
Towards more complex grammar systems
Some basic formal language theory

• Grammars, or: how to specify linguistic knowledge

• Automata, or: how to process with linguistic
knowledge

• Levels of complexity in grammars and automata:
The Chomsky hierarchy

1

Grammars

A grammar is a 4-tuple (N,Σ, S, P) where

• N is a finite set of non-terminals

• Σ is a finite set of terminal symbols,
with N ∩ Σ = ∅

• S is a distinguished start symbol, with S ∈ N

• P is a finite set of rewrite rules of the form α → β,
with α, β ∈ (N ∪ Σ)∗ and α including at least one
non-terminal symbol.

2

A simple example

N = {S, NP, VP, Vi, Vt, Vs}
Σ = {John, Mary, laughs, loves, thinks}
S = S

P =




S → NP VP

NP → John
NP → Mary

VP → Vi

VP → Vt NP
VP → Vs S
p
Vi → laughs
Vt → loves
Vs → thinks




3

How does a grammar define a language?

Assume α, β ∈ (N ∪ Σ)∗, with α containing at least
one non-terminal.

• A sentential form for a grammar G is defined as:

− The start symbol S of G is a sentential form.
− If αβγ is a sentential form and there is a rewrite

rule β → δ then αδγ is a sentential form.

• α (directly or immediately) derives β if α → β ∈ P .
One writes:

− α ⇒ ∗β if β is derived from α in zero or more
steps

− α ⇒ +β if β is derived from α in one or more
steps

• A sentence is a sentential form consisting only of
terminal symbols.

• The language L(G) generated by the grammar G
is the set of all sentences which can be derived from
the start symbol S, i.e., L(G) = {γ|S ⇒ ∗γ}

4

Processing with grammars: automata

An automaton in general has three components:

• an input tape, divided into squares with a read-
write head positioned over one of the squares

• an auxiliary memory characterized by two functions

− fetch: memory configuration → symbols
− store: memory configuration × symbol →

memory configuration

• and a finite-state control relating the two
components.

5 D
iff
er
en

t
le
ve

ls
o
f
co

m
p
le
xi
ty

in
g
ra
m
m
ar
s
a
n
d
a
u
to
m
a
ta

L
et

A
,B

∈
N
,
x
∈
Σ
,
α
,β

,γ
∈
(Σ

∪
T
)∗
,
an
d
δ
∈
(Σ

∪
T
)+

,
th
en
:

T
yp

e
A
u
to
m
at
on

G
ra
m
m
ar

M
em

or
y

N
am

e
R
u
le

N
am

e
0

U
n
b
ou

n
d
ed

T
M

α
→

β
G
en
er
al

re
w
ri
te

1
B
ou

n
d
ed

L
B
A

β
A

γ
→

β
δ
γ

C
on

te
xt
-s
en
si
ti
ve

2
S
ta
ck

P
D
A

A
→

β
C
on

te
xt
-f
re
e

3
N
on

e
F
S
A

A
→

x
B
,
A

→
x

R
ig
h
t
lin
ea
r

A
b
br
ev
ia
ti
on

s:

–
T
M
:
T
u
ri
n
g
M
ac
h
in
e

–
L
B
A
:
L
in
ea
r-
B
ou

n
d
ed

A
u
to
m
at
on

–
P
D
A
:
P
u
sh
-D

ow
n
A
u
to
m
at
on

–
F
S
A
:
F
in
it
e-
S
ta
te

A
u
to
m
at
on

6

Type 3: Right-Linear Grammars and
Finite-State Automata

A right-linear grammar is a 4-tuple (N,Σ, S, P) with

P a finite set of rewrite rules of the form α → β, with
α ∈ N and β ∈ {γδ|γ ∈ Σ∗, δ ∈ N ∪ {ε}}, i.e.:
− left-hand side of rule: a single non-terminal, and

− right-hand side of rule: a string containing at most
one non-terminal, as the rightmost symbol

Right-linear grammars are formally equivalent to left-
linear grammars (at most one, leftmost non-terminal).

Finite-state transition network: states + arcs

A finite-state machine consists of

– a tape

– a finite-state control

– no auxiliary memory

7

A regular language example:
(ab|c)ab ∗ (a|cb)?

Finite-state transition network:

0 1 2

3

4

5
b

c

a

a

c b

a

b

Right-linear grammar:

N = {Expr, X, Y, Z}
Σ = {a,b,c}
S = Expr

P =




Expr → ab X
Expr → c X

X → a Y

Y → b Y
Y → Z

Z → a
Z → cb
Z → ε




8

Thinking about regular languages

− A language is regular iff one can define a FSM (or
regular expression) for it.

− An FSM only has a fixed amount of memory, namely
the number of states.

− Strings longer than the number of states, in
particular also any infinite ones, must result from a
loop in the FSM.

− Pumping Lemma: if for an infinite string there is
no such loop, the string cannot be part of a regular
language.

9

Type 2: Context-Free Grammars and
Push-Down Automata

A context-free grammar is a 4-tuple (N,Σ, S, P)
with

P a finite set of rewrite rules of the form α → β, with
α ∈ N and β ∈ (Σ ∪N)∗, i.e.:
− left-hand side of rule: a single non-terminal, and

− right-hand side of rule: a string of terminals and/or
non-terminals

A push-down automaton is a

− finite state automaton, with a

− stack as auxiliary memory

10

A context-free language example: anbn

Context-free grammar:

N = {S}
Σ = {a, b}
S = S

P =

{
S → a S b
S → ε

}

Push-down automaton:

0 1

a + push x

ε

b + pop x

11

Type 1: Context-Sensitive Grammars
and Linear-Bounded Automata

A rule of a context-sensitive grammar

– rewrites at most one non-terminal from the left-hand
side.

– Contextual restrictions on the occurrence of this
non-terminal may be imposed.

– The non-terminal must not rewrite as the empty
string ε.

A linear-bounded automaton is a

– finite state automaton, with an

– auxiliary memory which cannot exceed the length of
the input string.

12

A context-sensitive language example:
anbncn

Context-sensitive grammar:

N = {S, B, C}
Σ = {a, b}
S = S

P =




S → a S B C,
S → a b C,
b B → b b,
b C → b c,
c C → c c,
C B → B C




13

Type 0: General Rewrite Grammar and
Turing Machines

• In a general rewrite grammar there are no
restrictions on the form of a rewrite rule.

• A turing machine has an unbounded auxiliary
memory.

• Any language for which there is a recognition
procedure can be defined, but recognition problem
is not decidable.

14

Properties of different language classes

Reasoning:

– Languages are defined to be sets of strings.

– One can therefore apply set operations to languages
and investigate results for particular language
classes.

Some closure properties:

– All language classes are closed under union with
themselves.

– All language classes are closed under intersection
with regular languages.

– The class of context-free languages is not closed
under intersection with itself. Proof:

Assume the two context-free languages L1 and L2:

− L1 =
{
anbnci|n ≥ 1 and i ≥ 0

}
− L2 =

{
ajbncn|n ≥ 1 and j ≥ 0

}
Their intersection is not context-free:

− L1 ∩ L2 = {anbncn|n ≥ 1}
15

Criteria under which to evaluate
grammar formalisms

There are three kinds of criteria:

– linguistic naturalness

– mathematical power

– computational effectiveness and efficiency

The weaker the type of grammar:

– the stronger the claim made about possible languages

– the greater the efficiency of the parsing procedure

Reasons for choosing a stronger grammar class:

– to capture the bare facts about actual languages

– to provide for elegant analyses capturing more
generalizations (→ more “compact” grammars)

16

Language classes and natural languages
Natural languages are not regular

Example grammar:

S → If S then S
S → Either S or S
S → I laugh|I have to sneeze|Tim screams




Example analyses:

– [If [I laugh] then [I have to sneeze]]

– [If [either [I laugh] or [I have to sneeze]] then [Tim
screams]]

– . . .

A more abstract version of the grammar rules:


S → aSaS
S → bSbS
S → ε




which accepts anbmbman which is not a regular
language.

17

Accounting for bare facts vs.
linguistically sensible analyses

Looking at grammars from a linguistic perspective, one
can distinguish their

− weak generative capacity, considering only the
set of strings generated by a grammar

− strong generative capacity, considering the set of
strings and their syntactic analyses generated by a
grammar

Two grammars can be strongly or weakly equivalent.

18

Example for weakly equivalent grammars

Example string:
if b then if b then a else a p

Grammar 1 rules:

S → if b then S else S,
S → if b then S,
S → a




First analysis:

if b then

if b then

a

S

S else

a

S

S

19

Second analysis:

if b then

if b then

a

S else

a

S

S

S

Grammar 2 rules: A weekly equivalent grammar
eliminating the ambiguity (only licenses second
analysis). 



S1 → if b then S1,
S1 → if b then S2 else S1,
S1 → a,
S2 → if b then S2 else S2,
S2 → a




20

