Towards more complex grammar systems Some basic formal language theory

- Grammars, or: how to specify linguistic knowledge
- Automata, or: how to process with linguistic knowledge
- Levels of complexity in grammars and automata: The Chomsky hierarchy

Grammars

A grammar is a 4-tuple (N, Σ, S, P) where

- N is a finite set of non-terminals
- Σ is a finite set of terminal symbols, with $N \cap \Sigma=\emptyset$
- S is a distinguished start symbol, with $S \in N$
- P is a finite set of rewrite rules of the form $\alpha \rightarrow \beta$, with $\alpha, \beta \in(N \cup \Sigma) *$ and α including at least one non-terminal symbol.

A simple example

$N=\left\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{V}_{i}, \mathrm{~V}_{t}, \mathrm{~V}_{s}\right\}$
$\Sigma=\{$ John, Mary, laughs, loves, thinks $\}$
$S=\mathrm{S}$
$P=\left\{\begin{array}{lll}\mathrm{S} & \rightarrow & \text { NP VP } \\ \mathrm{NP} & \rightarrow & \text { John } \\ \mathrm{NP} & \rightarrow & \text { Mary } \\ \mathrm{VP} & \rightarrow & \mathrm{V}_{i} \\ \mathrm{VP} & \rightarrow & \mathrm{V}_{t} \mathrm{NP} \\ \mathrm{VP} & \rightarrow & \mathrm{V}_{s} \mathrm{~S} \\ \mathrm{p} & & \\ \mathrm{V}_{i} & \rightarrow & \text { laughs } \\ \mathrm{V}_{t} & \rightarrow & \text { loves } \\ \mathrm{V}_{s} & \rightarrow & \text { thinks }\end{array}\right\}$

How does a grammar define a language?

Assume $\alpha, \beta \in(N \cup \Sigma) *$, with α containing at least one non-terminal.

- A sentential form for a grammar G is defined as:
- The start symbol S of G is a sentential form.
- If $\alpha \beta \gamma$ is a sentential form and there is a rewrite rule $\beta \rightarrow \delta$ then $\alpha \delta \gamma$ is a sentential form.
- α (directly or immediately) derives β if $\alpha \rightarrow \beta \in P$. One writes:
$-\alpha \Rightarrow{ }^{*} \beta$ if β is derived from α in zero or more steps
$-\alpha \Rightarrow^{+} \beta$ if β is derived from α in one or more steps
- A sentence is a sentential form consisting only of terminal symbols.
- The language $L(G)$ generated by the grammar G is the set of all sentences which can be derived from the start symbol S, i.e., $L(G)=\left\{\gamma \mid S \Rightarrow{ }^{*} \gamma\right\}$

Processing with grammars: automata

An automaton in general has three components:

- an input tape, divided into squares with a readwrite head positioned over one of the squares
- an auxiliary memory characterized by two functions
- fetch: memory configuration \rightarrow symbols
- store: memory configuration \times symbol \rightarrow memory configuration
- and a finite-state control relating the two components.

A regular language example:
$(a b \mid c) a b *(a \mid c b) ?$

Finite-state transition network:

Right-linear grammar:

$$
\begin{aligned}
& N=\{\text { Expr, X, Y, Z }\} \\
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \\
& S=
\end{aligned} \begin{aligned}
& P=\left\{\begin{array}{lll}
\text { Expr } & \rightarrow & \mathrm{ab} \mathrm{X} \\
\mathrm{Expr} & \rightarrow & \mathrm{c} \mathrm{X} \\
\mathrm{X} & \rightarrow & \mathrm{a} \mathrm{Y} \\
\mathrm{Y} & \rightarrow & \mathrm{~b} \mathrm{Y} \\
\mathrm{Y} & \rightarrow & \mathrm{Z} \\
\mathrm{Z} & \rightarrow & \mathrm{a} \\
\mathrm{Z} & \rightarrow & \mathrm{cb} \\
\mathrm{Z} & \rightarrow & \epsilon
\end{array}\right\}
\end{aligned}
$$

Thinking about regular languages

- A language is regular iff one can define a FSM (or regular expression) for it.
- An FSM only has a fixed amount of memory, namely the number of states.
- Strings longer than the number of states, in particular also any infinite ones, must result from a loop in the FSM.
- Pumping Lemma: if for an infinite string there is no such loop, the string cannot be part of a regular language.

Type 2: Context-Free Grammars and Push-Down Automata

A context-free grammar is a 4-tuple (N, Σ, S, P) with
P a finite set of rewrite rules of the form $\alpha \rightarrow \beta$, with $\alpha \in N$ and $\beta \in(\Sigma \cup N) *$, i.e.:

- left-hand side of rule: a single non-terminal, and
- right-hand side of rule: a string of terminals and/or non-terminals

A push-down automaton is a

- finite state automaton, with a
- stack as auxiliary memory

A context-free language example: $a^{n} b^{n}$

Context-free grammar:

$N=\{\mathrm{S}\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
$S=\mathrm{S}$
$P=\left\{\begin{array}{lll}\mathrm{S} & \rightarrow & \mathrm{aSD} \\ \mathrm{S} & \rightarrow & \epsilon\end{array}\right\}$

Push-down automaton:

Type 1: Context-Sensitive Grammars and Linear-Bounded Automata

A rule of a context-sensitive grammar

- rewrites at most one non-terminal from the left-hand side.
- Contextual restrictions on the occurrence of this non-terminal may be imposed.
- The non-terminal must not rewrite as the empty string ϵ.

A linear-bounded automaton is a

- finite state automaton, with an
- auxiliary memory which cannot exceed the length of the input string.

A context-sensitive language example:

$$
a^{n} b^{n} c^{n}
$$

Context-sensitive grammar:

$N=\{\mathrm{S}, \mathrm{B}, \mathrm{C}\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
$S=\mathrm{S}$
$P=\left\{\begin{array}{l}S \rightarrow a S B C, \\ S \rightarrow a b c, \\ b B \rightarrow b b, \\ b C \rightarrow b c, \\ c C \rightarrow c, \\ C B \rightarrow B C\end{array}\right\}$

Type 0: General Rewrite Grammar and Turing Machines

- In a general rewrite grammar there are no restrictions on the form of a rewrite rule.
- A turing machine has an unbounded auxiliary memory.
- Any language for which there is a recognition procedure can be defined, but recognition problem is not decidable.

Properties of different language classes

Reasoning:

- Languages are defined to be sets of strings.
- One can therefore apply set operations to languages and investigate results for particular language classes.

Some closure properties:

- All language classes are closed under union with themselves.
- All language classes are closed under intersection with regular languages.
- The class of context-free languages is not closed under intersection with itself. Proof:

Assume the two context-free languages L_{1} and L_{2} :

- $L_{1}=\left\{a^{n} b^{n} c^{i} \mid n \geq 1\right.$ and $\left.i \geq 0\right\}$
$-L_{2}=\left\{a^{j} b^{n} c^{n} \mid n \geq 1\right.$ and $\left.j \geq 0\right\}$
Their intersection is not context-free:

$$
-L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}
$$

Criteria under which to evaluate grammar formalisms

There are three kinds of criteria:

- linguistic naturalness
- mathematical power
- computational effectiveness and efficiency

The weaker the type of grammar:

- the stronger the claim made about possible languages
- the greater the efficiency of the parsing procedure

Reasons for choosing a stronger grammar class:

- to capture the bare facts about actual languages
- to provide for elegant analyses capturing more generalizations (\rightarrow more "compact" grammars)

Language classes and natural languages

 Natural languages are not regularExample grammar:
$\left\{\begin{array}{l}S \rightarrow \text { If } S \text { then } S \\ S \rightarrow \text { Either } S \text { or } S \\ S \rightarrow \text { I laugh } \mid I \text { have to sneeze } \mid \text { Tim screams }\end{array}\right\}$
Example analyses:

- [If [I laugh] then [I have to sneeze]]
- [If [either [I laugh] or [I have to sneeze]] then [Tim screams]]
- . .

A more abstract version of the grammar rules:

$$
\left\{\begin{array}{l}
\mathrm{S} \rightarrow \mathrm{aSaS} \\
\mathrm{~S} \rightarrow \mathrm{bSbS} \\
\mathrm{~S} \rightarrow \epsilon
\end{array}\right\}
$$

which accepts $a^{n} b^{m} b^{m} a^{n}$ which is not a regular language.

Accounting for bare facts vs. linguistically sensible analyses

Looking at grammars from a linguistic perspective, one can distinguish their

- weak generative capacity, considering only the set of strings generated by a grammar
- strong generative capacity, considering the set of strings and their syntactic analyses generated by a grammar

Two grammars can be strongly or weakly equivalent.

Second analysis:

Example for weakly equivalent grammars

Example string:

if b then if b then a else $a p$

Grammar 1 rules:

$$
\left\{\begin{array}{l}
S \rightarrow \text { if } b \text { then } S \text { else } S, \\
S \rightarrow \text { if } b \text { then } S, \\
S \rightarrow a
\end{array}\right\}
$$

First analysis:

