
From local to non-local dependencies

• A head generally realizes its arguments locally within its head

domain, i.e., within a local tree if the X-bar schema is assumed.

• Certain kind of constructions resist this generalization, such

as, for example, the wh-questions discussed below.

• How can the non-local relation between a head and such

arguments be licensed? How can the properties be captured?

Wh-elements can have different functions:

(1) a. Who did Hobbs see ? Object of verb

b. Who do you think saw the man? Subject of verb

c. Who did Hobbs give the book to ? Object of prep

d. Who did Hobbs consider to be a fool?

Object of object-control verb

Wh-elements can also occur in subordinate clauses:

(2) a. I asked who the man saw .

b. I asked who the man considered to be a fool .

c. I asked who Hobbs gave the book to .

d. I asked who you thought saw Hobbs.

Unbounded Dependency Constructions: Some linguistic background 1

Different categories can be extracted:

(3) a. Which man did you talk to ? NP

b. [To [which man]] did you talk ? PP

c. [How ill ] has the man been ? AdjP

d. [How frequently ] did you see the man ? AdvP

This sometimes provides multiple options for a constituent:

(4) a. Who does he rely [on ]?

b. [On whom] does he rely ?

Unboundedness:

(5) a. Who do you think Hobbs saw ?

b. Who do you think Hobbs said he saw ?

c. Who do you think Hobbs said he imagined that he saw ?

Unbounded Dependency Constructions: Some linguistic background 2

Unbounded dependency constructions

An unbounded dependency construction

• involves constituents with different functions

• involves constituents of different categories

• is in principle unbounded

Two kind of unbounded dependency constructions (UDCs)

• Strong UDCs

• Weak UDCs

Unbounded Dependency Constructions: Some linguistic background 3

Strong UDCs

An overt constituent occurs in a non-argument position:

Topicalization:

(6) Kimi, Sandy loves i .

Wh-questions:

(7) I wonder [whoi Sandy loves i ].

Wh-relative clauses:

(8) This is the politician [whoi Sandy loves i ].

It -clefts:

(9) It is Kim [whoi Sandy loves i ].

Pseudoclefts:

(10) [What Kimi loves i ] is Sandy.

Unbounded Dependency Constructions: Some linguistic background 4



Weak UDCs

No overt constituent in a non-argument position:

Purpose infinitive (for -to clauses):

(11) I bought iti for Sandy to eat i .

Tough movement:

(12) Sandyi is hard to love i .

Relative clause without overt relative pronoun:

(13) This is [the politician]i [Sandy loves i ].

It -clefts without overt relative pronoun:

(14) It is Kimi [Sandy loves i ].

Unbounded Dependency Constructions: Some linguistic background 5

More on the link between filler and gap

Link between filler and gap with category information needed:

(15) a. Kimi, Sandy trusts i.

b. [On Kim]i, Sandy depends i.

(16) a. * [On Kim]i, Sandy trusts i.

b. *Kimi, Sandy depends i.

And this link has to be established for an unbounded length:

(17) a. Kimi, Chris knows Sandy trusts i.

b. [On Kim]i, Chris knows Sandy depends i.

(18) a. * [On Kim]i, Chris knows Sandy trusts i.

b. *Kimi, Chris knows Sandy depends i.

(19) a. Kimi, Dana believes Chris knows Sandy trusts i.

b. [On Kim]i, Dana believes Chris knows Sandy depends i.

(20) a. * [On Kim]i, Dana believes Chris knows Sandy trusts i.

b. *Kimi, Dana believes Chris knows Sandy depends i.

Unbounded Dependency Constructions: Some linguistic background 6

An example for a strong UDC

Fidoi

NPi

Mary

NP

knows

V

John

NP

likes

V

i

NP/NPi

VP/NPi

S/NPi

VP/NPi

S/NPi

S

9>>>>>=
>>>>>;

Top

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

Middle

�
Bottom

Unbounded Dependency Constructions: Some linguistic background 7

A small DCG to start from
(dcg basis.pl)

np --> [mary];[john];[fido].

p --> [to].

pp --> p,

np.

vt --> [loves].

vd --> [gives].

vs --> [knows].

s --> np,

vp.

vp --> vt,

np.

vp --> vd,

np,

pp.

vp --> vs,

s.

Towards a Prolog encoding of strong UDCs 8



Adding gaps to a reduced grammar
(dcg gaps1.pl)

% 1) Top of UDC: realizing filler

s(nogap) --> np(nogap),

s(gap).

% 2) Middle of UDC: passing info

s(GapInfo) -->

np(nogap), % no subject gaps

vp(GapInfo).

vp(GapInfo) -->

vt,

np(GapInfo).

% 3) Bottom of UDC

np(gap) --> [].

% "Lexicon"

np(nogap) --> [mary];[john];[fido].

vt --> [loves].

Towards a Prolog encoding of strong UDCs 9

Different kinds of gaps
(dcg gaps2.pl)

% 1) Top of UDC: realizing filler

s(nogap) --> np(nogap),

s(gap).

s(nogap) --> pp(nogap),

s(gap).

% 2) Middle of UDC: passing info

s(GapInfo) --> np(nogap), % no subject gaps

vp(GapInfo).

vp(GapInfo) --> vt,

np(GapInfo).

vp(GapInfo) --> vd,

np(GapInfo),

pp(nogap).

vp(GapInfo) --> vd,

np(nogap),

pp(GapInfo).

pp(GapInfo) --> p,

np(GapInfo).

Towards a Prolog encoding of strong UDCs 10

% 3) Bottom of UDC

np(gap) --> [].

pp(gap) --> [].

% "Lexicon"

np(nogap) --> [mary];[john];[fido].

p --> [to].

vt --> [loves].

vd --> [gives].

Towards a Prolog encoding of strong UDCs 11

Correcting treatment of different kinds of gaps
(dcg gaps3.pl)

% 1) Top of UDC: realizing filler

s(nogap) --> np(nogap),

s(gap(np)).

s(nogap) --> pp(nogap),

s(gap(pp)).

% 2) Middle of UDC: passing info

s(GapInfo) --> np(nogap), % no subject gaps

vp(GapInfo).

vp(GapInfo) --> vt,

np(GapInfo).

vp(GapInfo) --> vd,

np(GapInfo),

pp(nogap).

vp(GapInfo) --> vd,

np(nogap),

pp(GapInfo).

pp(GapInfo) --> p,

np(GapInfo).

Towards a Prolog encoding of strong UDCs 12



% 3) Bottom of UDC

np(gap(np)) --> [].

pp(gap(pp)) --> [].

% "Lexicon"

np(nogap) --> [mary];[john];[fido].

p --> [to].

vt --> [loves].

vd --> [gives].

Towards a Prolog encoding of strong UDCs 13

From hardcoded gap percolation to gap threading

Two problems of current encoding:

• Two rules are needed to license ditransitive VPs.

• In sentences without topicalization, two identical analyses arise

for ditransitive VPs.

Idea:

• Use difference-list encoding to thread occurrence of gaps

through the tree (“gap threading”).

Towards a Prolog encoding of strong UDCs 14

An encoding using gap threading
(dcg gaps4.pl)

% 1) Top of UDC: realizing filler

s([],[]) --> np([],[]),

s([gap(np)],[]).

s([],[]) --> pp([],[]),

s([gap(pp)],[]).

% 2) Middle of UDC: passing info

s(GapIn,GapOut) --> np([],[]), % no subject gaps

vp(GapIn,GapOut).

vp(GapIn,GapOut) --> vt,

np(GapIn,GapOut).

vp(GapIn,GapOut) --> vd,

np(GapIn,GapMid),

pp(GapMid,GapOut).

pp(GapIn,GapOut) --> p,

np(GapIn,GapOut).

Towards a Prolog encoding of strong UDCs 15

% 3) Bottom of UDC

np([gap(np)],[]) --> [].

pp([gap(pp)],[]) --> [].

% "Lexicon"

np(X,X) --> [mary];[john];[fido].

p --> [to].

vt --> [loves].

vd --> [gives].

Towards a Prolog encoding of strong UDCs 16


