
Principles and Implementation of

Deductive Parsing

Stuart M. Shieber
Division of Applied Sciences

Harvard University, Cambridge, MA 02138

Yves Schabes
Mitsubishi Electric Research Laboratories

Cambridge, MA 02139

Fernando C. N. Pereira
AT&T Bell Laboratories
Murray Hill, NJ 07974

February 10, 2001

Abstract

We present a system for generating parsers based directly on the
metaphor of parsing as deduction. Parsing algorithms can be represented
directly as deduction systems, and a single deduction engine can inter-
pret such deduction systems so as to implement the corresponding parser.
The method generalizes easily to parsers for augmented phrase structure
formalisms, such as definite-clause grammars and other logic grammar for-
malisms, and has been used for rapid prototyping of parsing algorithms
for a variety of formalisms including variants of tree-adjoining grammars,
categorial grammars, and lexicalized context-free grammars.

This paper is available from the Center for Research in Computing Technology, Di-

vision of Applied Sciences, Harvard University as Technical Report TR-11-94, and

through the Computation and Language e-print archive as cmp-lg/9404008.

1 Introduction

Parsing can be viewed as a deductive process that seeks to prove claims about
the grammatical status of a string from assumptions describing the grammatical
properties of the string’s elements and the linear order between them. Lambek’s
syntactic calculi (Lambek, 1958) comprise an early formalization of this idea,
which more recently was explored in relation to grammar formalisms based
on definite clauses (Colmerauer, 1978; Pereira and Warren, 1980; Pereira and
Warren, 1983) and on feature logics (Shieber, 1992; Rounds and Manaster-
Ramer, 1987; Carpenter, 1992).

The view of parsing as deduction adds two main new sources of insights and
techniques to the study of grammar formalisms and parsing:

1. Existing logics can be used as a basis for new grammar formalisms with
desirable representational or computational properties.

2. The modular separation of parsing into a logic of grammaticality claims
and a proof search procedure allows the investigation of a wide range of
parsing algorithms for existing grammar formalisms by selecting specific
classes of grammaticality claims and specific search procedures.

While most of the work on deductive parsing has been concerned with (1), we
will in this paper investigate (2), more specifically how to synthesize parsing
algorithms by combining specific logics of grammaticality claims with a fixed
search procedure. In this way, deduction can provide a metaphor for parsing
that encompasses a wide range of parsing algorithms for an assortment of gram-
matical formalisms. We flesh out this metaphor by presenting a series of parsing
algorithms literally as inference rules, and by providing a uniform deduction en-
gine, parameterized by such rules, that can be used to parse according to any
of the associated algorithms. The inference rules for each logic will be repre-
sented as unit clauses and the fixed deduction procedure, which we provide a
Prolog implementation of, will be a version of the usual bottom-up consequence
closure operator for definite clauses. As we will show, this method directly
yields dynamic-programming versions of standard top-down, bottom-up, and
mixed-direction (Earley) parsing procedures. In this, our method has similari-
ties with the use of pure bottom-up deduction to encode dynamic-programming
versions of definite-clause proof procedures in deductive databases (Bancilhon
and Ramakrishnan, 1988; Naughton and Ramakrishnan, 1991).

The program that we develop is especially useful for rapid prototyping of
and experimentation with new parsing algorithms, and was in fact developed for
that purpose. We have used it, for instance, in the development of algorithms
for parsing with tree-adjoining grammars, categorial grammars, and lexicalized
context-free grammars.

Many of the ideas that we present are not new. Some have been presented
before; others form part of the folk wisdom of the logic programming community.

1

However, the present work is to our knowledge the first to make the ideas
available explicitly in a single notation and with a clean implementation. In
addition, certain observations regarding efficient implementation may be novel
to this work.

The paper is organized as follows: After reviewing some basic logical and
grammatical notions and applying them to a simple example (Section 2), we
describe how the structure of a variety of parsing algorithms for context-free
grammars can be expressed as inference rules in specialized logics (Section 3).
Then, we extend the method for stating and implementing parsing algorithms
for formalisms other than context-free grammars (Section 4). Finally, we dis-
cuss how deduction should proceed for such logics, developing an agenda-based
deduction procedure implemented in Prolog that manifests the presented ideas
(Section 5).

2 Basic Notions

As introduced in Section 1, we see parsing as a deductive process in which
rules of inference are used to derive statements about the grammatical status
of strings from other such statements. Statements are represented by formulas
in a suitable formal language. The general form of a rule of inference is

A1 · · · Ak

B
〈side conditions on A1, . . . , Ak, B〉 .

The antecedents A1, . . . , Ak and the consequent B of the inference rule are for-
mula schemata, that is, they may contain syntactic metavariables to be instan-
tiated by appropriate terms when the rule is used. A grammatical deduction
system is defined by a set of rules of inference and a set of axioms given by
appropriate formula schemata.

Given a grammatical deduction system, a derivation of a formula B from
assumptions A1, . . . , Am is, as usual, a sequence of formulas S1, . . . , Sn such
that B = Sn, and each Si is either an axiom (one of the Aj) or there is a rule
of inference R and formulas Si1 , . . . , Sik with i1, . . . , ik < i such that for appro-
priate substitutions of terms for the metavariables in R, Si1 , . . . , Sik match the
antecedents of the rule, Si matches the consequent, and the rule’s side condi-
tions are satisfied. We write A1, . . . , Am ` B and say that B is a consequence
of A1, . . . , Am if such a derivation exists. If B is a consequence of the empty set
of assumptions, it is said to be derivable, in symbols ` B.

In our applications of this model, rules and axiom schemata may refer in
their side conditions to the rules of a particular grammar, and formulas may
refer to string positions in the fixed string to be parsed w = w1 · · ·wn. With
respect to the given string, goal formulas state that the string is grammatical
according to the given grammar. Then parsing the string corresponds to finding
a derivation witnessing a goal formula.

2

We will use standard notation for metavariables ranging over the objects
under discussion: n for the length of the object language string to be parsed;
A,B,C . . . for arbitrary formulas or symbols such as grammar nonterminals;
a, b, c, . . . for arbitrary terminal symbols; i, j, k, . . . for indices into various strings,
especially the string w; α, β, γ, . . . for strings or terminal and nonterminal sym-
bols. We will often use such notations leaving the type of the object implicit
in the notation chosen for it. Substrings will be notated elliptically as, e.g.,
wi · · ·wj for the i-th through j-th elements of w, inclusive. As is usual, we take
wi · · ·wj to be the empty string if i > j.

2.1 A First Example: CYK Parsing

As a simple example, the basic mechanism of the Cocke-Younger-Kasami (CYK)
context-free parsing algorithm (Kasami, 1965; Younger, 1967) for a context-free
grammar in Chomsky normal form can be easily represented as a grammatical
deduction system.

We assume that we are given a string w = w1 · · ·wn to be parsed and a
context-free grammar G = 〈N,Σ, P, S〉 , where N is the set of nonterminals
including the start symbol S, Σ is the set of terminal symbols, (V = N ∪ Σ is
the vocabulary of the grammar,) and P is the set of productions, each of the
form A→ α for A ∈ N and α ∈ V ∗. We will use the symbol ⇒ for immediate
derivation and

∗⇒ for its reflexive, transitive closure, the derivation relation. In
the case of a Chomsky-normal-form grammar, all productions are of the form
A→ B C or A→ a.

The items of the logic (as we will call parsing logic formulas from now on)
are of the form [A, i, j], and state that the nonterminal A derives the substring

between indices i and j in the string, that is, A
∗⇒ wi+1 · · ·wj . Sound axioms,

then, are grounded in the lexical items that occur in the string. For each
word wi+1 in the string and each rule A → wi+1, it is clear that the item
[A, i, i + 1] makes a true claim, so that such items can be taken as axiomatic.

Then whenever we know that B
∗⇒ wi+1 · · ·wj and C

∗⇒ wj+1 · · ·wk — as
asserted by items of the form [B, i, j] and [C, j, k] — where A → B C is a

production in the grammar, it is sound to conclude that C
∗⇒ wi+1 · · ·wk, and

therefore, the item [C, i, k] should be inferable. This argument can be codified
in a rule of inference:

[B, i, j] [C, j, k]
[A, i, k]

A→ B C

Using this rule of inference with the axioms, we can conclude that the string is
admitted by the grammar if an item of the form [S, 0, n] is deducible, since such

an item asserts that S
∗⇒ w1 · · ·wn = w. We think of this item as the goal item

to be proved.
In summary, the CYK deduction system (and all the deductive parsing sys-

tems we will define) can be specified with four components: a class of items; a

3

Item form: [A, i, j]

Axioms: [A, i, i+ 1] A→ wi+1

Goals: [S, 0, n]

Inference rules:
[B, i, j] [C, j, k]

[A, i, k]
A→ B C

Figure 1: The CYK deductive parsing system.

set of axioms; a set of inference rules; and a subclass of items, the goal items.
These are given in summary form in Figure 1.

This deduction system can be encoded straightforwardly by the following
logic program:

nt(A, I1, I) :-

word(I, W),

(A ---> [W]),

I1 is I - 1.

nt(A, I, K) :-

nt(B, I, J),

nt(C, J, K),

(A ---> [B, C]).

where A ---> [X1,. . .,Xm] is the encoding of a production A → X1 · · ·Xn

in the grammar and word(i,wi) holds for each input word wi in the string to
be parsed. A suitable bottom-up execution of this program, for example using
the semi-näıve bottom-up procedure (Naughton and Ramakrishnan, 1991) will
behave similarly to the CYK algorithm on the given grammar.

2.2 Proofs of Correctness

Rather than implement each deductive system like the CYK one as a separate
logic program, we will describe in Section 5 a meta-interpreter for logic programs
obtained from grammatical deduction systems. The meta-interpreter is just
a variant of the semi-näıve procedure specialized to programs implementing
grammatical deduction systems. We will show in Section 5 that our procedure
generates only items derivable from the axioms (soundness) and will enumerate
all the derivable items (completeness). Therefore, to show that a particular
parsing algorithm is correctly simulated by our meta-interpreter, we basically
need to show that the corresponding grammatical deduction system is also sound

4

and complete with respect to the intended interpretation of grammaticality
items. By sound here we mean that every derivable item represents a true
grammatical statement under the intended interpretation, and by complete we
mean that the item encoding every true grammatical statement is derivable.
(We also need to show that the grammatical deduction system is faithfully
represented by the corresponding logic program, but in general this will be
obvious by inspection.)

3 Deductive Parsing of Context-Free Grammars

We begin the presentation of parsing methods stated as deduction systems with
several standard methods for parsing context-free grammars. In what follows,
we assume that we are given a string w = w1 · · ·wn to be parsed along with a
context-free grammar G = 〈N,Σ, P, S〉.

3.1 Pure Top-Down Parsing (Recursive Descent)

The first full parsing algorithm for arbitrary context-free grammars that we
present from this logical perspective is recursive-descent parsing. Given a context-
free grammar G = 〈N,Σ, P, S〉, and a string w = w1 · · ·wn to be parsed, we
will consider a logic with items of the form [• β, j] where 0 ≤ j ≤ n. Such
an item asserts that the substring of the string w up to and including the j-th
element, when followed by the string of symbols β, forms a sentential form of
the language, that is, that S

∗⇒ w1 · · ·wjβ. Note that the dot in the item is
positioned just at the break point in the sentential form between the portion
that has been recognized (up through index j) and the part that has not (β).

Taking the set of such items to be the [propositional] formulas of the logic,
and taking the informal statement concluding the previous paragraph to provide
a denotation for the sentences,1 we can explore a proof theory for the logic. We
start with an axiom

[• S, 0] ,

which is sound because S
∗⇒ S trivially.

Note that two items of the form [•wj+1β, j] and [• β, j +1] make the same

claim, namely that S
∗⇒ w1 · · ·wjwj+1β. Thus, it is clearly sound to conclude

the latter from the former, yielding the inference rule:

[• wj+1β, j]
[• β, j + 1]

,

1A more formal statement of the semantics could be given, e.g., as

[[[• β, j]]] =

{
truth if S

∗⇒ w1 · · ·wjβ
falsity otherwise .

5

Item form: [• β, j]

Axioms: [• S, 0]

Goals: [• , n]

Inference rules:

Scanning
[• wj+1β, j]
[• β, j + 1]

Prediction
[•Bβ, j]
[• γβ, j] B → γ

Figure 2: The top-down recursive-descent deductive parsing system.

which we will call the scanning rule.
A similar argument shows the soundness of the prediction rule:

[•Bβ, j]
[• γβ, j] B → γ .

Finally, the item [• , n] makes the claim that S
∗⇒ w1 · · ·wn, that is, that the

string w is admitted by the grammar. Thus, if this goal item can be proved from
the axiom by the inference rules, then the string must be in the grammar. Such
a proof process would constitute a sound recognition algorithm. As it turns out,
the recognition algorithm that this logic of items specifies is a pure top-down
left-to-right regime, a recursive-descent algorithm. The four components of the
deduction system for top-down parsing — class of items, axioms, inference rules,
and goal items — are summarized in Figure 2.

To illustrate the operation of these inference rules for context-free parsing,
we will use the toy grammar of Figure 3. Given that grammar and the string

w1w2w3 = a program halts (1)

6

S → NP VP

NP → Det N OptRel

NP → PN

VP → TV NP

VP → IV

OptRel → RelPro VP

OptRel → ε

Det → a

N → program

PN → Terry

PN → Shrdlu

IV → halts

TV → writes

RelPro → that

Figure 3: An example context-free grammar.

we can construct the following derivation using the rules just given:

1 [• S, 0] axiom
2 [• NP VP, 0] predict from 1
3 [•Det N OptRel VP, 0] predict from 2
4 [• a N OptRel VP, 0] predict from 3
5 [•N OptRel VP, 1] scan from 4
6 [• program OptRel VP, 1] predict from 5
7 [•OptRel VP, 2] scan from 6
8 [• VP, 2] predict from 7
9 [• IV, 2] predict from 8

10 [• halts, 2] predict from 9
11 [• , 3] scan from 10

The last item is a goal item, showing that the given sentence is accepted by the
grammar of Figure 3.

The above derivation, as all the others we will show, contains just those items
that are strictly necessary to derive a goal item from the axiom. In general, a
complete search procedure, such as the one we describe in Section 5, generates
items that are either dead-ends or redundant for a proof of grammaticality. Fur-
thermore, with an ambiguous grammar there will be several essentially different
proofs of grammaticality, each corresponding to a different analysis of the input
string.

3.1.1 Proof of Completeness

We have shown informally above that the inference rules for top-down parsing
are sound, but for any such system we also need the guarantee of completeness:

7

if a string is admitted by the grammar, then for that string there is a derivation
of a goal item from the initial item.

In order to prove completeness, we prove the following lemma: If S
∗⇒

w1 · · ·wjγ is a leftmost derivation (where γ ∈ V ∗), then the item [• γ, j] is
generated. We must prove all possible instances of this lemma. Any specific
instance can be characterized by specifying the string γ and the integer j, since
S and w1 · · ·wj are fixed. We shall denote such an instance by 〈γ, j〉. The proof
will turn on ranking the various instances and proving the result by induction
on the rank. The rank of the instance 〈γ, j〉 is computed as the sum of j and

the length of a shortest leftmost derivation of S
∗⇒ w1 · · ·wjγ.

If the rank is zero, then j = 0 and γ = S. Then, we need to show that [•S, 0]
is generated, which is the case since it is an axiom of the top-down deduction
system.

For the inductive step, let 〈γ, j〉 be an instance of the lemma of some rank
r > 0, and assume that the lemma is true for all instances of smaller rank. Two
cases arise.

Case 1: S
∗⇒ w1 · · ·wjγ in one step. Therefore, S → w1 · · ·wjγ is a rule of the

grammar. However, since [• S, 0] is an axiom, by one application of the
prediction rule (predicting the rule S → w1 · · ·wjγ) and j applications of
the scanning rule, the item [• γ, j] will be generated.

Case 2: S
∗⇒ w1 · · ·wjγ in more than one step. Let us assume therefore

that S
∗⇒ w1 · · ·wj−kBγ′ ⇒ w1 · · ·wjβγ

′ where γ = βγ′ and B →
wj−k+1 · · ·wjβ. The instance 〈Bγ′, j− k〉 has a strictly smaller rank than
〈γ, j〉. Therefore, by the induction hypothesis, the item [•Bγ′, j − k] will
be generated. But then, by prediction, the item [• wj−k+1 · · ·wjβ, j − k]
will be generated and by k applications of the scanning rule, the item
[•B, j] will be generated.

This concludes the proof of the lemma. Completeness of the parser follows
as a corollary of the lemma since if S

∗⇒ w1 · · ·wn, then by the lemma the item
[•, n] will be generated.

Completeness proofs for the remaining parsing logics discussed in this paper
could be provided in a similar way by relating an appropriate notion of normal-
form derivation for the grammar formalism under consideration to the item
invariants.

3.2 Pure Bottom-Up Parsing (Shift-Reduce)

A pure bottom-up algorithm can be specified by such a deduction system as
well. Here, the items will have the form [α • , j]. Such an item asserts the dual

of the assertion made by the top-down items, that αwj+1 · · ·wn
∗⇒ w1 · · ·wn (or,

equivalently but less transparently dual, that α
∗⇒ w1 · · ·wj). The algorithm is

8

Item form: [α • , j]

Axioms: [• , 0]

Goals: [S • , n]

Inference Rules:

Shift
[α • , j]

[αwj+1 • , j + 1]

Reduce
[αγ • , j]
[αB • , j] B → γ

Figure 4: The bottom-up shift-reduce deductive parsing system.

then characterized by the deduction system shown in Figure 4. The algorithm
mimics the operation of a nondeterministic shift-reduce parsing mechanism,
where the string of symbols preceding the dot corresponds to the current parse
stack, and the substring starting at the index j corresponds to the as yet unread
input.

The soundness of the inference rules in Figure 4 is easy to see. The an-
tecedent of the shift rule claims that αwj+1 · · ·wn

∗⇒ w1 · · ·wn, but that is also

what the consequent claims. For the reduce rule, if αγwj+1 · · ·wn
∗⇒ w1 · · ·wn

and B → γ, then by definition of
∗⇒ we also have αBwj+1 · · ·wn

∗⇒ w1 · · ·wn.
As for completeness, it can be proved by induction on the steps of a reversed
rightmost context-free derivation in a way very similar to the completeness proof
of the last section.

The following derivation shows the operation of the bottom-up rules on
example sentence (1):

1 [• , 0] axiom
2 [a • , 1] shift from 1
3 [Det • , 1] reduce from 2
4 [Det program • , 2] shift from 3
5 [Det N • , 2] reduce from 4
6 [Det N OptRel • , 2] reduce from 5
7 [NP • , 2] reduce from 6
8 [NP halts • , 3] shift from 7
9 [NP IV • , 3] reduce from 8

10 [NP VP • , 3] reduce from 9
11 [S • , 3] reduce from 10

The last item is a goal item, which shows that the sentence is parsable according

9

to the grammar.

3.3 Earley’s Algorithm

Stating the algorithms in this way points up the duality of recursive-descent
and shift-reduce parsing in a way that traditional presentations do not. The
summary presentation in Figure 5 may further illuminate the various interrela-
tionships. As we will see, Earley’s algorithm (Earley, 1970) can then be seen as
the natural combination of these two algorithms.

In recursive-descent parsing, we keep a partial sentential form for the mate-
rial yet to be parsed, using the dot at the beginning of the string of symbols to
remind us that these symbols come after the point that we have reached in the
recognition process. In shift-reduce parsing, we keep a partial sentential form for
the material that has already been parsed, placing a dot at the end of the string
to remind us that these symbols come before the point that we have reached
in the recognition process. In Earley’s algorithm we keep both of these partial
sentential forms, with the dot marking the point somewhere in the middle where
recognition has reached. The dot thus changes from a mnemonic to a necessary
role. In addition, Earley’s algorithm localizes the piece of sentential form that is
being tracked to that introduced by a single production. (Because the first two
parsers do not limit the information stored in an item to only local information,
they are not practical algorithms as stated. Rather some scheme for sharing the
information among items would be necessary to make them tractable.)

The items of Earley’s algorithm are thus of the form [i, A→ α • β, j] where
α and β are strings in V ∗ and A→ αβ is a production of the grammar. As was
the case for the previous two algorithms, the j index provides the position in the
string that recognition has reached, and the dot position marks that point in
the partial sentential form. In these items, however, an extra index i marks the
starting position of the partial sentential form, as we have localized attention
to a single production. In summary, an item of the form [i, A → α • β, j]
makes the top-down claim that S

∗⇒ w1 · · ·wiAγ, and the bottom-up claim that
αwj+1 · · ·wn

∗⇒ wi+1 · · ·wn. The two claims are connected by the fact that
A→ αβ is a production in the grammar.

The algorithm itself is captured by the specification found in Figure 5. Proofs
of soundness and completeness are somewhat more complex than those for the
pure top-down and bottom-up cases shown above, and are directly related to
the corresponding proofs for Earley’s original algorithm (Earley, 1970).

The following derivation, again for sentence (1), illustrates the operation of

10

Algorithm Bottom-Up Top-Down Earley’s

Item form [α • , j] [• β, j] [i, A→ α • β, j]

Invariant S
∗⇒ w1 · · ·wjβ S

∗⇒ w1 · · ·wiAγ

αwj+1 · · ·wn
∗⇒ w1 · · ·wn αwj+1 · · ·wn

∗⇒ wi+1 · · ·wn

Axioms [• , 0] [• S, 0] [0, S′ → • S, 0]

Goals [S • , n] [• , n] [0, S′ → S • , n]

Scanning
[α • , j]

[αwj+1 • , j + 1]
[• wj+1β, j]
[• β, j + 1]

[i, A→ α • wj+1β, j]
[i, A→ αwj+1 • β, j + 1]

Prediction
[•Bβ, j]
[• γβ, j] B → γ

[i, A→ α •Bβ, j]
[j, B → • γ, j] B → γ

Completion
[αγ • , j]
[αB • , j] B → γ

[i, A→ α •Bβ, k] [k,B → γ • , j]
[i, A→ αB • β, j]

F
ig
u
re

5
:
S
u
m
m
a
ry

o
f
p
a
rsin

g
a
lg
o
rith

m
s
p
resen

ted
a
s
d
ed
u
ctiv

e
p
a
rsin

g
sy
s-

tem
s.

(In
th
e
a
x
io
m
s
a
n
d
g
o
a
l
item

s
o
f
E
a
rley

’s
a
lg
o
rith

m
,
S
′
serv

es
a
s
a
n
ew

n
o
n
term

in
a
l
n
o
t
in

N
.)

1
1

the Earley inference rules:

1 [0, S′ → • S, 0] axiom
2 [0, S → • NP VP, 0] predict from 1
3 [0,NP→ •Det N OptRel, 0] predict from 2
4 [0,Det→ • a, 0] predict from 3
5 [0,Det→ a • , 1] scan from 4
6 [0,NP→ Det •N OptRel, 1] complete from 3 and 5
7 [1, N → • program, 1] predict from 6
8 [1, N → program • , 2] scan from 7
9 [0,NP→ Det N •OptRel, 2] complete from 6 and 8

10 [2,OptRel→ • , 2] predict from 9
11 [0,NP→ Det N OptRel • , 2] complete from 9 and 10
12 [0, S → NP • VP, 2] complete from 2 and 11
13 [2,VP→ • IV, 2] predict from 12
14 [2, IV→ • halts, 2] predict from 13
15 [2, IV→ halts • , 3] scan from 14
16 [2,VP→ IV • , 3] complete from 13 and 15
17 [0, S → NP VP • , 3] complete from 12 and 16
18 [0, S′ → S • , 3] complete from 1 and 17

The last item is again a goal item, so we have an Earley derivation of the
grammaticality of the given sentence.

4 Deductive Parsing for Other Formalisms

The methods (and implementation) that we developed have also been used for
rapid prototyping and experimentation with parsing algorithms for grammatical
frameworks other than context-free grammars. They can be naturally extended
to handle augmented phrase-structure formalisms such as logic grammar and
constraint-based formalisms. They have been used in the development and
testing of algorithms for parsing categorial grammars, tree-adjoining grammars,
and lexicalized context-free grammars. In this section, we discuss these and
other extensions.

4.1 Augmented Phrase-Structure Formalisms

It is straightforward to see that the three deduction systems just presented
can be extended to constraint-based grammar formalisms with a context-free
backbone. The basis for this extension goes back to metamorphosis grammars
(Colmerauer, 1978) and definite-clause grammars (DCG) (Pereira and Warren,
1980). In those formalisms, grammar symbols are first-order terms, which can
be understood as abbreviations for the sets of all their ground instances. Then

12

an inference rule can also be seen as an abbreviation for all of its ground in-
stances, with the metagrammatical variables in the rule consistently instantiated
to ground terms. Computationally, however, such instances are generated lazily
by accumulating the consistency requirements for the instantiation of inference
rules as a conjunction of equality constraints and maintaining that conjunction
in normal form — sets of variable substitutions — by unification. (This is di-
rectly related to the use of unification to avoid “guessing” instances in the rules
of existential generalization and universal instantiation in a natural-deduction
presentation of first-order logic).

We can move beyond first-order terms to general constraint-based grammar
formalisms (Shieber, 1992; Carpenter, 1992) by taking the above constraint
interpretation of inference rules as basic. More explicitly, a rule such as Earley
completion

[i, A→ α •Bβ, k] [k,B → γ • , j]
[i, A→ αB • β, j]

is interpreted as shorthand for the constrained rule:

[i, A→ α •Bβ, k] [k,B′ → γ • , j]
[i, A′ → αB′′ • β, j] A = A′ and B = B′ and B = B′′

When such a rule is applied, the three constraints it depends on are conjoined
with the constraints for the current derivation. In the particular case of first-
order terms and antecedent-to-consequent rule application, completion can be
given more explicitly as

[i, A→ α •Bβ, k] [k,B′ → γ • , j]
[i, σ(A→ αB • β), j] σ = mgu(B,B′) .

where mgu(B,B′) is the most general unifier of the terms B and B′. This is the
interpretation implemented by the deduction procedure described in the next
section.

The move to constraint-based formalisms raises termination problems in
proof construction that did not arise in the context-free case. In the general
case, this is inevitable, because a formalism like DCG (Pereira and Warren,
1980) or PATR-II (Shieber, 1985a) has Turing-machine power. However, even if
constraints are imposed on the context-free backbone of the grammar produc-
tions to guarantee decidability, such as offline parsability (Bresnan and Kaplan,
1982; Pereira and Warren, 1983; Shieber, 1992), the prediction rules for the
top-down and Earley systems are problematic. The difficulty is that prediction
can feed on its own results to build unboundedly large items. For example,
consider the DCG

s→ r(0, N)
r(X,N)→ r(s(X), N) b
r(N,N)→ a

13

It is clear that this grammar accepts strings of the form abn with the variable
N being instantiated to the unary (successor) representation of n. It is also
clear that the bottom-up inference rules will have no difficulty in deriving the
analysis of any input string. However, Earley prediction from the item [0, s →
• r(0, N), 0] will generate an infinite succession of items:

[0, s→ • r(0, N), 0]
[0, r(0, N)→ • r(s(0), N) b, 0]
[0, r(s(0), N)→ • r(s(s(0)), N) b, 0]
[0, r(s(s(0)), N)→ • r(s(s(s(0))), N) b, 0]
· · ·

This problem can be solved in the case of the Earley inference rules by ob-
serving that prediction is just used to narrow the number of items to be con-
sidered by scanning and completion, by maintaining the top-down invariant
S

∗⇒ w1 · · ·wiAγ. But this invariant is not required for soundness or complete-
ness, since the bottom-up invariant is sufficient to guarantee that items represent
well-formed substrings of the input. The only purpose of the top-down invariant
is to minimize the number of completions that are actually attempted. Thus the
only indispensable role of prediction is to make available appropriate instances
of the grammar productions. Therefore, any relaxation of prediction that makes
available items of which all the items predicted by the original prediction rule are
instances will not affect soundness or completeness of the rules. More precisely,
it must be the case that any item [i, B → • γ, i] that the original prediction
rule would create is an instance of some item [i, B′ → • γ′, i] created by the
relaxed prediction rule. A relaxed prediction rule will create no more items than
the original predictor, and in fact may create far fewer. In particular, repeated
prediction may terminate in cases like the one described above. For example, if
the prediction rule applied to [i, A→ α •B′β, j] yields [i, σ(B → • γ), i] where
σ = mgu(B,B′), a relaxed prediction rule might yield [i, σ′(B → • γ), i], where
σ′ is a less specific substitution than σ chosen so that only a finite number of
instances of [i, B → • γ, i] are ever generated. A similar notion for general
constraint grammars is called restriction (Shieber, 1985b; Shieber, 1992), and
a related technique has been used in partial evaluation of logic programs (Sato
and Tamaki, 1984).

The problem with the DCG above can be seen as following from the compu-
tation of derivation-specific information in the arguments to the nonterminals.
However, applications frequently require construction of the derivation for a
string (or similar information), perhaps for the purpose of further processing.
It is simple enough to augment the inference rules to include with each item a
derivation. For the Earley deduction system, the items would include a fourth
component whose value is a sequence of derivation trees, nodes labeled by pro-
ductions of the grammar, one derivation tree for each element of the right-hand
side of the item before the dot. The inference rules would be modified as shown
in Figure 6. The system makes use of a function tree that takes a node label l

14

Item form: [i, Aα • β, j,D]

Axioms: [0, S′ → • S, 0, 〈〉]

Goals: [0, S′ → S • , n,D]

Inference rules:

Scanning
[i, A→ α • wj+1β, j,D]

[i, A→ αwj+1 • β, j + 1, D]

Prediction
[i, A→ α •Bβ, j,D]
[j, B → • γ, j, 〈〉] B → γ

Completion
[i, A→ α •Bβ, k,D1] [k,B → γ • , j,D2]
[i, A→ αB • β, j,D1 ∪ tree(B → γ,D2)]

Figure 6: The Earley deductive parsing system modified to generate derivation
trees.

(a production in the grammar) and a sequence of derivation trees D and forms
a tree whose root is labeled by l and whose children are the trees in D in order.

Of course, use of such rules makes the caching of lemmas essentially useless,
as lemmas derived in different ways are never identical. Appropriate methods
of implementation that circumvent this problem are discussed in Section 5.4.

4.2 Combinatory Categorial Grammars

A combinatory categorial grammar (Ades and Steedman, 1982) consists of two
parts: (1) a lexicon that maps words to sets of categories; (2) rules for combining
categories into other categories.

Categories are built from atomic categories and two binary operators: for-
ward slash (/) and backward slash (\). Informally speaking, words having cate-
gories of the form X/Y , X\Y , (W/X)/Y etc. are to be thought of as functions
over Y ’s. Thus the category S\NP of intransitive verbs should be interpreted as
a function from noun phrases (NP) to sentences (S). In addition, the direction
of the slash (forward as in X/Y or backward as in X\Y) specifies where the
argument must be found, immediately to the right for / or immediately to the
left for \.

For example, a CCG lexicon may assign the category S\NP to an intransitive
verb (as the word sleeps). S\NP identifies the word (sleeps) as combining with a
(subject) noun phrase (NP) to yield a sentence (S). The back slash (\) indicates
that the subject must be found immediately to the left of the verb. The forward

15

