved MRS structure.

Furthermore equating two labels would form an EP conjunction. As| have set aside EP
conjunctions in this investigation, those simple substitution are ruled out as well. In

2pgain, B is de ned pointwise on simple substitutions, i.e. B([k/k%) = [B(K)/B(KO)].
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conclusion, only those simple substitutions will take one well-formed MRS structure to
another well-formed MRS structure, where one of the handles is a hde (without labeling

an EP) and the other a label (without occurring somewhere as a hok). Let us call the
former pure holes and the latter pure labels.

Now suppose thatm is a well-formed MRS structure, i.e. m link-subsumes one or more
scope-resolved MRS structuresn® By de nition, there is series of simple substitutions
1,10 nsuchthat (--( 1(m))---) =m® Let = ,°::: 1 be the composition of
those simple substitutions. Now recall that all simple subsitutions are of the form [h=l]
w.l.o.g.3, where h is a pure hole and | is a pure label. After application of one such
simple substitution, this hole and label are not available for further application of simple
substitutions as the hole has disappeared and the label is nopure any more. Therefore
the identi cation of pure holes with pure labels is uniquely de termined by the simple
substitutions and hence is bijective between the pure holes and the pure labels. On all
other handles is the identity. The bijective assignment of pure holes to purelabels of
is the MRS counterpart to the Hole Semantics pluggings from De nition 4.12. However,
in the case of Hole Semantics we did not have to bother about tle 'pureness’ of holes and
labels as they have been 'pure' by de nition because all holesand labels in some USR
had to be mutually distinct. Following Hole Semantics, let us call such a mapping, i.e. a
composition of simple substitutions which leads from some wdl-formed MRS structure
m to a scope-resolved MRS structure, alugging form.

Similar to Hole Semantics, let us de ne the relation of -dominanceE on handles for
some plugging for a set of EPSE as follows. k E  k®holds if

1. k=kO or

2. k:f(::;kG ) CH, or

3. (k)=k%or

4. there is ak%such thatk E k%and k%% K°.

So actually -dominance is just an extension of the outscope-relation onm, i.e. it holds
that /g [E Note that it is re exive due to point 1. This re exivity makes t he for-
mulation of the following comparison with the set of constrain ts straightforward*. The
following Lemma is a rst step towards a form criterion as it relates the set of constraints
C of a well-formed MRS structure m to the -dominance of a plugging that maps m to
a scope-resolved MRS structure.

3The simple substitution could as well be of the form [I/h], substituting the pure hole for the pure label.
However, by renaming | to h after the application of such a simple substitution we get the same result as
applying [h/1].

“4To distinguish 8-dominance in MRS from p-dominance in Hole Semantics | usedE vs. [ here the
indication of the equality in E should remind the reader of its re exivity.
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Lemma A.15
Let m = L EL C [(be a well-formed MRS and be a plugging for m. Then

(A.17) c LCEf*

Proof. Let h = | [0 be a constraint where h is a hole and | is a label. If h = |
then h E99 | due to the re exivity of E99. So suppose thath E I, let m® = (m)
and let E®be the set of EPs ofm® AsmCis scope-resolved, the image (h) =q (I) of
the constraint h =q | is ful lled in  m% By de nition of scope-resolvedness it holds that
either (h) =q () is trivial, i.e. (h) = (I). Then h and | have been pure holes and
labels, respectively, and (h) = (1) =1. Henceh E%9]. Or it holds that (h) outscopes

such thatli:f{(:::li+1 1) CEP(O<i<n—1)with (h)=Ilpand (I) =1, due to the
de nition of the outscope relation and the scope-resolvedness of m® Furthermore the f;
are all oating-scopal functors as the relation is gegrestricted.

Now let h; be those holes inm for which (hj) = 1; (0 <i = n). Thenh; E |; by
de nition. In addition, |i:f;(:::hj+1 :::) CElis the pre-image in m of the corresponding
EPIi:fiC::lisy ) CHO(O<i<n-—1). Thenl; E hs1 for0<i<n-—1. In
conclusion, inm itholdsthat h=hgE IgE hiE 11 E :::E hy=1. As all labelsl;
label EPs with oating-scopal functors, we have h E9%9] in m. O

Note that the re exivity of E enables us to treat trivial constraints of the form k =4 k
on a par with non-trivial ones. In Hole Semantics we did not need the re exivity of the
p-dominance relation as trivial constraints were not admitted.

Again, this result has a correspondence in Hole Semantics, namg the De nition 4.13
of admissibility. However, in MRS admissibility is built into De nition 4.24 of MRS
structures, as each MRS structure respects its constraints by de rtion. Therefore we
have to derive the Lemma above, instead of using it as a separatproperty of pluggings.

Due to this correspondence concerning the subset relation betwee plugging domi-

nances and the set of constraints we can proceed similarly to thavay we did in the case
of Hole Semantics. Restricting our investigation to sets(instead of multisets) of functors

I, we can again recur to a distinguished set of variables where themeta-variable names
show the corresponding functors of the EPs as superscripts. Given tree/term  of [I]

we can de ne a corresponding set of EPs

n (0}
(A.18) E = 1" nh) 0 o

which is identical to the set of labeled formulas L in (4.58). Note that in this set of
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EPs all holes and all labels are pure. Even more comfortably, we aa now reuse the
tree pluggings p of Hole Semantics, which have been de ned in De nition 4.16, as
pluggings in the MRS sense for the MRS structurelI; El ; [LI The plugging p is then
just the composition of the simple substitutions [h; p(h)] (h a hole) which maps [ E ; [T
to the scope-resolved MRS structure which corresponds to . Note that then E, is the
re exive dominance w.r.t. p as de ned above.

Lemma A.16

Let m be well-formed MRS structure with '(m) a set. Then (modulo renaming of vari-
ables) for every scope-resolved MRS structuren [CmPsuch that (m% = where isa
substitution with  (m) = m? it holds that

(A.19) E9%9 CEg*

Proof. Let E and E° be the set of EPs ofm and m® respectively. Then (E) = E°
Furthermore note that p (E ) = ECasp is such that it identi es each hole with a label
in E .

Now note that m is as well based onE with the difference, that some of the holes
may have been identi ed with labels already. In other words, th ere is a series of simple
substitutions which can be composed to a substitution such thatE = (E ). Then we
get the following equation

(A.20) (E) =E%=p (E)

Hence ¢ =p andE [EL . Note that ~ maps some (pure) holes ofE to some
(pure) labels and maps all remaining pure holes to the remaining pure labels such that
in E%all holes and labels have been identi ed. So each (pure) hole in E is directly
mapped to its label in ECby either  or (and not due to a consecutive application of
both).

Concerning the geg-restrictions, note that fromR [CRPwe cannot conclude R4¢4 [Rf!ed
in the general cas€. However, in this special context, things are different. It is enough
to note that for two labels | E 1°iff | E, 1% The 'only-if' direction is clear as E [E},
from above. For the 'if' direction suppose that| and [9are such thatl:f (:::h:::) CH
and p (h) =12 This means thatl E, 1°comes about because labels an EP with a hole,
in which 1%is plugged by p . Asp has been shown to be composed of and , one of
the following two cases obtains:

°For instance, for two handles kR%*?k® which are connected by somekRkiR ... Rk, Rk® such that the
corresponding functors are all oating scopal, R® may extend this sequence to.. . ki R%R%;.1 ... where k
is a handle such that the corresponding functor isnot oating scopal. Hence kR%®k° would not hold.
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1. (h)=1% Then (I:f(::h:::) =1:f(::1%::). This latter EP is in E and hence
I/ 1%°holds by de nition of -dominance.

2. () =1% Then!l:f(:::h:::)isin E and 1/ h/ 1%holds again by de nition of
-dominance.

The transitive case ofl Ep |%follows from this straightforwardly. Now we can conclude
that E9°9 Ef®*Y becauseE [E}, and both relations coincide on the labels, which is
the crucial point w.r.t. the de nition of the gegrestriction. O

This proposition, together with Lemma A.15 eventually gives us the following result

concerning the relation of the set of constraints of a well-formed MRS and its licensed
set.

Proposition A.17
Let m = L EL C [Cbe a well-formed MRS such thatl"(m) is a set. Then the following
holds (modulo the renaming of variables):

1.E = If:f(vyiii;vp) | £1 CT(m)

\ .
[flg [T /i

2L MRg(m)
3. If C%are the non-trivial constraints in C, then
\
clr / ed
2L MRs(m)

Proof. 1. Clear from the de nition of  and the fact that substitutions do not change
the set of functors occurring in an MRS structure.

2. Recall that each substitution does not change any label (It only pure holes).

in any scope-resolved MRS structurem®which is link-subsumed by m such that v,
is still of the form 19. Hence, by de nition of , it holds that f/ ' gfor (m%9 = .

3. Due to the Lemmata A.15 and A.16,C [EX9[EZfor each [Tlrs(m). Setting
aside trivial constraints, one may use the non-re exive version/ g%
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A.4 Comparing the Approaches

Proposition A.18
Letu be a USR ofH. Then Lys(u) = Lypc(WY).

Proof. Let [Il,s(u) be one of the terms licensed byu by virtue of an admissible
plugging p. For some holeh [CRVar(u) [T} 1kt dy, be that node in (the tree domain of)
which corresponds to h in the construction of by . Then

h3 dy h a hole in RVar(u)

(A.21) _
15 d, 1) | a label in LVar(u)

is an embedding for the NDC uY. Furthermore is a solution of uY, i.e. it holds that
= uY. The following proofs the case of satisfaction for dominanceliterals, the others
work similarly:

(A.22) E h/ 1 i (h)/ ()
iff dn/ dpo  wherep(h% =1

Aspis admissible,h < | [7}. By de nition of /, either p(h) = | and henceh = h®and
dh /' dno holds trivially. Or there is a k such thath/yk andk/p 1. Thenh/, h%and by
de nitionof , we havedy/ dno. As j uses exactly the occurring functors of the labeled
formulas, is a constructive solution. Hence [LThpc(u¥) and Lys(u) CLpc(uWY).

In the other direction, assume that [ Typc(uY) by virtue of an embedding . As is
a constructive solution, each label is mapped to one node of by . Furthermore, the
holes must be mapped to mutually distinct nodes. As the numbe of labels exceeds the
number of holes by one we can de ne the following plugging:

ol it (="

(A-23) P ho if (h)y= ()

Now p is an admissible plugging for u. To see this, suppose [ h/ | for some

dominance literal in u¥. Then (h)/ (). Then either (h) = (l) and hencep(h) = I

and thus h/, 1. Or there are labelsly;:::;ly such that (h) = (I1)/ 2/ (In)/
(). Then let In+1 = | and h; be those holes for which (hj) = (li+1) (0 <i < n).

Then p(hj) = li+1 and therefore hj /p li+1 (0 = i < n). Furthermore it follows that
li : f (:::hj:::) must be some labeling literal in uY for somef (because (li)/ (h;j))and
henceli /, hi (1 =i < n). Finally we getthat hg = h/,| = ly+1 and we can conclude

that p is admissible.
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Suppose thatl:f (:::) is a labeling literal in uY. Note that if (1) =", then (D=
f- :oandif (1) = (h),then p(h) =f- ::. Therefore we can conclude that ,( D=

. Hence [L}s(u)and Lypc(uY) CL)s(u). This nally shows that both representations
are equivalent, i.e. that we have Lys(u) = Lypc(WY). O

Proposition A.19
Let T = {f1; g% h!; x°} be a set of functors andS = {fghx;hfgx } be a set of terms
constructed out of these functors. ThenS cannot be licensed byH.

Proof. Assume that (I L] C [is a USR that licensesS. Again we can conclude thatL =
L isthe set of labeled formulas. Concerning the constraintsC, we need to compute the
intersection of the corresponding plugging dominances (where the numerical subscripts
on the holes have been dropped as all functors are unary anyway).

\
(A-24) lp = 1510 AP I MCIme; s Rt
2P

C11; Chl ; OEEcIGh?c) I Chaf  ORI9G]
If-hf o9 hoc 1M Rh

1719 : 17:h9 ; hf:19 : hf;n9

The well-formed constraints in the listing above have been underlined again. They form
the maximal set of constraints Cs which any licenser of S can possibly have.

(A25) Cs = h =1 hi<1Xh<1X =", =119, =21"; =% hf <19

Contrary to the cases before, not all the constraints inCg are vacuous w.r.t. the entire
set of terms. In fact, the constraint h’ < 19 imposes the non-trivial requirement that
f must dominate g in any licensed term. This can be seen at the following constrant
graph illustrating Cs.

172 £ (hf)
1P h(hhy

19:g(h9)
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Now it is easy to see that
(A.26) Lus(LIZLI Cs DJ= {fghx ; thgx ; hfgx }

becausel s([; L] Cs[tomprises all terms in which f dominates g. As C [Ck this
again yields a contradiction similar to the contradictions derived in the preceding sec-
tions.

(A.27) {fghx ; fhgx ; hfgx } = Lys(OCJ Cpoll CLs( CIJCO) = PO

Therefore there is no USR of Hole Semantics licensings. O

Proposition A.20
Let = {f%;g';h%;i1;j 1;x%} be a set of functors andT []I1] a set of terms as follows.

T ={ hfgijx hfigix ; hfijgx ; hifgjx ; hifigx ; hijfgx ;
ihfgjx ; ihfijgx ; ihjfgx ; ijhfgx ; ijfghx ; ifijghx ;
fijghx ; ifgjhx ; figihx ; fgijhx ; ifghjx ; fighjx ;
fgihjx ; fghijx ; hfgjix ; hfjgix ; hfjigx ; hjfgix ;
hjfigx ; hjifgx ; jhfgix ; jhfigx ; jhifgx ; jihfgx ;
jifghx ; jfighx ; fjighx ; jfgihx ; fjgihx ; fgjihx ;
jfghix ; fijghix ; fgjhix ; fghjix }

Then there is no NDC that licensesT .

Proof. Assume that' is an NDC such thatLysc(" ) = T. Along the lines of the argument
in Section 4.3, we need to compute the following intersections in order to make use of
the Form Criterion 4.7:

/_JI-_ = 2T/1 = 1]
1 S
81 = 7!t ={ fh;fx;df;hg;
ff ;gg; hhii ;jj
xfxg;xh;xi;xj }
1 T 1 e
1 = o1/ ={ fg;fx;gx;hx;ix;jx }

Let us investigate the literals which correspond to these intergctions according to the
Form Criterion 4.28. From the fact that /% is empty we can conclude that there are no
shared holes/labels, i.e. we can conclude that the set of labelng literals L is as follows
(where the subscript indices at the holes have been omitted as kfunctors are unary):

(A.28) I:£¢h")  19:gh%  1":hh™) i) D)
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Regarding dominance literals, the maximal setD determined by/% is:
(A.29) hf/7 19  hf/ X h9/ X W7 X h X hlX

The set of| of inequality literals of ' will contain at least the inequality literals to ful |
(N4) of the de nition of normality, which requires there to be an i nequality literal for
each pair of distinct labeled variables.

(A.30) g9 1fgih fgl
Additionally, the following inequality literals can occur i n | due to the form of 1.

(A.31) hf g | hf 2 ¥ hd g I hh & |9
hf gIf hd & |9 hh g |h h' g1 hi gl

We now have again® [ (Il 1) according to the Form Criterion 4.7. In order to

compute Lypc(L DI [T), observe that many of the literals above are vacuous w.r.t. the
trees in[I]. All inequality literals of the form hf £ If are trivially satis ed as no label can

equal its argument hole and all inequality literals of the form 1T & 19; f £ g are trivially

satis ed as two nodes must necessarily be distinct if they bea distinct labels. Finally,

all dominance literals of the form hf / |* are trivially satis ed as x is the only constant
in I and therefore necessarily has to be dominated by all other funcors. Therefore the
remaining non-vacuous literals are:

(A.32) LCh ei™mhsr;nhel’; hhel9; nf/ 19

Only these literals are decisive in the determination of Lypc(L [1). Note that by

construction each term in T satis es these literals. But unfortunately there are other

terms not in T which also satisfy these literals, namelyfihjgx and fjhigx , as can be
easily seen. In each of these two termsf dominates g, f is neither the mother of h, nor

is g the mother of f, nor is h the mother of g. Therefore (L [DI L) licenses a set larger
than T and we get the following contradiction using the monotonicit y Lemma A.1

(A.33) T Cfihjgx ;fihigx } = Lyoc(L LD Clkoc( ) =T

As with the incompleteness arguments before, this is an obvios contradiction and there-
fore our assumption must have been wrong: there is no NDC which liensesT. O

Note that among the literals in (A.32) there are indeed those which can be used to
'simulate’ the gegrestriction in simple cases (namelyh’ £ 1" and h" £ 19) as discussed
in Section 5.3. In the more complex case ofT however, they do not suf ce to simulate
the full expressive power of the gegconstraint.
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