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What we covered

1. Finite state machines and regular languages

2. Implementing finite state machines and learning Prolog along the way

3. Towards more complex grammar formalisms: Formal language theory

4. More on recursive relations in Prolog

5. From context free grammars to definite clause grammars

6. What to encode in a grammar: A DCG for English

7. How to process with a grammar: Intro to Parsing

8. Parsing strategies and their implementation
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9. Remembering sub-results: Well-formed substring tables/CYK

10. Implementation of CYK

11. Remembering subcomputations: The active chart/Earley

12. More complex data structures: From atomic symbols to first order terms
to feature structures

13. Term and feature structure unification

14. An brief introduction to the typed-feature based parsing system Trale

15. PATR-II and Parsing with complex categories

16. Chart-Parsing with complex categories
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Finite State Techniques

Objectives:

• Introduce notions of finite state machine and finite state transducer.

Comprehension:

• What is the difference between an initial and a final state in an FSM?

• What causes non-determinism in an FSM?

• What is the difference between an FSM and an FST?

• What is the relation between regular expressions and FSMs?
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Abilities:

• Translate between FSTNs, transition tables and regular expressions.

• Explain what determinism means for FSMs and FSTs.

• Specify simple FSMs and FSTs.

• Give two procedural, and one declarative, interpretation for a given
FSTN.
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Basic Formal Language Theory

Objectives:

• To introduce the idea that it is possible to formally describe languages
and that according to what description language you choose it may or
may not be possible to describe a given language in it.

• To introduce the major formal framework for describing languages that is
used in mathematics and theoretical computer science: formal language
theory.

• In particular, to cover the basics of set theory, the definition of what a
language is, grammars and automata and the Chomsky hierarchy.
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Comprehension:

• According to the formal definitions, how is a language (in general) related
to its vocabulary?

• What has to be specified in order to define a grammar?

• Why are different kinds of automata associated with different classes of
languages?

• What are the main components of an automaton?

• What does the word “generate” mean, in the technical sense used here?

• What is a type 3 device, what is the corresponding type of language and
what kinds of rules does one have to use in defining such a language?
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• Name a typical example of a context free language that is not a regular
language.

• Name a typical example of a context sensitive language that is not
context free.

• What sort of input can formal language theory give into the study of
languages?

Abilities:

• Explain the relations between automata and grammars.

• Cite examples of languages of different types and give grammars for
them.

• Parse and generate with grammars of types 1, 2, and 3 by hand.
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DCGs as Grammar Formalism

Objectives:

• To introduce the definite clause grammar (DCG) formalism.

• To show how a DCG can be regarded as a shorthand for a description of
the language written in logic.

• To show the basis of a context-free grammar of English, using X-bar
theory and the DCG notation.

• To show how a feature-based notation for grammars can capture
appropriate generalisations but not prevent the grammar from being
context-free (because the features all take a finite number of possible
values).
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• To discuss the distinction between complementation and modification.

Comprehension:

• What are the five main extensions to basic DCGs that are described?

• Give three ways of representing strings and substrings in translating a
DCG into logic.

• In X-bar theory, how many bars are assigned to a noun? a noun phrase?
a verb? a verb phrase? a preposition? a prepositional phrase? an
adjective? an adjectival phrase?

• State some possible values of the vform feature and what they represent.

• Give an example of where a verb subcategorises for a given complement.
Do the same for a noun and an adjective.
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Abilities:

• Use DCGs to write grammars for context-free languages.

• Say whether a given DCG is equivalent to a context-free grammar.

• Explain how grammar description can be viewed as writing axioms in
logic.

• Explain and exemplify the use of finite-valued features in a grammar for
English, in particular the use of the subcat feature to mediate between
lexical entries and grammar rules.

• Distinguish between complementation and modification and explain how
this might be represented in phrase structure.

• Complete the grammar above by writing appropriate lexical entries and
modifier rules, and extend its coverage to new lexical items.
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Unbounded Dependencies in DCGs

Objectives:

• To describe what “unbounded dependencies” are (and how they differ
from “bounded dependencies”) in natural language constructions.

• To show how gap threading can be used within a DCG elegantly to
describe examples of unbounded dependency constructions.

Abilities:

• Explain what makes UDCs unbounded.

• Give examples of different UDCs.

• Give example gap-threading grammars, describe how they account for the
data that they do, and show the patterns of gap arguments in example
derivations. 12



Computability and Complexity

Objectives:

• To introduce standard terminology and concepts that are used to analyse
whether a given task can be performed by a computer and, if so, how
efficiently. These come from the areas of Computability Theory and
Complexity Theory.

• To show what results this can give us about the complexity of tasks
involving languages of the different Chomsky types.

• To show that efficiency considerations hence lead one to prefer grammars
with types high in the Chomsky hierarchy – a preference that pulls in the
opposite direction to the requirements of expressivity investigated in the
last chapter.
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Comprehension:

• Why is the idea of a Turing Machine introduced in computability theory?

• What is a decidable problem?

• Is logarithmic complexity better than linear complexity?

• What is an intractable algorithm?

• For which classes of languages is recognition in the worst case intractable?

• Why is the complexity of parsing (for some senses of the word) worse
than that of recognition?
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Abilities:

• Understand and use terms like “decidable”, “intractable” and
“polynomial complexity”.

• Appreciate the relevance of these terms to Computational Linguistics
and also the limits of their usefulness.

• Analyse simple programs in terms of their complexity.
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Introduction to Parsing

Objectives:

• To describe the conditions that a good parser must satisfy.

• To introduce the basic distinctions between parsing strategies:

– top-down vs. bottom-up
– left-right vs. right-left
– depth-first vs. breadth-first

• To locate the standard DCG parsing strategy in the space of possible
parsing strategies.
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Comprehension:

• Why would it be trivial to produce a parser that was correct but not
complete?

• Which kind of parsing has trouble with left-recursion?

• Is shift-reduce parsing top-down or bottom-up?

• If a parsing search space is infinite but completeness if required, would it
be better to use depth-first or breadth-first?

• Is standard DCG parsing top-down or bottom-up?

• Does standard DCG parsing have trouble with epsilon productions?

• What do the shift and reduce operations do in a shift-reduce recogniser?
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• Why is it useful to add an “oracle” to a left-corner interpreter?

Abilities:

• List the dimensions along which Context Free parsing algorithms may be
classified.

• Explain the differences between top-down and bottom-up, depth-first
and breadth-first.

• Explain what kind of parser results from the standard compilation from
DCGs into Prolog.

• Give the steps taken by Prolog in parsing a sentence with a given
compiled DCG.
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• Describe the reasons for non-termination of parsing with certain
grammars and exemplify such grammars.

• Write interpreters in Prolog for left-corner and shift-reduce recognition.

• Explain how a left-corner parser can be equipped with an oracle, and
why this is useful.
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Well-Formed Substring Tables

Objectives:

• To explain the inefficiencies of backtrack parsing and the need for the
parser to have a memory of what it has already done. This motivates
the use of both well-formed substring tables introduced in this chapter
and charts discussed in the next chapter.

• To describe the CKY algorithm, the standard use of a well-formed
substring table.

Comprehension:

• Give an example where a backtrack recogniser will duplicate work
unnecessarily.
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• Is the CKY algorithm left-to-right or right-to-left?

• Is the CKY algorithm top-down or bottom-up?

• What is the computational complexity of recognition by the CKY
algorithm?

• If in the CKY algorithm categories stored in the chart were replaced by
parse trees, why would the complexity then be at worst exponential?
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The Active Chart

Objectives:

• To introduce dotted rules as the key to generalising the CKY algorithm.

• To show Earley’s algorithm for recognition using a chart.

• To show how variations on Earley’s algorithm can be made.

Comprehension:

• What is a dotted rule?

• Which kinds of dotted rules correspond to the entries made in the CKY
algorithm?
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• What is the difference between an active and an inactive (passive) edge?

• Does prediction apply to inactive or active edges?

• Does completion apply to active or inactive edges?

• What kind of existing edges are looked for in completion?

• Does scanning apply to active or inactive edges?

• What kind of existing edges are looked for in scanning?

Abilities:

• Explain the fundamental rule and the active chart parsing algorithm

• Exemplify the algorithm parsing a simple sentence
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Introduction to Unification

Objectives:

• To motivate the need for a unification operation for grammars with
features.

• To describe how term unification works in Prolog and DCGs.

• To indicate that graph unification has some advantages over this.

• To introduce PATR-II, a DCG-like notation which uses graph unification,
rather than term unification.
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Comprehension:

• What does term unification do when presented with two terms with the
same functor but different number of arguments?

• What does term unification do when presented with X and f(X) (where
X is the same in both inputs)? What should it do?

• How does one draw a complex feature structure as a DAG?

• What is reentrancy?

• How are categories like S, NP dealt with in the example PATR-II
grammar?
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Abilities:

• Describe the term unification algorithm and how it is used in Prolog.

• Discuss the advantages and disadvantages of term and graph unification.

• Explain the PATR-II notation and give simple example grammar rules
using it.
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Implementing PATR-II

Objectives:

• To show how feature structures and graph unification can be implemented
in Prolog.

• To show what is involved in constructing a simple Prolog implementation
of PATR-II.

• To show a new approach to subcategorisation, similar in spirit to that
used in Categorial Grammar, expressed in PATR-II.
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Comprehension:

• What are the main predicates that need to be defined for a PATR-II
interpreter in Prolog, and what arguments do they take?

• Why are feature structures represented by lists terminating in variables?

• In the approach to subcategorisation shown, what is the format of the
subcategorisation list associated with a word?

Abilities:

• Explain how representing feature-structures (graphs) as lists with a
variable tail allows a graph unification operator to be defined in Prolog,
and give that definition.
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Parsing with Unification Grammars

Objectives:

• To spell out the possible ways that a parser for unification grammars
(e.g. PATR-II grammars) might be constructed.

• To show the ways in which the design of a parser that deals with UGs
directly has to be more complex than a parser for context-free grammars.

Comprehension:

• What are the three possible ways discussed of implementing a parser for
unification grammars?
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• What does a dotted rule look like for a unification grammar?

• Where is unification used in the fundamental rule and in prediction?

• Why do chart edges have to be copied when they combine together?

• What is the appropriate test to use to see whether a new edge “is already
in the chart”?

• What technique can handle loops involving repeated prediction?

• What is the purpose of indexing in a chart parser?

Abilities:

• Design the basic components and algorithms for a chart parser for
PATR-II grammars.
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