Remembering subresults (Part I): Well-formed substring tables

Detmar Meurers: Intro to Computational Linguistics I OSU, LING 684.01, 12. February 2004

Problem: Inefficiency of recomputing subresults

Two example sentences and their potential analysis:
(1) He [gave [the young cat] [to Bill]].
(2) He [gave [the young cat] [some milk]].

The corresponding grammar rules:

```
vp ---> [v_ditrans, np, pp_to].
vp ---> [v_ditrans, np, np].
```


Solution: Memoization

- Store intermediate results:
a) completely analyzed constituents: well-formed substring table or (passive) chart
b) partial and complete analyses: (active) chart
- All intermediate results need to be stored for completeness.
- All possible solutions are explored in parallel.

CFG Parsing: The Cocke Younger Kasami Algorithm

- Grammar has to be in Chomsky Normal Form (CNF), only
- RHS with a single terminal: $A \rightarrow a$
- RHS with two non-terminals: $A \rightarrow B C$
- no ϵ rules $(A \rightarrow \epsilon)$
- A representation of the string showing positions and word indices:

$$
{ }_{0} w_{1} \cdot{ }_{1} w_{2} \cdot{ }_{2} w_{3} \cdot{ }_{3} w_{4} \cdot{ }_{4} w_{5} \cdot{ }_{5} w_{6} \cdot{ }_{6}
$$

For example: $\quad{ }_{0}$ the \cdot_{1} young ${ }_{2}$ boy \cdot_{3} saw ${ }_{4}$ the ${ }_{5}$ dragon ${ }_{6}$

The well-formed substring table (= passive chart)

- The well-formed substring table, henceforth (passive) chart, for a string of length n is an $n \times n$ matrix.
- The field (i, j) of the chart encodes the set of all categories of constituents that start at position i and end at position j, i.e. $\operatorname{chart}(\mathrm{i}, \mathrm{j})=\left\{A \mid A \Rightarrow^{*} w_{i+1} \ldots w_{j}\right\}$
- The matrix is triangular since no constituent ends before it starts.

Coverage Represented in the Chart

An input sentence with 6 words:

$$
{ }_{0} w_{1} \cdot{ }_{1} w_{2}{ }_{2} w_{3} \cdot{ }_{3} w_{4} \cdot{ }_{4} w_{5}{ }_{5} w_{6}{ }_{6}
$$

Coverage represented in the chart:

FROM: | | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $0-1$ | $0-2$ | $0-3$ | $0-4$ | $0-5$ | $0-6$ |
| 1 | | $1-2$ | $1-3$ | $1-4$ | $1-5$ | $1-6$ |
| 2 | | | $2-3$ | $2-4$ | $2-5$ | $2-6$ |
| 3 | | | | $3-4$ | $3-5$ | $3-6$ |
| 4 | | | | | $4-5$ | $4-6$ |
| 5 | | | | | | $5-6$ |

Example for Coverage Represented in Chart

Example sentence:
${ }_{0}$ the ${ }_{1}$ young ${ }_{2}$ boy ${ }_{3}$ saw $\cdot{ }_{4}$ the ${ }_{5}$ dragon ${ }_{6}$

Coverage represented in chart:

	1	2	3	4	5	6
0	the	the young	the young boy	the young boy saw	the young boy saw the	the young boy saw the dragon
1		young	young boy	young boy saw	young boy saw the	young boy saw the dragon
2			boy	boy saw	boy saw the	boy saw the dragon
3				saw	saw the	saw the dragon
4					the	the dragon
5						dragon

An Example for a Filled-in Chart

Input sentence:

${ }_{0}$ the ${ }_{1}$ young ${ }_{2}$ boy \cdot_{3} saw \cdot_{4} the ${ }_{5}$ dragon ${ }_{6}$

Chart:

	1	2	3	4	5	6
0	$\{$ Det $\}$	$\}$	$\{N P\}$	$\}$	$\}$	$\{S\}$
1		$\{\operatorname{Adj}\}$	$\{N\}$	$\}$	$\}$	$\}$
2			$\{N\}$	$\}$	$\}$	$\}$
3				$\{\mathrm{~V}, \mathrm{~N}\}$	$\}$	$\{\mathrm{VP}\}$
4					$\{$ Det $\}$	$\{\mathrm{NP}\}$
5						$\{\mathrm{~N}\}$

Grammar:
$S \rightarrow N P V P$
$\mathrm{VP} \rightarrow \mathrm{Vt}$ NP
$N P \rightarrow \operatorname{Det} N$
$\mathrm{N} \rightarrow$ Adj N
Vt \rightarrow saw
Det \rightarrow the
Det \rightarrow a
$N \rightarrow$ dragon
$\mathrm{N} \rightarrow$ boy
$\mathrm{N} \rightarrow$ saw
Adj \rightarrow young

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0						
1						
2						
3						
4						
5						

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { } \quad \text { exical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1					
1						
2						
3						
4						
5						

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { } \quad \text { exical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1					
1		2				
2						
3						
4						
5						

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { } \quad \text { exical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3				
1		2				
2						
3						
4						
5						

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { } \quad \text { exical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3				
1		2				
2			4			
3						
4						
5						

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { } \quad \text { exical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3				
1		2	5			
2			4			
3						
4						
5						

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { } \quad \text { exical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6			
1		2	5			
2			4			
3						
4						
5						

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { } \quad \text { exical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6			
1		2	5			
2			4			
3				7		
4						
5						

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { } \quad \text { exical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6			
1		2	5			
2			4	$\mathbf{8}$		
3				7		
4						
5						

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { } \quad \text { exical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6			
1		2	5	$\mathbf{9}$		
2			4	$\mathbf{8}$		
3				7		
4						
5						

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { } \quad \text { exical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10		
1		2	5	$\mathbf{9}$		
2			4	$\mathbf{8}$		
3				7		
4						
5						

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { } \quad \text { exical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10		
1		2	5	$\mathbf{9}$		
2			4	$\mathbf{8}$		
3				7		
4					11	
5						

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { lexical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10		
1		2	5	$\mathbf{9}$		
2			4	$\mathbf{8}$		
3				7	$\mathbf{1 2}$	
4					11	
5						

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { lexical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10		
1		2	5	$\mathbf{9}$		
2			4	$\mathbf{8}$	13	
3				7	12	
4					11	
5						

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { lexical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10		
1		2	5	$\mathbf{9}$	$\mathbf{1 4}$	
2			4	$\mathbf{8}$	13	
3				7	12	
4					11	
5						

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { lexical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10	15	
1		2	5	9	14	
2			4	$\mathbf{8}$	13	
3				7	12	
4					11	
5						

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { lexical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10	15	
1		2	5	9	14	
2			4	$\mathbf{8}$	13	
3				7	12	
4					11	
5						16

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { } \quad \text { exical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10	15	
1		2	5	9	14	
2			4	8	13	
3				7	12	
4					11	17
5						16

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { lexical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10	15	
1		2	5	9	14	
2			4	8	13	
3				7	12	18
4					11	17
5						16

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { lexical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10	15	
1		2	5	9	14	
2			4	8	13	19
3				7	12	18
4					11	17
5						16

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { } \quad \text { exical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10	15	
1		2	5	9	14	20
2			4	$\mathbf{8}$	13	19
3				7	12	18
4					11	17
5						16

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { lexical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

Filling in the Chart

- It is important to fill in the chart systematically.
- We build all constituents that end at a certain point before we build constituents that end at a later point.

	1	2	3	4	5	6
0	1	3	6	10	15	21
1		2	5	9	14	20
2			4	$\mathbf{8}$	13	19
3				7	12	18
4					11	17
5						16

$$
\begin{aligned}
& \text { for } j:=1 \text { to length }(\text { string }) \\
& \text { } \quad \text { exical_chart_fill }(j-1, j) \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \\
& \\
& \quad \text { syntactic_chart_fill }(i, j)
\end{aligned}
$$

lexical_chart_fill(j-1,j)

- Idea: Lexical lookup. Fill the field $(j-1, j)$ in the chart with the preterminal category dominating word j.
- Realized as:

$$
\operatorname{chart}(j-1, j):=\left\{\mathrm{X} \mid \mathrm{X} \rightarrow \operatorname{word}_{j} \in \mathrm{P}\right\}
$$

syntactic_chart_fill(i,j)

- Idea: Perform all reduction step using syntactic rules such that the reduced symbol covers the string from i to j.
- Realized as: $\operatorname{chart}(i, j)=\left\{\begin{array}{l|l}A & \begin{array}{l}A \rightarrow B C \in P, \\ i<k<j, \\ B \in \operatorname{chart}(i, k), \\ C \in \operatorname{chart}(k, j)\end{array}\end{array}\right\}$
- Explicit loops over every possible value of k and every context free rule: $\operatorname{chart}(i, j):=\{ \}$. for $k:=i+1$ to $j-1$
for every $A \rightarrow B C \in P$
if $B \in \operatorname{chart}(i, k)$ and $C \in \operatorname{chart}(k, j)$ then

$$
\operatorname{chart}(i, j):=\operatorname{chart}(i, j) \cup\{\mathrm{A}\} .
$$

The Complete CYK Algorithm

Input: start category S and input string

$$
\begin{aligned}
& n:=\text { length }(\text { string }) \\
& \text { for } j:=1 \text { to } n \\
& \quad \operatorname{chart}(j-1, j):=\left\{\mathrm{X} \mid \mathrm{X} \rightarrow \operatorname{word}_{j} \in \mathrm{P}\right\} \\
& \quad \text { for } i:=j-2 \text { down to } 0 \\
& \quad \operatorname{chart}(i, j):=\{ \} \\
& \quad \text { for } k:=i+1 \text { to } j-1 \\
& \quad \text { for every } A \rightarrow B C \in P \\
& \quad \text { if } B \in \operatorname{chart}(i, k) \text { and } C \in \operatorname{chart}(k, j) \text { then } \\
& \\
& \quad \operatorname{chart}(i, j):=\operatorname{chart}(i, j) \cup\{\mathrm{A}\}
\end{aligned}
$$

Output: if $S \in \operatorname{chart}(0, n)$ then accept else reject

Example Application of the CYK Algorithm

$$
\begin{array}{lll}
s \rightarrow n p v p & d \rightarrow \text { the } & \text { Lexical Entry: the } \\
n p \rightarrow d n & n \rightarrow d o g & (j=1, \text { field chart }(0,1)) \\
v p \rightarrow v n p & n \rightarrow \text { cat } & \\
& v \rightarrow \text { chases } &
\end{array}
$$

	1	2	3	4	5
0	d				
1					
2					
3					
4					

chases
3
4
5

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \text { dog } \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \text { cat } \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

	1	2	3	4	5
0	d				
1		$\boxed{\mathrm{n}}$			
2					
3					
4					

chases

3

4
5

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \text { cat } \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=2 \\
& i=0 \\
& k=1
\end{aligned}
$$

	1	2	3	4	5
0	d	$\boxed{n p}$			
1		\boxed{n}			
2					
3					
4					

the
4
5

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \mathrm{cat} \\
& v \rightarrow \text { chases }
\end{array}
$$

	1	2	3	4	5
0	d	np			
1		n			
2			\boxed{v}		
3					
4					

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{v} \mathrm{np} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=3 \\
& i=1 \\
& k=2
\end{aligned}
$$

	1	2	3	4	5
0	d	np			
1		\boxed{n}	\square		
2			\boxed{v}		
3					
4					

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=3 \\
& i=0 \\
& k=1
\end{aligned}
$$

	1	2	3	4	5
0	d	np	\square		
1		n	\square		
2			v		
3					
4					

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \mathrm{the} \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=3 \\
& i=0 \\
& k=2
\end{aligned}
$$

	1	2	3	4	5
0	d	$\boxed{\mathrm{np}}$	$\boxed{ }$		
1		n			
2			\boxed{v}		
3					
4					

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

	1	2	3	4	5
0	d	np			
1		n			
2			v		
3				d	
4					

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=4 \\
& i=2 \\
& k=3
\end{aligned}
$$

	1	2	3	4	5
0	d	np			
1		n			
2			\boxed{v}	\square	
3				\boxed{d}	
4					

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{v} \mathrm{np} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=4 \\
& i=1 \\
& k=2
\end{aligned}
$$

	1	2	3	4	5
0	d	np			
1		$\boxed{\mathrm{n}}$		\square	
2			v	\square	
3				d	
4					

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{v} \mathrm{np} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=4 \\
& i=1 \\
& k=3
\end{aligned}
$$

	1	2	3	4	5
0	d	np			
1		n	\square	\square	
2			V		
3				$\boxed{\mathrm{~d}}$	
4					

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=4 \\
& i=0 \\
& k=1
\end{aligned}
$$

	1	2	3	4	5
0	d	np		\square	
1		n		\square	
2			v		
3				d	
4					

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \mathrm{the} \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=4 \\
& i=0 \\
& k=2
\end{aligned}
$$

	1	2	3	4	5
0	d	$\boxed{n p}$		\square	
1		n			
2			v	\square	
3				d	
4					

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=4 \\
& i=0 \\
& k=3
\end{aligned}
$$

	1	2	3	4	5
0	d	np	$\boxed{ }$	\square	
1		n			
2			v		
3				\boxed{d}	
4					

Example Application of the CYK Algorithm

$$
\begin{array}{lll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } & \text { Lexical Entry: } \operatorname{dog} \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} & \\
\mathrm{vp} \rightarrow \mathrm{vpp} & \mathrm{n} \rightarrow \mathrm{cat} & \\
& \mathrm{v} \rightarrow \text { chases } &
\end{array}
$$

	1	2	3	4	5
0	d	np			
1		n			
2			v		
3				d	
4					n

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \text { dog } \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \text { cat } \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=5 \\
& i=3 \\
& k=4
\end{aligned}
$$

	1	2	3	4	5
0	d	np			
1		n			
2			v		
3				\boxed{d}	$\boxed{n p}$
4					\boxed{n}

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=5 \\
& i=2 \\
& k=3
\end{aligned}
$$

	1	2	3	4	5
0	d	np			
1		n			
2			v		vp
3				d	np
4					n

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \mathrm{the} \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=5 \\
& i=2 \\
& k=4
\end{aligned}
$$

	1	2	3	4	5
0	d	np			
1		n			
2			v	\square	vp
3				d	np
4					\boxed{n}

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{v} \mathrm{np} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=5 \\
& i=1 \\
& k=2
\end{aligned}
$$

	1	2	3	4	5
0	d	np			
1		\boxed{n}			\square
2			v		$\boxed{v p}$
3				d	np
4					n

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=5 \\
& i=1 \\
& k=3
\end{aligned}
$$

	1	2	3	4	5
0	d	np			
1		n	\square		\square
2			v		vp
3				d	np
4					n

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} v p & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vp} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=5 \\
& i=1 \\
& k=4
\end{aligned}
$$

	1	2	3	4	5
0	d	np			
1		n		\square	\square
2			v		vp
3				d	np
4					\boxed{n}

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=5 \\
& i=0 \\
& k=1
\end{aligned}
$$

	1	2	3	4	5
0	d	np			\square
1		n			\square
2			v		vp
3				d	np
4					n

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=5 \\
& i=0 \\
& k=2
\end{aligned}
$$

	1	2	3	4	5
0	d	np			$\boxed{ }$
1		n			
2			v		vp
3				d	np
4					n

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \mathrm{cat} \\
& \mathrm{v} \rightarrow \text { chases }
\end{array}
$$

$$
\begin{aligned}
& j=5 \\
& i=0 \\
& k=3
\end{aligned}
$$

	1	2	3	4	5
0	d	np	$\boxed{ }$		$\boxed{ }$
1		n			
2			v		vp
3				d	np
4					n

Example Application of the CYK Algorithm

$$
\begin{array}{ll}
\mathrm{s} \rightarrow \mathrm{np} \mathrm{vp} & \mathrm{~d} \rightarrow \text { the } \\
\mathrm{np} \rightarrow \mathrm{~d} \mathrm{n} & \mathrm{n} \rightarrow \mathrm{dog} \\
\mathrm{vp} \rightarrow \mathrm{vnp} & \mathrm{n} \rightarrow \mathrm{cat} \\
& v \rightarrow \text { chases }
\end{array}
$$

	1	2	3	4	5
0	d	np		\square	s
1		n			
2			v		vp
3				d	np
4					\boxed{n}

$$
\begin{aligned}
& j=5 \\
& i=0 \\
& k=4
\end{aligned}
$$

Dynamic knowledge bases in PROLOG

- Declaration of a dynamic predicate: dynamic/1 declaration, e.g:
:- dynamic chart/3.
to store facts of the form chart(From, To, Category):
- Add a fact to the database: assert/1, e.g.:
assert (chart (1, 3, np)) .
Special versions asserta/1/assertz/1 ensure adding facts first/last.
- Removing a fact from the database: retract/1, e.g.:
retract (chart(1, , , np)).
To remove all matching facts from the database use retractall/1

The CYK algorithm in PROLOG (parser/cky/cky.pl)

:- dynamic chart/3.
:- op(1100,xfx,'--->').
\% chart(From,To,Category)
\% Operator for grammar rules
\% recognize(+WordList,?Startsymbol) : top-level of CYK recognizer

```
recognize(String,Cat) :-
    retractall(chart(_,_,_)),
    length(String,N),
    fill_chart(String,0,N),
    chart(0,N,Cat).
    % initialize chart
    % determine length of string
    % call parser to fill the chart
    % check whether parse successful
```

\% fill_chart(+WordList,+Current minus one,+Last)
\% J-LOOP from 1 to n
fill_chart([],N,N).
fill_chart([W|Ws],JminOne,N) :-
J is JminOne + 1,
lexical_chart_fill(W, JminOne, J),
\%
I is J - 2,
syntactic_chart_fill(I,J),
\%
fill_chart(Ws,J,N).
\% lexical_chart_fill(+Word,+JminOne,+J)
\% fill diagonal with preterminals
lexical_chart_fill(W, JminOne, J) :(Cat ---> [W]), add_to_chart(JminOne, J, Cat), fail
; true.
\% syntactic_chart_fill(+I,+J)
\% I-LOOP from J-2 downto 0
syntactic_chart_fill(-1,_) :- !.
syntactic_chart_fill(I,J) :-
K is $\mathrm{I}+1$, build_phrases_from_to(I,K,J), \%
IminOne is I-1, syntactic_chart_fill(IminOne,J).
\% build_phrases_from_to (+I,+Current-K,+J)
\% K-LOOP from $\mathrm{I}+1$ to J-1
build_phrases_from_to(_, J, J) :- !. build_phrases_from_to(I,K,J) :-
chart (I,K,B),
chart (K, J, C),
(A ---> [B,C]), add_to_chart(I, J, A), fail
; KplusOne is $K+1$, build_phrases_from_to(I,KplusOne, J).

```
% add_to_chart(+Cat,+From,+To): add if not yet there
add_to_chart(From,To,Cat) :-
    chart(From,To,Cat),
    !.
add_to_chart(From,To,Cat) :-
    assertz(chart(From,To,Cat).
```

