Basic DCG notation for encoding CFGs

A DCG rule has the form "LHS --> RHS." with

- LHS: a Prolog atom encoding a non-terminal, and
- RHS: a comma separated sequence of
- Prolog atoms encoding non-terminals
- Prolog lists encoding terminals

Examples for some context free grammar rules:

- $\mathrm{S} \rightarrow \mathrm{NP}$ VP
s --> np, vp.
- $S \rightarrow N P$ thinks S
s --> np, [thinks], s.
- $S \rightarrow$ NP picks up NP
s --> np, [picks, up], np.
- $S \rightarrow$ NP picks NP up
s --> np, [picks], np, [up].
- NP $\rightarrow \epsilon$
np --> [].

More complex terms in DCGs

Non-terminals can be any Prolog term, e.g.:

$$
\begin{aligned}
& \text { s --> np(Per,Num), } \\
& \text { vp(Per,Num). } \\
& \text { s(s_node(NP,VP)) --> np(NP), } \\
& \text { vp(VP). }
\end{aligned}
$$

Restriction:

- The LHS has to be a non-variable, single term (plus possibly a sequence of terminals).

Additional notation for the RHS of DCGs

The RHS can include

- disjunctions expressed by the ";" operator, e.g.:

$$
\begin{aligned}
\text { vp --> } & \text { vintr; } \\
& \text { vtrans, np. }
\end{aligned}
$$

- groupings are expressed using parenthesis "()"
- extra conditions in the form of prolog relation calls enclosed in "\{ \}", e.g.:

$$
\begin{aligned}
\text { s --> } & \text { np(Case), vp, } \\
& \text { \{check_case(Case) \}. } \\
\text { s --> } & \text { \{write('rule 1'), nl\}, } \\
& \text { np, } \\
& \text { \{write('after np'), nl\}, } \\
& \text { vp, } \\
& \text { \{write('after vp'), nl\}. }
\end{aligned}
$$

- the cut "!" (can occur without enclosing " $\}$ ").

Meta-variables

On the RHS, variables can be used for non-terminals and terminals, i.e. as meta-variables. E.g.:
verb([up]) --> [pick].

Restriction:

- The value of the variable has to be known at the time Prolog attempts to prove the subgoal represented by the variable.

Towards a basic DCG for English X-bar Theory

Generalizing over possible phrase structure rules, one can attempt to specify DCG rules fitting the following general pattern:
$\mathrm{X}^{2} \rightarrow$ specifier $^{2} \mathrm{X}^{1}$
$X^{1} \rightarrow X^{1}$ modifier 2
$X^{1} \rightarrow$ modifier $^{2} X^{1}$
$X^{1} \rightarrow X^{0}$ complement ${ }^{2} *$

To turn this general X-bar pattern into actual DCG rules,

- X has to be replaced by one of the atoms encoding syntactic categories, and
- the bar-level needs to be encoded as an argument of each predicate encoding a syntactic category.

Noun, preposition, and adjective phrases

 Some example rules```
n(2,Num) --> pronoun(Num).
n(2,Num) --> proper_noun(Num).
n(2,Num) --> det(Num), n(1,Num).
n(2,plur) --> n(1,plur).
n(1,Num) --> pre_mod, n(1,Num).
n(1,Num) --> n(1,Num), post_mod.
n(1,Num) --> n(O,Num).
p(2,Pform) --> p(1,Pform).
p(1,Pform) --> adv, p(1,Pform).
 % slowly past the window
p(1,Pform) --> p(0,Pform), n(2,_).
a(2) --> deg, a(1). \% very simple
a(1) --> adv, a(1). % commonly used
a(1) --> a(0).
```


## Verb phrases and sentences Some example rules

```
v(2,Vform,Num) --> v(1,Vform,Num).
v(1,Vform,Num) --> adv,
 v(1,Vform,Num).
v(1,Vform,Num) --> v(1,Vform,Num),
 verb_postmods.
v(1,Vform,Num) --> v(0,intrans,Vform,Num).
v(1,Vform,Num) --> v(0,trans,Vform,Num), n(2).
v(1,Vform,Num) --> v(0,ditrans,Vform,Num),
 n(2),
 n(2).
s(Vform) --> n(2,Num),
 v(2,Vform,Num).
```

