
More useful tasks involving language

• Look up the following words in a dictionary:

laughs, became, unidentifiable, Thatcherization

• Determine the part-of-speech of words like the following, even if you
can’t find them in the dictionary:

conurbation, cadence, disproportionality, lyricism, parlance

⇒ Such tasks can be addressed using so-called finite-state machines.

⇒ How can such machines be specified?

3

Regular expressions

• A regular expression is a description of a set of strings, i.e., a
language.

• They can be used to search for occurrences of these strings

• A variety of unix tools (grep, sed), editors (emacs), and programming
languages (perl, python) incorporate regular expressions.

• Just like any other formalism, regular expressions as such have no
linguistic contents, but they can be used to refer to linguistic units.

4

Finite-State Machines and Regular Languages

Detmar Meurers: Intro to Computational Linguistics I
OSU, LING 684.01, 8. January 2004

Some useful tasks involving language

• Find all phone numbers in a text, e.g., occurrences such as

When you call (614) 292-8833, you reach the fax machine.

• Find multiple adjacent occurrences of the same word in a text, as in

I read the the book.

• Determine the language of the following utterance: French or Polish?

Czy pasazer jadacy do Warszawy moze jechac przez Londyn?

2

The syntax of regular expressions (3)

Operator precedence, from highest to lowest:

parentheses ()

counters * + ?

character sequences

disjunction |

Note: The various unix tools and languages differ w.r.t. the exact syntax
of the regular expressions they allow.

7

Regular languages

How can the class of regular languages which is specified by regular
expressions be characterized?

Let Σ be the set of all symbols of the language, the alphabet, then:

1. {} is a regular language

2. ∀a ∈ Σ: {a} is a regular language

3. If L1 and L2 are regular languages, so are:

(a) the concatenation of L1 and L2: L1 · L2 = {xy|x ∈ L1, y ∈ L2}
(b) the union of L1 and L2: L1 ∪ L2

(c) the Kleene closure of L: L∗ = L0 ∪ L1 ∪ L2 ∪ ... where Li is the
language of all strings of length i.

8

The syntax of regular expressions (1)

Regular expressions consist of

• strings of characters: c, A100, natural language, 30 years!

• disjunction:

– ordinary disjunction: devoured|ate, famil(y|ies)
– character classes: [Tt]he, bec[oa]me
– ranges: [A-Z] (a capital letter)

• negation:[â] (any symbol but a)
[Â-Z0-9] (not an uppercase letter or number)

5

The syntax of regular expressions (2)

• counters

• optionality: ?
colou?r

• any number of occurrences: * (Kleene star)
[0-9]* years

• at least one occurrence: +
[0-9]+ dollars

• wildcard for any character: .
beg.n for any character in between beg and n

6

Finite state machines

Finite state machines (or automata) (FSM, FSA) recognize or generate
regular languages, exactly those specified by regular expressions.

Example:

• Regular expression: colou?r

• Finite state machine:

0

1

2

3

456
c

r

u r
olo

11

Defining finite state automata

A finite state automaton is a quintuple (Q, Σ, E, S, F) with

• Q a finite set of states

• Σ a finite set of symbols, the alphabet

• S ⊆ Q the set of start states

• F ⊆ Q the set of final states

• E a set of edges Q × (Σ ∪ {ǫ}) × Q

The transition function d can be defined as

d(q, a) = {q′ ∈ Q|∃(q, a, q′) ∈ E}

12

Properties of regular languages

The regular languages are closed under (L1 and L2 regular languages):

• concatenation: L1 · L2

set of strings with beginning in L1 and continuation in L2

• Kleene closure: L∗

1

set of repeated concatenation of a string in L1

• union: L1 ∪ L2

set of strings in L1 or in L2

• complementation: Σ∗ − L1

set of all possible strings that are not in L1

• difference: L1 − L2

set of strings which are in L1 but not in L2

9

• intersection: L1 ∩ L2

set of strings in both L1 and L2

• reversal: LR
1

set of the reversal of all strings in L1

10

Example for a finite state transition network

S0 S3

S1

S2

a

c

b

b

b

Regular expression specifying the language generated or accepted by
the corresponding FSM: ab|cb+

15

Finite state transition tables

Finite state transition tables are an alternative, textual way of describing
finite state machines:

• the rows represent the states

• start states are marked with a dot after their name
• final states with a colon

• the columns represent the alphabet

• the fields in the table encode the transitions

16

Language accepted by an FSA

The extended set of edges Ê ⊆ Q×Σ∗×Q is the smallest set such that

• ∀(q, σ, q′) ∈ E : (q, σ, q′) ∈ Ê

• ∀(q0, σ1, q1), (q1, σ2, q2) ∈ Ê : (q0, σ1σ2, q2) ∈ Ê

The language L(A) of a finite state automaton A is defined as

L(A) = {w|qs ∈ S, qf ∈ F, (qs, w, qf) ∈ Ê}

13

Finite state transition networks (FSTN)

Finite state transition networks are graphical descriptions of finite state
machines:

• nodes represent the states

• start states are marked with a short arrow
• final states are indicated by a double circle

• arcs represent the transitions

14

Deterministic Finite State Automata

A finite state automaton is deterministic iff it has

• no ǫ transitions and

• for each state and each symbol there is at most one applicable
transition.

Every non-deterministic automaton can be transformed into a
deterministic one:

• Define new states representing a disjunction of old states for each
non-determinacy which arises.

• Define arcs for these states corresponding to each transition which
is defined in the non-deterministic automaton for one of the disjuncts
in the new state names.

19

Example: Determinization of FSA

�
6

��
��

��
��

��
��

��
��

��
��

��
��
��
��

������

PPPPPq

? ?

HHHHHHHHHHHHj

Z
Z

Z
Z

Z~

� C

CO

-

-

?

�
�

�
��+

a

e

e

c a

a

c

d

b

c

1

2 3

4 5

6

 #

��
��

��
��

��
��

��
��

��
��

��
��
��
��

��
��

��
��

"!
��

��

������

PPPPPq

? ?

Z
Z

Z
Z

Z~

?

�
�

�
��+

PPPPPq

?

C
CW

����

XXXXXXXXz

�
�
��B

B
BBN

a

c a

a

d

b1

2 3

4 5

6

{3,5}

{5,6}

{4,5}

c

a

ae

e

c, a

20

The example specified as finite state transition table

a b c d
S0. S1 S2
S1 S3:
S2 S2,S3:
S3:

17

Some properties of finite state machines

• Recognition problem can be solved in linear time (independent of the
size of the automaton).

• There is an algorithm to transform each automaton into a unique
equivalent automaton with the least number of states.

18

Summary

• Notations for characterizing regular languages:

• Regular expressions
• Finite state transition networks
• Finite state transition tables

• Finite state machines and regular languages: Definitions and some
properties

• Finite state transducers

23

Reading assignment 2

• Chapter 1 “Finite State Techniques” of course notes

• Chapter 2 “Regular expressions and automata” of
Jurafsky and Martin (2000)

24

From Automata to Transducers

Needed: mechanism to keep track of path taken

A finite state transducer is a 6-tuple (Q, Σ1, Σ2, E, S, F) with

• Q a finite set of states

• Σ1 a finite set of symbols, the input alphabet

• Σ2 a finite set of symbols, the output alphabet

• S ⊆ Q the set of start states

• F ⊆ Q the set of final states

• E a set of edges Q × (Σ1 ∪ {ǫ}) × Q × (Σ2 ∪ {ǫ})

21

Transducers and determinization

A finite state transducer understood as consuming an input and
producing an output cannot generally be determinized.

Example:
�#

& !

h��
��

��
����

��
��
��

HHHHHHHHHHHj

�����������:XXXXXXXXXXz

�����������*

-

A
AU

�

�
�
��� A

A
A
AAU

c:c

b:b

a:b

a:c

:c

:b

a

a

22

