Towards more complex grammar systems
Some basic formal language theory

e Grammars, or: how to specify linguistic knowledge

e Automata, or: how to process with linguistic
knowledge

e Levels of complexity in grammars and automata:
The Chomsky hierarchy

Grammars

A grammar is a 4-tuple (N, X, S, P) where
e N is a finite set of non-terminals

e Y is a finite set of terminal symbols,
with NNYX =10

e S is a distinguished start symbol, with S € N
e P is a finite set of rewrite rules of the form a — (3,

with o, 8 € (N UX)x and « including at least one
non-terminal symbol.

A simple example

N ={S, NP, VP, V;, V¢, Vi}

¥ = {John, Mary, laughs, loves, thinks}

S=S
S — NP VP
NP — John
NP — Mary

p_ VP — V;

- VP — V; NP

VP — VS
p
V; — laughs
V, — loves
Vs — thinks

How does a grammar define a language?

Assume a, 3 € (N U X)*, with « containing at least
one non-terminal.

¢ A sentential form for a grammar G is defined as:

— The start symbol S of G is a sentential form.
— If af7 is a sentential form and there is a rewrite
rule 8 — ¢ then aé+ is a sentential form.

e o (directly or immediately) derives 3 if « — 3 € P.
One writes:

— a = *f if B is derived from « in zero or more
steps

— a = T3 if B is derived from « in one or more
steps

e A sentence is a sentential form consisting only of
terminal symbols.

e The language L(G) generated by the grammar G
is the set of all sentences which can be derived from
the start symbol S, i.e., L(G) = {7|S = *v}

Processing with grammars: automata

An automaton in general has three components:

e an input tape, divided into squares with a read-
write head positioned over one of the squares

e an auxiliary memory characterized by two functions

— fetch: memory configuration — symbols
— store: memory configuration x symbol —
memory configuration

e and a finite-state control relating the two
components.

Different levels of complexity in grammars and automata

)
)
3 22|g|x
c B | L3
o 2 2|&|o
< qE"‘L-‘aJJL.E
Q =
T REelEe
I F|g|d|5 e
&~ . Lbvgk.)ﬁc
D) € @)
Q€ .
woE &
< |Y w T
2 o |2
® éTTTm‘
Pl SIS
3 N
2 Rk 3
< g
w)
< < |«
- E m|Q|n 43
Qi c |z — | (- <
55"% v 3
- | E Blo c 3
- R=
s 85’8‘“—!@) S S
W = :-EUC T O
<|§ LRKe S o
= mO:J—JZ
. s|le|2 S
cm v 0
Z > 2 c o
o 5 .£
w .;|2_|
NS .o -
‘Eliﬁ o || [@25
- 8 - 4
ra} a
| <| |

— PDA: Push-Down Automaton
— FSA: Finite-State Automaton

Type 3: Right-Linear Grammars and
Finite-State Automata

A right-linear grammar is a 4-tuple (N, X, S, P) with

P a finite set of rewrite rules of the form o — 3, with
a€ N and B € {yd]y € x,6 € NU{e}}, i.e:
— left-hand side of rule: a single non-terminal, and

— right-hand side of rule: a string containing at most
one non-terminal, as the rightmost symbol

Right-linear grammars are formally equivalent to left-
linear grammars (at most one, leftmost non-terminal).

Finite-state transition network: states + arcs

A finite-state machine consists of
— a tape
— a finite-state control

— no auxiliary memory

A regular language example:

(ablc)ab * (alcb)?

Finite-state transition network:

c
. ab

Right-I

a

®

inear grammar:

N = {Expr, X, Y, Z}

M =

{a,b,c}

Expr
Expr — ab X
Expr — ¢X
X — ayY
Y — by
Y - Z
Z — a
Z — cb
Z — €

Thinking about regular languages

— A language is regular iff one can define a FSM (or
regular expression) for it.

— An FSM only has a fixed amount of memory, namely
the number of states.

— Strings longer than the number of states, in
particular also any infinite ones, must result from a
loop in the FSM.

— Pumping Lemma: if for an infinite string there is
no such loop, the string cannot be part of a regular
language.

Type 2: Context-Free Grammars and
Push-Down Automata

A context-free grammar is a 4-tuple (N, %, S, P)
with

P a finite set of rewrite rules of the form o — (3, with
ae€ N and f € (ZUN)x, ie.

— left-hand side of rule: a single non-terminal, and

— right-hand side of rule: a string of terminals and/or
non-terminals

A push-down automaton is a

— finite state automaton, with a

— stack as auxiliary memory

10

A context-free language example: a"b"

Context-free grammar:

N = {S}
¥ ={a, b}
S=S

S — aShb
{32}

Push-down automaton:

+ push x 5"+ pop x

Type 1: Context-Sensitive Grammars
and Linear-Bounded Automata

A rule of a context-sensitive grammar

— rewrites at most one non-terminal from the left-hand
side.

— Contextual restrictions on the occurrence of this
non-terminal may be imposed.

— The non-terminal must not rewrite as the empty
string e.

A linear-bounded automaton is a

— finite state automaton, with an

— auxiliary memory which cannot exceed the length of
the input string.

12

A context-sensitive language example:
ab"c”

Context-sensitive grammar:

N =1{S,B, C}

¥ ={a, b}

S=S
S—aSBC(,
S—ab(
bB —bb,

P=9bCc—be
cC—cec
CB—-=BC

Type 0: General Rewrite Grammar and
Turing Machines

e In a general rewrite grammar there are no
restrictions on the form of a rewrite rule.

e A turing machine has an unbounded auxiliary
memory.

e Any language for which there is a recognition
procedure can be defined, but recognition problem
is not decidable.

14

Properties of different language classes

Reasoning:
— Languages are defined to be sets of strings.

— One can therefore apply set operations to languages
and investigate results for particular language
classes.

Some closure properties:

— All language classes are closed under union with
themselves.

— All language classes are closed under intersection
with regular languages.

— The class of context-free languages is not closed
under intersection with itself. Proof:

Assume the two context-free languages L1 and Lo:

— L= {a"b"ci\n >1andi> O}
— Ly = {a’b"c"|n>1and j >0}

Their intersection is not context-free:

— LiN Ly ={a™"c"|n > 1}

Criteria under which to evaluate
grammar formalisms

There are three kinds of criteria:
— linguistic naturalness
— mathematical power

— computational effectiveness and efficiency

The weaker the type of grammar:
— the stronger the claim made about possible languages
— the greater the efficiency of the parsing procedure

Reasons for choosing a stronger grammar class:
— to capture the bare facts about actual languages

— to provide for elegant analyses capturing more
generalizations (— more “compact” grammars)

16

Language classes and natural languages
Natural languages are not regular

Example grammar:

S—If SthenS
S — Either Sor S
S — | laughll have to sneeze|Tim screams

Example analyses:
— [If [I laugh] then [l have to sneeze]]

— [If [either [I laugh] or [I have to sneeze]] then [Tim
screams]|

A more abstract version of the grammar rules:

S — aSaS
S — bSbS

S—e

which accepts a™b™b™a™ which is not a regular
language.

Accounting for bare facts vs.
linguistically sensible analyses

Looking at grammars from a linguistic perspective, one
can distinguish their

— weak generative capacity, considering only the
set of strings generated by a grammar

— strong generative capacity, considering the set of
strings and their syntactic analyses generated by a
grammar

Two grammars can be strongly or weakly equivalent.

18

Example for weakly equivalent grammars

Example string:
if b then if b then a else a p

Grammar 1 rules:

S — if b then S else S,
S — if b then S,
S—a

First analysis:

if b then

Second analysis:

if b then

Grammar 2 rules: A weekly equivalent grammar
eliminating the ambiguity (only licenses second
analysis).

S1 — if b then S1,

S1 — if b then S2 else S1,
S1 — a,

S2 — if b then S2 else S2,
S2 — a

20

