Finite state machines and **Regular expressions** regular languages A regular expression (RE) is a description of a set of strings, a language. • Notations: • can be used to search for occurrences of these • Regular expressions • Finite state transition networks strings • Finite state transition tables • used in a variety of tools: grep, editors, corpus search tools (cqp), . . . • Finite state machines and regular languages • Just like any other formalism, REs have no linguistic • Definitions contents as such. But they can well be used to refer • Some properties to units of morphological or phonological relevance. • Finite state transducers 1 2 Some linguistically informed uses Basic regular expressions (1) • Determine the language of the following utterance: Regular expressions consist of French or Polish? • strings of characters (case sensitive!): Czy pasazer jadacy do Warszawy moze c, natural language, 100 years! jechac przez Londyn? • disjunction: \Rightarrow Knowledge of morphologically/phonologically • ordinary disjunction: | possible sequences of letters can be used for this devoured|ate, famil(y|ies) task. • character classes: • Look up the following words in the dictionary: [Tt]he, bec[oa]me • ranges: laughs, became, unidentifiable, That cherization[A-Z] for a capital letters \Rightarrow Knowledge of morphological composition needed. • negation: ^ as first letter after [[^a] any symbol but a [^A-Z] not an uppercase letter

3

4

Basic regular expressions (2) **Regular languages** How can the class of regular languages which is counters specified by regular expressions be characterized? • optionality: ? Let Σ be the set of all symbols of the language (the colou?r • any number of occurrences: * (Kleene star) alphabet), then: [0-9] * years • at least one occurrence: + 1. {} is a regular language \$ [0-9]+ • wildcard for any character: . 2. $\forall a \in \Sigma$: $\{a\}$ is a regular language beg.n for any character in between beg and n 3. If L_1 and L_2 are regular languages, so are: Operator precedence, from highest to lowest: (a) the concatenation of L_1 and L_2 : $L_1 \cdot L_2 = \{ xy | x \in L_1, y \in L_2 \}$ parenthesis () (b) the union (or disjunction) of L_1 and L_2 : counters * + ? $L_1 \cup L_2$ (c) the Kleene closure of L_1 : character sequences L_i^* disjunction | 5 6 Finite state machines Finite state automaton Finite state machines (FSM), also called finite A finite state automaton is a quintuple state automata (FSA) can recognize or generate (Q, Σ, E, S, F) with regular languages, such as those specified by regular expressions. • Q a finite set of states • Σ a finite set of symbols, the alphabet Example: • $S \subseteq Q$ the set of start states • Regular expression: colou?r • $F \subseteq Q$ the set of final states • Finite state machine: • *E* a set of edges $Q \times (\Sigma \cup \{\epsilon\}) \times Q$ A transition function d can be defined as <u>c</u> <u>o</u> <u>(5)</u> $d(q,a) = \{q' \in Q | \exists (q,a,q') \in E\}$ 8

Language accepted by an FSA Finite state transition networks Auxiliary concept: The extended set of edges $\hat{E} \subseteq$ Finite state transition networks are graphical $Q \times \Sigma^* \times Q$ is the smallest set such that descriptions of finite state machines: • nodes represent the states • $\forall (q, \sigma, q') \in E : (q, \sigma, q') \in \hat{E}$ • start states are marked with a short arrow • final states are indicated by a double circle • $\forall (q_0, \sigma_1, q_1), (q_1, \sigma_2, q_2) \in \hat{E} : (q_0, \sigma_1 \sigma_2, q_2) \in \hat{E}$ • arcs represent the transitions Simple example: The language L(A) of a finite state automaton A is defined as $L(A) = \{ w | q_s \in S, q_f \in F, (q_s, w, q_f) \in \hat{E} \}$ Regular expression specifying the language generated or accepted by the corresponding FSM: ab|cb+ 9 10 Finite state transition tables Properties of regular languages Let L_1 and L_2 be regular languages. Finite state transition tables are an alternative, textual The regular languages are closed under way of describing finite state machines: • concatenation: $L_1 \cdot L_2$ • the rows represent the states set of strings with beginning in L_1 and continuation in L_2 • start states are marked with a dot after their name • Kleene closure: L_1^* • final states with a colon set of repeated concatenation of a string in L_1 • the columns represent the alphabet • union: $L_1 \cup L_2$ set of strings in L_1 or in L_2 • the fields in the table encode the transitions

Our simple example:

	a	b	С
SO.	S1		S2
S1		S3:	
S2		S2,S3:	:
S3:			

d

11

• complementation: $\Sigma^* - L_1$

set of strings in both L_1 and L_2

set of the reversal of all strings in L_1

• difference: $L_1 - L_2$

• intersection: $L_1 \cap L_2$

• reversal: L_1^R

set of all possible strings that are not in L_1

set of strings which are in L_1 but not in L_2

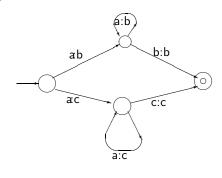
12

Further properties	Deterministic Finite State Automata	
<list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item>	<text><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></text>	
<section-header><section-header><section-header><text></text></section-header></section-header></section-header>	 From Automata to Transducers Needed: mechanism to keep track of path taken A finite state transducer is a 6-tuple (Q, Σ₁, Σ₂, E, S, F) with Q a finite set of states Σ₁ a finite set of symbols, the input alphabet S₂ a finite set of symbols, the output alphabet S ⊆ Q the set of start states F ⊆ Q the set of final states E a set of edges Q × (Σ₁ ∪ {ε}) × Q × (Σ₂ ∪ {ε}) 	

Transducers and determinization

A finite state transducer understood as consuming an input and producing an output cannot generally be determinized.

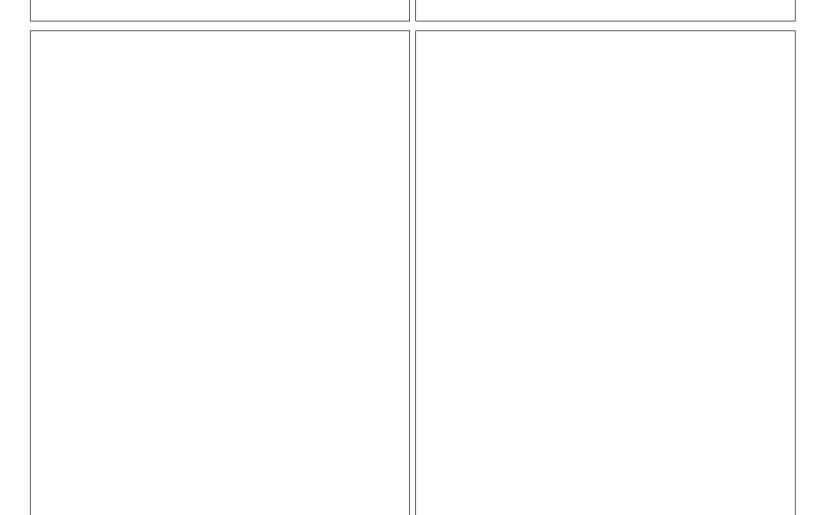
Example:



Reading assignment

- Chapter 1 "Finite State Techniques" of course notes
- Chapter 2 "Regular expressions and automata" of Jurafsky and Martin (2000)

18



17