Finite-State Machines and Regular Languages

Detmar Meurers: Intro to Computational Linguistics I OSU, LING 684.01, 8. January 2004

More useful tasks involving language

- Look up the following words in a dictionary:
laughs, became, unidentifiable, Thatcherization
- Determine the part-of-speech of words like the following, even if you can't find them in the dictionary:
conurbation, cadence, disproportionality, lyricism, parlance
\Rightarrow Such tasks can be addressed using so-called finite-state machines.
\Rightarrow How can such machines be specified?

Regular expressions

- A regular expression is a description of a set of strings, i.e., a language.
- They can be used to search for occurrences of these strings
- A variety of unix tools (grep, sed), editors (emacs), and programming languages (perl, python) incorporate regular expressions.
- Just like any other formalism, regular expressions as such have no linguistic contents, but they can be used to refer to linguistic units.

The syntax of regular expressions (1)

Regular expressions consist of

- strings of characters: c, A100, natural language, 30 years!
- disjunction:
- ordinary disjunction: devoured|ate, famil(y|ies)
- character classes: [Tt]he, bec [oa]me
- ranges: [A-Z] (a capital letter)
- negation: [^a] (any symbol but a)
[^A-Z0-9] (not an uppercase letter or number)

The syntax of regular expressions (3)

Operator precedence, from highest to lowest:
parentheses ()
counters * + ?
character sequences
disjunction |

Note: The various unix tools and languages differ w.r.t. the exact syntax of the regular expressions they allow.

The syntax of regular expressions (2)

- counters
- optionality: ?
colou?r
- any number of occurrences: * (Kleene star) [0-9]* years
- at least one occurrence: +
[0-9]+ dollars
- wildcard for any character:
beg.n for any character in between beg and n

Regular languages

How can the class of regular languages which is specified by regular expressions be characterized?

Let Σ be the set of all symbols of the language, the alphabet, then:

1. $\}$ is a regular language
2. $\forall a \in \Sigma:\{a\}$ is a regular language
3. If L_{1} and L_{2} are regular languages, so are
(a) the concatenation of L_{1} and $\mathrm{L}_{2}: L_{1} \cdot L_{2}=\left\{x y \mid x \in L_{1}, y \in L_{2}\right\}$
(b) the union of L_{1} and $\mathrm{L}_{2}: L_{1} \cup L_{2}$
(c) the Kleene closure of $\mathrm{L}: L^{*}=L_{0} \cup L_{1} \cup L_{2} \cup \ldots$ where L_{i} is the language of all strings of length i.

Properties of regular languages

The regular languages are closed under (L_{1} and L_{2} regular languages):

- concatenation: $L_{1} \cdot L_{2}$
set of strings with beginning in L_{1} and continuation in L_{2}
- Kleene closure: L_{1}^{*}
set of repeated concatenation of a string in L_{1}
- union: $L_{1} \cup L_{2}$
set of strings in L_{1} or in L_{2}
- complementation: $\Sigma^{*}-L_{1}$
set of all possible strings that are not in L_{1}
- difference: $L_{1}-L_{2}$
set of strings which are in L_{1} but not in L_{2}
- intersection: $L_{1} \cap L_{2}$
set of strings in both L_{1} and L_{2}
- reversal: L_{1}^{R}
set of the reversal of all strings in L_{1}

Finite state machines

Finite state machines (or automata) (FSM, FSA) recognize or generate regular languages, exactly those specified by regular expressions.

Example:

- Regular expression: colou?r
- Finite state machine:

Defining finite state automata

A finite state automaton is a quintuple (Q, Σ, E, S, F) with

- Q a finite set of states
- Σ a finite set of symbols, the alphabet
- $S \subseteq Q$ the set of start states
- $F \subseteq Q$ the set of final states
- E a set of edges $Q \times(\Sigma \cup\{\epsilon\}) \times Q$

The transition function d can be defined as
$d(q, a)=\left\{q^{\prime} \in Q \mid \exists\left(q, a, q^{\prime}\right) \in E\right\}$

Language accepted by an FSA

The extended set of edges $\hat{E} \subseteq Q \times \Sigma^{*} \times Q$ is the smallest set such that

- $\forall\left(q, \sigma, q^{\prime}\right) \in E: \quad\left(q, \sigma, q^{\prime}\right) \in \hat{E}$
- $\forall\left(q_{0}, \sigma_{1}, q_{1}\right),\left(q_{1}, \sigma_{2}, q_{2}\right) \in \hat{E}: \quad\left(q_{0}, \sigma_{1} \sigma_{2}, q_{2}\right) \in \hat{E}$

The language $L(A)$ of a finite state automaton A is defined as $L(A)=\left\{w \mid q_{s} \in S, q_{f} \in F,\left(q_{s}, w, q_{f}\right) \in \hat{E}\right\}$

Finite state transition networks (FSTN)

Finite state transition networks are graphical descriptions of finite state machines:

- nodes represent the states
- start states are marked with a short arrow
- final states are indicated by a double circle
- arcs represent the transitions

Example for a finite state transition network

Regular expression specifying the language generated or accepted by the corresponding FSM: ab|cb+

Finite state transition tables

Finite state transition tables are an alternative, textual way of describing finite state machines:

- the rows represent the states
- start states are marked with a dot after their name
- final states with a colon
- the columns represent the alphabet
- the fields in the table encode the transitions

The example specified as finite state transition table

	a	b	c	d
S0.	S1		S2	
S1		S3:		
S2		S2,S3:		
S3:				

Deterministic Finite State Automata

A finite state automaton is deterministic iff it has

- no ϵ transitions and
- for each state and each symbol there is at most one applicable transition.

Every non-deterministic automaton can be transformed into a deterministic one:

- Define new states representing a disjunction of old states for each non-determinacy which arises.
- Define arcs for these states corresponding to each transition which is defined in the non-deterministic automaton for one of the disjuncts in the new state names.

Example: Determinization of FSA

From Automata to Transducers

Needed: mechanism to keep track of path taken

A finite state transducer is a 6-tuple $\left(Q, \Sigma_{1}, \Sigma_{2}, E, S, F\right)$ with

- Q a finite set of states
- Σ_{1} a finite set of symbols, the input alphabet
- Σ_{2} a finite set of symbols, the output alphabet
- $S \subseteq Q$ the set of start states
- $F \subseteq Q$ the set of final states
- E a set of edges $Q \times\left(\Sigma_{1} \cup\{\epsilon\}\right) \times Q \times\left(\Sigma_{2} \cup\{\epsilon\}\right)$

Transducers and determinization

A finite state transducer understood as consuming an input and producing an output cannot generally be determinized.
Example:

Summary

- Notations for characterizing regular languages:
- Regular expressions
- Finite state transition networks
- Finite state transition tables
- Finite state machines and regular languages: Definitions and some properties
- Finite state transducers

Reading assignment 2

- Chapter 1 "Finite State Techniques" of course notes
- Chapter 2 "Regular expressions and automata" of Jurafsky and Martin (2000)

