From local to non-local dependencies

- A head generally realizes its arguments locally within its head domain, i.e., within a local tree if the X-bar schema is assumed.
- Certain kind of constructions resist this generalization, such as, for example, the wh-questions discussed below.
- How can the non-local relation between a head and such arguments be licensed? How can the properties be captured?

Wh-elements can have different functions:

- (1) a. Who did Hobbs see _ ? Object of verb
 - b. Who do you think _ saw the man? Subject of verb
 - c. Who did Hobbs give the book to $_$? Object of prep
 - d. Who did Hobbs consider _ to be a fool? Object of object-control verb

Wh-elements can also occur in subordinate clauses:

- (2) a. I asked who the man saw $_$.
 - b. I asked who the man considered _ to be a fool.
 - c. I asked who Hobbs gave the book to _ .
 - d. I asked who you thought _ saw Hobbs.

Unbounded Dependency Constructions: Some linguistic background

Different categories can be extracted:

(3)	a.	Which man did you talk to _ ?	NP
	b.	[To [which man]] did you talk _ ?	PP
	c.	[How ill] has the man been $_$?	AdjP

d. [How frequently] did you see the man _ ? AdvP

This sometimes provides multiple options for a constituent:

(4) a. Who does he rely [on _]?b. [On whom] does he rely _ ?

Unboundedness:

- (5) a. Who do you think Hobbs saw _ ?
 - b. Who do you think Hobbs said he saw $_$?
 - c. Who do you think Hobbs said he imagined that he saw $_$?

2

4

Unbounded Dependency Constructions: Some linguistic background

Unbounded dependency constructions

An unbounded dependency construction

- involves constituents with different functions
- involves constituents of different categories
- is in principle unbounded

Two kind of unbounded dependency constructions (UDCs)

- Strong UDCs
- Weak UDCs

Strong UDCs

An overt constituent occurs in a non-argument position:

Topicalization:

(6) Kim_i , Sandy loves $_i$.

Wh-questions:

(7) I wonder [who_i Sandy loves $__i$].

Wh-relative clauses:
(8) This is the politician [who_i Sandy loves _i].

It-clefts: (9) It is Kim [who_i Sandy loves _i].

Pseudoclefts: (10) [What Kim_i loves _i] is Sandy.

1

Unbounded Dependency Constructions: Some linguistic background

Adding gaps to a reduced grammar (dcg_gaps1.pl)	Different kinds of gaps (dcg_gaps2.pl)
<pre>% 1) Top of UDC: realizing filler s(nogap)> np(nogap),</pre>	<pre>% 1) Top of UDC: realizing filler s(nogap)> np(nogap), s(gap). s(nogap)> pp(nogap), s(gap). % 2) Middle of UDC: passing info s(GapInfo)> np(nogap), % no subject gaps vp(GapInfo). vp(GapInfo)> vt, np(GapInfo). vp(GapInfo)> vd, np(GapInfo), pp(nogap). vp(GapInfo)> vd, np(nogap), pp(GapInfo)> p,</pre>
Towards a Prolog encoding of strong UDCs 9	Towards a Prolog encoding of strong UDCs 10
<pre>% 3) Bottom of UDC np(gap)> []. pp(gap)> []. % "Lexicon" np(nogap)> [mary];[john];[fido]. p> [to].</pre>	<pre>Correcting treatment of different kinds of gaps</pre>
vt> [loves]. vd> [gives].	<pre>% 2) Middle of UDC: passing info s(GapInfo)> np(nogap), % no subject gaps vp(GapInfo). vp(GapInfo)> vt, np(GapInfo).</pre>
vt> [loves]. vd> [gives].	<pre>% 2) Middle of UDC: passing info s(GapInfo)> np(nogap), % no subject gaps vp(GapInfo). vp(GapInfo)> vt, np(GapInfo). vp(GapInfo)> vd, np(GapInfo), pp(nogap). vp(GapInfo)> vd, np(nogap), pp(GapInfo). pp(GapInfo)> p, np(GapInfo).</pre>

% 3) Bottom of UDC np(gap(np))> []. pp(gap(pp))> [].	From hardcoded gap percolation to gap threading
% "Lexicon"	Two problems of current encoding:
np(nogap)> [mary];[john];[fido]. p> [to]. vt> [loves]. vd> [gives].	 Two rules are needed to license ditransitive VPs. In sentences without topicalization, two identical analyses arise for ditransitive VPs.
	ldea:
	 Use difference-list encoding to thread occurrence of gaps through the tree ("gap threading").
Towards a Prolog encoding of strong UDCs 13	Towards a Prolog encoding of strong UDCs 14
An encoding using gap threading (dcg_gaps4.pl)	% 3) Bottom of UDC np([gap(np)],[])> []. pp([gap(pp)],[])> [].
<pre>% 1) Top of UDC: realizing filler s([],[])> np([],[]),</pre>	<pre>% "Lexicon" np(X,X)> [mary];[john];[fido]. p> [to]. vt> [loves].</pre>
s([],[])> pp([],[]), s([gap(pp)],[]).	vd> [gives].
<pre>% 2) Middle of UDC: passing info s(GapIn,GapOut)> np([],[]), % no subject gaps vp(GapIn,GapOut).</pre>	
<pre>vp(GapIn,GapOut)> vt, np(GapIn,GapOut).</pre>	
vp(GapIn,GapOut)> vd, np(GapIn,GapMid), pp(GapMid,GapOut).	
pp(GapIn,GapOut)> p, np(GapIn,GapOut).	
Towards a Prolog encoding of strong UDCs 15	Towards a Prolog encoding of strong UDCs 16