Exercise sheet 2

（Submit by email to dm＠ling．osu．edu before class on Tuesday，January 20）

Provide Prolog definitions for the following relations．Thoroughly test it before handing it in！
1．next＿to＿last／2：a two place relation which takes a list as first argument and returns the next to last element of that list（if there is one）as second argument；i．e．，
last（＋List，－Next－to－Last－List－element）
Example queries：

```
?- next_to_last([a,b,c,d]),X). # X=c
?- next_to_last([a,b,c],X). 稙 X=b
?- next_to_last([],X). # no
```

2．wrap＿with＿f／2：a two place relation which takes a list and returns the same list with the functor f wrapped around every element；i．e．，wrap＿with＿f（＋List，－List－With－f－Wrapped－Elements）

Example queries：

```
?- wrap_with_f([a,b,c,d],X). # [f(a),f(b),f(c),f(d)]
?- wrap_with_f([],X). # X=[]
```

3．delete＿b／2：a two place relation which takes a list and deletes one occurrence of b （if there is one）；i．e．，delete＿b（＋List，－List－with－one－b－less）

Example queries：

```
?- delete_b([b,e,b,d],X). # X=[e,b,d]; X=[b,e,d]
?- delete_b([e,b,c,b,g,h],X). # X=[e,c,b,g,h]; X=[e,b,c,g,h]
?- delete_b([e,g,b],X). # X=[e,g]
?- delete_b([e,g,b,b],X). # X=[e,g,b]; X=[e,g,b]
?- delete_b([e,c],X). # no
```

Define the relation delete＿one＿b that removes only the first occurrence of ab．

```
?- delete_one_b([b,e,b,d],X). 缶 X=[e,b,d]
?- delete_one_b([e,b,c,b,g,h],X). # X=[e,c,b,g,h]
?- delete_one_b([e,g,b],X). # X=[e,g]
?- delete_one_b([e,g,b,b],X). 稙 X=[e,g,b]
?- delete_one_b([e,c],X). # no
```

4．last＿added＿first／2：a two place relation which takes a list and returns the same list with the last element of the input list added to the beginning of the result；i．e．， last＿added＿first（＋List，－List－With－Last－Added－First）

Example queries：

$$
\begin{aligned}
& \text { ?- last_added_first }([a, b, c, d], X) . \Rightarrow[d, a, b, c, d] \\
& \text { ?- last_added_first }([a, b, c], X) . \Rightarrow[c, a, b, c] \\
& \text { ?- last_added_first }([], X) . \Rightarrow \text { no }
\end{aligned}
$$

5．in＿list／2：a two place relation which succeeds if the first list is a sublist（with sublist being reflexive）of the second；i．e．，in＿list（＋Sublist，+ List）

Example queries：

```
?- in_list([b,c],[a,b,c,d]). # yes
?- in_list([b,c],[b,c]). # yes
?- in_list([b,c],[a,b,b,c,d]). => yes
?- in_list([a,b],[a,b,c,d]). #yes
?- in_list([a,b,c],[a,b,c,d]).=> yes
?- in_list([a],[a,b,c,d]). => yes
?- in_list([],[a,b,c,d]). => no
?- in_list([a,c],[a,b,c,d]). 吘 no
?- in_list([b,d],[a,b,c,d]). 吾的
```

6． $\mathrm{mix} / 2$ ：a two place relation which takes a list as its first argument and returns as second argument each list that consists of all and only the elements of the input list in any order of occurrence；i．e．，mix（＋List，－Mixed－list）

Example queries：

$$
\begin{aligned}
& ?-\operatorname{mix}([a, b, c], X) . \Rightarrow X=[a, b, c] ; X=[b, a, c] ; X=[b, c, a] ; X=[a, c, b] \\
& ; X=[c, a, b] ; X=[c, b, a]
\end{aligned}
$$

Hint：in defining mix it is useful to define an auxiliary relation insert which inserts a single element into an input list at any arbitrary position of the list and returns this newly constructed list．

