Using the Prolog Graphical Tracer

Chris Mellish,
Division of Informatics,
University of Edinburgh

November 20, 2000

Abstract

This document describes the graphical tracer used in AIl Prolog - what it does,
how it models the flow of control in Prolog and how to use it. Note that there are
pictures in this document which do not come out in the web version.

1 What the Tracer is

Normally when you present a goal to Prolog you get little information about what is going
on whilst it is being processed. This is all right when the program is working as expected or
when you are a Prolog expert, but it does not help you to develop an intuition for the flow
of control in Prolog execution. Sicstus Prolog provides some good tracing facilities, but
these only show a local snapshot of what is going on. These are meant primarily to help
experts debug complex programs, rather than for learners to use on simple programs. The
graphical tracer is an attempt to show what is going on using a simple graphical display
which is updated as the program runs. The following shows an example of the display:

TRY CLAUSE 1
] -
Al
member(_66,ja,b,c]) |
Lz
member{_&&,[b.c])
L)~
£
P~ =

At the top of the window is a message (here “TRY CLAUSE 1”) summarising the current
state of the program and what it is doing. At the bottom is a large area including a picture
representing the complete state of the program. In the middle are four coloured buttons.
The tracer runs by “single stepping” through the execution, i.e. redisplaying the program
state after small steps. You click on the buttons (usually the green one marked “CREEP”)
to make the program progress from one step to the next.

2 Displaying the Execution State

This section explains the model of Prolog execution which is reflected in the display pro-
duced by the tracer. This corresponds closely to the model described in Clocksin and
Mellish sections 2.6 and 8.3.

The basic convention of the display is that there is a line, more or less continuously
extending from the top to an intermediate point at which there is an arrow. The items
above the arrow represent goals which are currently in the middle of being attempted
and goals which have already been satisfied. The items below the arrow represent goals
which have not yet been attempted, but which need to be satisfied in order for the current
attempt to succeed. If the arrow points downwards, then the system is about to move on
to new goals, whereas if it points upwards then it is about to backtrack to previous choices
because a failure has occurred. The indentation of the goals indicates where they came
from - when a goal is matched against a clause, the introduced subgoals are indented one
position to the right from the original goal. Numbers written between parentheses indicate
a clause that has been chosen to satisfy the goal appearing immediately above. The clauses
for a predicate are numbered from 1 upwards, in the order in which they are written in
the program. Goals are displayed as if by the Prolog write predicate. This means that
uninstantiated variables appear as numbers preceded by underscores. If two such numbers
are the same, then this indicates that the two variables currently share (when one becomes
instantiated to a value, the other one will follow).

For example, in the example above, the original query was something like:

?- member (X, [a,b,c]) .

The original query is shown in the top line of the main graphic. The second clause for
member was chosen and this introduced a subgoal (indented one to the right) of the form
member (X, [b,c]). The first arguments in the two goals share. The first clause is being
tried for the subgoal. If it matches, then new subsubgoals will appear below the arrow.
Clicking on the “CREEP” button will result in the next program state being shown.

The program pauses at the four “ports” corresponding to the “box model” of Prolog
execution. These announce events of CALL, EXIT, REDO and FAIL which may occur
with respect to a goal. The current event is displayed in the message above the buttons.
An extra event, corresponding to the trying of a clause, is also shown. This is not part of
the “box model”, but it is useful to see the program pause at these points.

These five “ports” will now be described in more detail, with an example of the display
for each.

2.1 CALL

A CALL event occurs when the system moves on to the next unattempted goal. The arrow
is shown moving downwards, just above the goal that is about to be attempted:

CALL member(_E&,[h,c])
peneeey] (s | | IS I

member{_66,[a,b,c]) _|

L(z)
member{_b6,[b.c])

£
= -

In the example, the system is just about to attempt the subgoal for member (X, [b,c]). If
the predicate has clauses, it will next move on to try them in turn. Otherwise, it will move
to FAIL.

2.2 Trying a Clause

The clauses for a predicate are tried in turn. The tracer pauses as each one is considered.

TRY CLAUSE 2
st || e | T O
Al
member{_66,[a,b,c]) _|
Lz)+
member{_b6,[b.c])
Liz)~
£
S L

In the example, the second clause is being considered. If the head of the clause actually
matches the goal, then next any effects of the matching on variables will be shown and
the subgoals introduced by the clause will be displayed. If there are no subgoals, then the
system will move to EXIT the goal; otherwise it will move to CALL the first subgoal. If
the head of the clause does not match, the system will move to try the next clause. If it
runs out of clauses, it will move to FAIL the goal.

2.3 EXIT

When a goal has matched the head of a clause and all the subgoals have been satisfied,
the goal EXITs. The line moves out to the level of indentation corresponding to the goal
and starts moving downwards (towards the next goal, if there is one).

EXIT member{c,[b,c])
CHEEPl | HETH‘.’l FAIL -

member(c,fab.c]) |
Lez)q

member{c,[h,c])

Lez)4

member{c,[c])

f

P~ =

In the example, the goal member (X, [b,c]) has succeeded with X=c. Next the system will
move to CALL the next outstanding goal if there is one. If not (as in this example), it will
indicate an EXIT of the goal that invoked this one (here, member (X, [a,b,c])).

2.4 REDO

A REDO occurs for a goal when it has already succeeded once but some later goal then
failed. Backtracking now takes place, to see if there is an alternative way of satisfying this
goal.

REDO member(c,[b.c])

g | e | T

member(c,fab.c]) |
Lz
member{c,[h,c])
Lez)4
member{c,[c])
L1y
/£
P~ =

In the example, a failure has occurred through the user asking for an alternative solution
for the original query. The arrow is now pointing upwards. If there are subgoals, the system
will next move to REDO them in turn. You can think of the line retreating upwards along
the path it has come. When it comes to a place indicating the choice of a clause, it will
undo the effects of the clause choice (variable bindings and introduced subgoals) and move
to try the subsequent clauses. If one matches, it will start to move forward again; otherwise
it will have to retreat further.

2.5 FAIL

A FAIL occurs when a goal has tried all possibilities and none of them led to a successful
solution. The system will continue backtracking.

FAIL member({_&6,[h,c])
e [e | I I

member(_66,ja,b,c]) |

L(2)
1nemher(_ﬁﬁ,[h,[:])

£
P~ =

In the example, all possibilities for the subgoal member (X, [b,c]) have been tried. Back-
tracking must now see whether there are alternative clauses that could be used for the
original goal.

3 How to Run the Tracer

To run the tracer, copy the file .sicstusrc into your home directory:
% cp “ailteach/prolog/.sicstusrc ~

Having this file will mean that the tracer code is always loaded when you run Prolog. If
for some reason at a later point you want to run Prolog without having the tracer code
present (and without some of the effects that it has — see below), then you can simply do:

% rm ~/.sicstusrc

to return to the standard setup.
To trace the execution of a goal, precede the normal query with a ? sign, for instance:

?- ?member (X, [a,b,c]).

This will then create a window for the tracer (if you haven’t already created one) and start
running your query. You may need to adjust the position of the window on the screen so
that you can see both it and the window that you are using to type into Prolog. You may
also need to resize or scroll within the window in order to see everything.

Once your query is running, you make the execution progress by clicking on the buttons.
Initially just use the CREEP button, to simulate what would happen in a normal Prolog
execution, step by step. When the system comes to EXIT or FAIL the original goal (and
you have clicked to move on), it displays any solutions in your original window and asks
you whether you want other solutions, in the normal way. It only makes sense to click on
the buttons whilst your query is actually being executed, not when you are being prompted
for something from the keyboard.

4 More Complex Facilities

The other buttons allow you to alter the flow of control in ways similar to those permitted
by the Sicstus tracing mechanism. They are not all applicable at all ports.

SKIP allows you to avoid seeing the details of the execution of a given goal and for the
system to run until that goal either EXITs or FAILs.

RETRY allows you to go right back to the start of satisfying a goal and try it again (for
instance, so that you can look at it in more detail).

FAIL causes the current goal immediately to FAIL.

ABORT causes the current execution to be aborted.

The tracer can display information in two different sizes, large and small. Small is the
default, and is what you would use for normal screen use. Large would be appropriate
if you wanted to project the display onto a larger screen, for instance for a lecture. The
predicates tc1_SMALL and tcl_LARGE (neither of which takes arguments) can be used to
adjust the size for future tracings.

5 Things to look out for

The execution of system predicates is shown as if you had chosen to “skip” them. The
tracer will not work properly with programs using disjunction or other meta-predicates,
or with programs that use multiple modules. Actually it will “skip” the execution of
meta-predicates, not treating any embedded cuts properly.

If you click on the buttons more than is needed, the clicks may be stored up and the
appropriate actions then invoked whenever the system next needs an action to be selected.
This may produce strange behaviour. The best thing is to watch out for when control
returns to the keyboard and then not click any more.

For more advanced Prolog users: The tracer code uses the Prolog term expansion
capability to ensure that all predicates are dynamic. This works with DCGs, but will not
work if you have your own term_expansion definitions. Having all predicates be dynamic
means that normal execution will not be as fast as without and that certain operations
(e.g. retracting clauses) that would normally produce errors don’t.

6 Limitations and Possible Extensions

There are many aspects of Prolog execution that are not covered, e.g. meta-predicates,
constraints, blocking. The display of variable names often ends up with long numbers,
and this could be made more user-friendly. Spypoints and other control options based on
Sicstus tracing could be introduced. Modules and multiple files could be handled properly.

Extra facilities that could be useful might be rerunning the last step and showing unifi-
cation in detail. Colour could be used more productively and scrolling could be automatic.
The graphical notation was originally designed with a more tty-oriented display in mind,
and it could not be liberated from these constraints. There could be a more elegant way
of dealing with different sizes.

