
Finite state machines and

regular languages

• Notations:

• Regular expressions
• Finite state transition networks
• Finite state transition tables

• Finite state machines and regular languages

• Definitions
• Some properties

• Finite state transducers

1



Regular expressions

A regular expression (RE) is a description of a set of
strings, a language.

• can be used to search for occurrences of these
strings

• used in a variety of tools: grep, editors, corpus
search tools (cqp), . . .

• Just like any other formalism, REs have no linguistic
contents as such. But they can well be used to refer
to units of morphological or phonological relevance.

2



Some linguistically informed uses

• Determine the language of the following utterance:
French or Polish?

Czy pasazer jadacy do Warszawy moze
jechac przez Londyn?

⇒ Knowledge of morphologically/phonologically
possible sequences of letters can be used for this
task.

• Look up the following words in the dictionary:

laughs, became, unidentifiable, Thatcherization

⇒ Knowledge of morphological composition needed.

3



Basic regular expressions (1)

Regular expressions consist of

• strings of characters (case sensitive!):
c, natural language, 100 years!

• disjunction:

• ordinary disjunction: |
devoured|ate, famil(y|ies)

• character classes:
[Tt]he, bec[oa]me

• ranges:
[A-Z] for a capital letters

• negation: ˆ as first letter after [
[̂ a] any symbol but a
[̂ A-Z] not an uppercase letter

4



Basic regular expressions (2)

• counters

• optionality: ?
colou?r

• any number of occurrences: * (Kleene star)
[0-9]* years

• at least one occurrence: +
$ [0-9]+

• wildcard for any character: .
beg.n for any character in between beg and n

Operator precedence, from highest to lowest:

parenthesis ()

counters * + ?

character sequences

disjunction |

5



Regular languages

How can the class of regular languages which is
specified by regular expressions be characterized?

Let Σ be the set of all symbols of the language (the
alphabet), then:

1. {} is a regular language

2. ∀a ∈ Σ: {a} is a regular language

3. If L1 and L2 are regular languages, so are:

(a) the concatenation of L1 and L2:
L1 · L2 = {xy|x ∈ L1, y ∈ L2}

(b) the union (or disjunction) of L1 and L2:
L1 ∪ L2

(c) the Kleene closure of L1:
L∗

i

6



Finite state machines

Finite state machines (FSM), also called finite
state automata (FSA) can recognize or generate
regular languages, such as those specified by regular
expressions.

Example:

• Regular expression: colou?r

• Finite state machine:

0

1

2

3

456
c

r

u r
olo

7



Finite state automaton

A finite state automaton is a quintuple
(Q,Σ, E, S, F ) with

• Q a finite set of states

• Σ a finite set of symbols, the alphabet

• S ⊆ Q the set of start states

• F ⊆ Q the set of final states

• E a set of edges Q × (Σ ∪ {ε}) × Q

A transition function d can be defined as

d(q, a) = {q′ ∈ Q|∃(q, a, q′) ∈ E}

8



Language accepted by an FSA

Auxiliary concept: The extended set of edges Ê ⊆
Q × Σ∗ × Q is the smallest set such that

• ∀(q, σ, q′) ∈ E : (q, σ, q′) ∈ Ê

• ∀(q0, σ1, q1), (q1, σ2, q2) ∈ Ê : (q0, σ1σ2, q2) ∈ Ê

The language L(A) of a finite state automaton A
is defined as

L(A) = {w|qs ∈ S, qf ∈ F, (qs, w, qf) ∈ Ê}

9



Finite state transition networks

Finite state transition networks are graphical
descriptions of finite state machines:

• nodes represent the states

• start states are marked with a short arrow
• final states are indicated by a double circle

• arcs represent the transitions

Simple example:

S0 S3

S1

S2

a

c

b

b

b

Regular expression specifying the language generated
or accepted by the corresponding FSM: ab|cb+

10



Finite state transition tables

Finite state transition tables are an alternative, textual
way of describing finite state machines:

• the rows represent the states

• start states are marked with a dot after their
name

• final states with a colon

• the columns represent the alphabet

• the fields in the table encode the transitions

Our simple example:

a b c d
S0. S1 S2
S1 S3:
S2 S2,S3:
S3:

11



Properties of regular languages

Let L1 and L2 be regular languages.

The regular languages are closed under

• concatenation: L1 · L2

set of strings with beginning in L1 and continuation
in L2

• Kleene closure: L∗
1

set of repeated concatenation of a string in L1

• union: L1 ∪ L2

set of strings in L1 or in L2

• complementation: Σ∗ − L1

set of all possible strings that are not in L1

• difference: L1 − L2

set of strings which are in L1 but not in L2

• intersection: L1 ∩ L2

set of strings in both L1 and L2

• reversal: LR
1

set of the reversal of all strings in L1

12



Further properties

• Recognition problem can be solved in linear time

• There is an algorithm to transform each automaton
into a unique equivalent automaton with the least
number of states.

13



Deterministic Finite State Automata

A finite state automaton is deterministic iff it has

• no ε transitions and

• for each state and each symbol there is at most one
applicable transition.

Every non-deterministic automaton can be transformed
into a deterministic one:

• Define new states representing a disjunction of old
states for each non-determinacy which arises.

• Define arcs for these states corresponding to each
transition which is defined in the non-deterministic
automaton for one of the disjuncts in the new state
names.

14



Example: Determinization of FSA

� 6

��
��

��
��

��
��

��
��

��
��

��
��
��
��

������

PPPPPq

? ?

HHHHHHHHHHHHj

Z
Z

Z
Z

Z~





� C

CO

-

-

?

�
�

�
��+

a

e

e

c a

a

c

d

b

c

1

2 3

4 5

6

 #

��
��

��
��

��
��

��
��

��
��

��
��
��
��

��
��

��
��

"!
# ��

��

������

PPPPPq

? ?

Z
Z

Z
Z

Z~

?

�
�

�
��+

PPPPPq

?

C
CW

����

XXXXXXXXz

�
�
��B

B
BBN

a

c a

a

d

b1

2 3

4 5

6

{3,5}

{5,6}

{4,5}

c

a

ae

e

c, a

15



From Automata to Transducers

Needed: mechanism to keep track of path taken

A finite state transducer is a 6-tuple
(Q,Σ1,Σ2, E, S, F ) with

• Q a finite set of states

• Σ1 a finite set of symbols, the input alphabet

• Σ2 a finite set of symbols, the output alphabet

• S ⊆ Q the set of start states

• F ⊆ Q the set of final states

• E a set of edges Q × (Σ1 ∪ {ε}) × Q × (Σ2 ∪ {ε})

16



Transducers and determinization

A finite state transducer understood as consuming an
input and producing an output cannot generally be
determinized.

Example:
�#

& !

h��
��

��
����

��
��
��

HHHHHHHHHHHj

�����������:XXXXXXXXXXz

�����������*

-

A
AU 




�

�
�
��� A

A
A
AAU

c:c

b:b

a:b

a:c

:c

:b

a

a

17



Reading assignment

• Chapter 1 “Finite State Techniques” of course notes

• Chapter 2 “Regular expressions and automata” of
Jurafsky and Martin (2000)

18


