
Introduction to symbolic CL (684.01) Detmar Meurers OSU Linguistics Winter 2001

Exercise sheet 1

(Due: Wednesday, 11. January at noon in my mailbox)

1. Consider the following finite-state machine:

- (a) Which of the following sequences does it accept? (1) ab (2) ca (3) cb (4) cabbb (5) ababa (6) bacb (7) cabcb (8) ababcbc
- (b) Write a regular expression which characterises the same language as this network.
- 2. Draw an FSTN that will recognize well-formed English number names for example, *five hundred*, *four thousand seven hundred and one*, etc.
- 3. Devise an FSM which characterises the same language as the regular expression:

(a|(bab))*(b|a)

4. Consider the following transition table, where " ϵ " denotes an empty transition):

	a	b	с	d	е	ϵ
S0.	S1					
S1		S2		S1		S3
S2			S3			
S3					S4:	
S4:						

- (a) Draw it as an FSTN.
- (b) Draw an equivalent FSTN without any empty transitions.
- (c) If the ϵ -free FSTN you obtained in (b) is non-deterministic, draw an equivalent deterministic one.