Language and Computers

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

[^0]
Language and Computers - where to start?

- If we want to do anything with language, we need a way to represent language.

Language and

 ComputersTopic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Language and Computers - where to start?

- If we want to do anything with language, we need a way to represent language.
- We can interact with the computer in several ways:
- write or read text
- speak or listen to speech

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Language and Computers - where to start?

- If we want to do anything with language, we need a way to represent language.
- We can interact with the computer in several ways:
- write or read text
- speak or listen to speech
- Computer has to have some way to represent
- text
- speech

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Outline

Language and Computers

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Outline

Language and

 ComputersTopic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Outline

Language and

 ComputersTopic 1: Text and Speech Encoding

Writing systems

Encoding written language

Spoken language

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization

Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Outline

Topic 1: Text and Speech Encoding

Writing systems

Encoding written language

Spoken language

Relating written and spoken language

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Writing systems used for human languages

What is writing?
"a system of more or less permanent marks used to represent an utterance in such a way that it can be recovered more or less exactly without the intervention of the utterer."
(Peter T. Daniels, The World's Writing Systems) Computers

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Writing systems used for human languages

What is writing?
"a system of more or less permanent marks used to represent an utterance in such a way that it can be recovered more or less exactly without the intervention of the utterer."
(Peter T. Daniels, The World's Writing Systems)

Different types of writing systems are used:

- Alphabetic
- Syllabic
- Logographic

Much of the information on writing systems and the graphics used are taken from the amazing site http://www.omniglot.com.

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic

Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Alphabetic systems

Topic 1: Text and Speech Encoding

Alphabets (phonemic alphabets)

- represent all sounds, i.e., consonants and vowels
- Examples: Etruscan, Latin, Korean, Cyrillic, Runic, International Phonetic Alphabet

Writing systems

Alphabetic

Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Alphabetic systems

Topic 1: Text and Speech Encoding

Alphabets (phonemic alphabets)

- represent all sounds, i.e., consonants and vowels
- Examples: Etruscan, Latin, Korean, Cyrillic, Runic, International Phonetic Alphabet

Abjads (consonant alphabets)

- represent consonants only (sometimes plus selected vowels; vowel diacritics generally available)
- Examples: Arabic, Aramaic, Hebrew

Writing systems

Alphabetic

Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Alphabet example：Fraser

An alphabet used to write Lisu，a Tibeto－Burman language spoken by about 657，000 people in Myanmar，India，Thailand and in the Chinese provinces of Yunnan and Sichuan．

Consonants

Tones
high tone mid rising mid tone mid tense low tone low tense nasalization
（from：http：／／www．omniglot．com／writing／fraser．htm）

Topic 1：Text and Speech Encoding

Writing systems

Alphabetic

Syllabic
Logographic
Systems with unusual realization
Relation to language Comparison of systems

Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Abjad example: Phoenician

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic

Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

A note on the letter-sound correspondence

Language and

 ComputersTopic 1: Text and Speech Encoding

- Alphabets use letters to encode sounds (consonants, vowels).

Writing systems

Alphabetic

Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

A note on the letter-sound correspondence

- Alphabets use letters to encode sounds (consonants, vowels).
- But the correspondence between spelling and pronounciation in many languages is quite complex, i.e., not a simple one-to-one correspondence. Computers

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic

Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

A note on the letter-sound correspondence

- Alphabets use letters to encode sounds (consonants, vowels).
- But the correspondence between spelling and pronounciation in many languages is quite complex, i.e., not a simple one-to-one correspondence.
- Example: English Computers

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic

Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

A note on the letter-sound correspondence

- Alphabets use letters to encode sounds (consonants, vowels).
- But the correspondence between spelling and pronounciation in many languages is quite complex, i.e., not a simple one-to-one correspondence.
- Example: English
- same spelling - different sounds: ough: ought, cough, tough, through, though, hiccough

Topic 1: Text and Speech Encoding

Writing systems

Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

A note on the letter-sound correspondence

- Alphabets use letters to encode sounds (consonants, vowels).
- But the correspondence between spelling and pronounciation in many languages is quite complex, i.e., not a simple one-to-one correspondence.
- Example: English
- same spelling - different sounds: ough: ought, cough, tough, through, though, hiccough
- silent letters: knee, knight, knife, debt, psychology, mortgage

A note on the letter-sound correspondence

- Alphabets use letters to encode sounds (consonants, vowels).
- But the correspondence between spelling and pronounciation in many languages is quite complex, i.e., not a simple one-to-one correspondence.
- Example: English
- same spelling - different sounds: ough: ought, cough, tough, through, though, hiccough
- silent letters: knee, knight, knife, debt, psychology, mortgage
- one letter - multiple sounds: exit, use

Writing systems

Alphabetic

Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

A note on the letter-sound correspondence

- Alphabets use letters to encode sounds (consonants, vowels).
- But the correspondence between spelling and pronounciation in many languages is quite complex, i.e., not a simple one-to-one correspondence.
- Example: English
- same spelling - different sounds: ough: ought, cough, tough, through, though, hiccough
- silent letters: knee, knight, knife, debt, psychology, mortgage
- one letter - multiple sounds: exit, use
- multiple letters - one sound: the, revolution

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic

Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

A note on the letter-sound correspondence

- Alphabets use letters to encode sounds (consonants, vowels).
- But the correspondence between spelling and pronounciation in many languages is quite complex, i.e., not a simple one-to-one correspondence.
- Example: English
- same spelling - different sounds: ough: ought, cough, tough, through, though, hiccough
- silent letters: knee, knight, knife, debt, psychology, mortgage
- one letter - multiple sounds: exit, use
- multiple letters - one sound: the, revolution
- alternate spellings: jail or gaol; but not possible seagh for chef (despite sure, dead, laugh)

Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

More examples for non-transparent letter-sound correspondences

Language and

 ComputersTopic 1: Text and Speech Encoding

Writing systems

Alphabetic

Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

More examples for non-transparent letter-sound correspondences

 ComputersTopic 1: Text and Speech Encoding

French

(1) a. Versailles \rightarrow [versai]
b. ete, etais, etait, etaient \rightarrow [ete]

Irish
(2) a. Baile A'tha Cliath (Dublin) \rightarrow [bl'a: kli uh]
b. samhradh (summer) \rightarrow [sauruh]
c. scri'obhaim (I write) \rightarrow [shgrim]

Writing systems

Alphabetic

Syllabic
Logographic
Systems with unusual realization

Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

More examples for non-transparent letter-sound correspondences

 ComputersTopic 1: Text and Speech Encoding

French
(1) a. Versailles \rightarrow [versai]
b. ete, etais, etait, etaient \rightarrow [ete]

Irish
(2) a. Baile A'tha Cliath (Dublin) \rightarrow [bl'a: kli uh]
b. samhradh (summer) \rightarrow [sauruh]
c. scri'obhaim (I write) \rightarrow [shgrim]

What is the notation used within the $[$?

Writing systems

Alphabetic

Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

The International Phonetic Alphabet (IPA)

- Several special alphabets for representing sounds have been developed, the best known being the International Phonetic Alphabet (IPA).

Writing systems

Alphabetic

Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

The International Phonetic Alphabet (IPA)

- Several special alphabets for representing sounds have been developed, the best known being the International Phonetic Alphabet (IPA).
- The phonetic symbols are unambiguous:
- designed so that each speech sound gets its own symbol,
- eliminating the need for
- multiple symbols used to represent simple sounds
- one symbol being used for multiple sounds.

Writing systems

The International Phonetic Alphabet (IPA)

- Several special alphabets for representing sounds have been developed, the best known being the International Phonetic Alphabet (IPA).
- The phonetic symbols are unambiguous:
- designed so that each speech sound gets its own symbol,
- eliminating the need for
- multiple symbols used to represent simple sounds
- one symbol being used for multiple sounds.
- Interactive example chart: http://web.uvic.ca/ling/ resources/ipa/charts/IPAlab/IPAlab.htm

Writing systems

Syllabic systems

Syllabic alphabets (Alphasyllabaries)

- writing systems with symbols that represent a consonant with a vowel, but the vowel can be changed by adding a diacritic (= a symbol added to the letter).
- Examples: Balinese, Javanese, Tibetan, Tamil, Thai, Tagalog
(cf. also: http://www.omniglot.com/writing/syllabic.htm)

Syllabaries

- writing systems with separate symbols for each syllable of a language
- Examples: Cherokee. Ethiopic, Cypriot, Ojibwe, Hiragana (Japanese)
(cf. also: http://www.omniglot.com/writing/syllabaries.htm\#syll)

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic

Syllabic

Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Syllabary example：Cypriote

The Cypriot syllabary or Cypro－Minoan writing is thought to have developed from the Linear A，or possibly the Linear B script of Crete， though its exact origins are not known．It was used from about 800 to 200 $B C$ ．

＊+	※	\uparrow	\neq	\checkmark	》	\bar{T}	Ω	V	＜	$)($	0
－	ga	ka	pa	a	ma	na	ra	sa	va	＊a	ya
＊$\underline{\square}$		义	3	8	X	131	介	－	I	（ -1	
－te		ke	pe	＊	me	ne	re	se	ve	xe	
＊\uparrow		\bar{Y}	V	\leq	$\underline{\sim}$	y	－	上	》		
，		${ }^{\text {ki }}$	pi	${ }^{1 i}$	mi	ni	${ }^{\text {ri }}$	si	vi		
シ F		Π	S	t	（1）	7r	又	$\underline{\underline{2}}$	个	43	w
to		ko	po	b	mo	no	ro	so	vo	20	
$\uparrow F_{1}$		※	压	（1）	凶	\rangle	）（	）\dagger			
tu		ku	pu	14	mu	nu	ru	su	vu		

（from：http：／／www．omniglot．com／writing／cypriot．htm）

Language and
Computers
Topic 1：Text and Speech Encoding

Writing systems
Alphabetic

Syllabic

Logographic

Systems with unusual realization
Relation to language Comparison of systems

Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Syllabic alphabet example：Lao

Script developed in the 14th century to write the Lao language，based on an early version of the Thai script，which was developed from the Old Khmer script，which was itself based on Mon scripts．

Example for vowel diacritics around the letter k ：

ฎ）$\stackrel{\text { \％}}{ }$	ภ）	১）	$\stackrel{๑}{\curvearrowright}$	ฎ）	久	δ_{2}	ஓ	¢ை）	665%
ka	ki	ku	ku＇	ka：	ki：	ku：	ku：＇	ke	kae
［ka］	［ ki ］	［ ku］	［ km ］	［ ka：］	［ ki：］	［ ku：］	［ ku：］	［ ke］	［kae］
¢ฎ\％	な）	665	ใ8）	（2）$)^{\circ}$	¢ว）	¢วัธ	Сวை	วอ	GूS
ko	ke：	kae：	ko：	ko＇	koe	kia	kia	kua	koe：y
［ ko ］	［ ke：］	［ $\mathrm{kæ}$ ］	［ ko：］	［ ko ］	［ $\mathrm{k} \times$ ］	［ kia ］	［ kia ］	［ kue］	［ $k \times: j$ ］
ธิ่ย	ฎ）	¢ว）	டேٌ9	Ґஓ๐	95	¢ヵ）	ภ๐）	ฎ）	
koe：y	ko＇：	koe：	ku＇a	kaw	kay	kay	kam	k	
［kr：j］	［ $\mathrm{kJ}:$ ］	［ $\mathrm{kr}:$ ］	［kue］	［ kaw］	［ kaj］	［ kaj ］	［ kam］	［k］	

Topic 1：Text and Speech Encoding

Writing systems
Alphabetic

Syllabic

Logographic
Systems with unusual realization
Relation to language Comparison of systems

Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

[^1]
Logographic writing systems

- Logographs (also called Logograms):
- Pictographs (Pictograms): originally pictures of things, now stylized and simplified.

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic

Syllabic

Logographic

Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Logographic writing systems

- Logographs (also called Logograms):
- Pictographs (Pictograms): originally pictures of things, now stylized and simplified.
Example: development of Chinese character horse:

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic

Logographic

Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Logographic writing systems

- Logographs (also called Logograms):
- Pictographs (Pictograms): originally pictures of things, now stylized and simplified.
Example: development of Chinese character horse:

- Ideographs (Ideograms): representations of abstract ideas

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic

Logographic

Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Logographic writing systems

- Logographs (also called Logograms):
- Pictographs (Pictograms): originally pictures of things, now stylized and simplified.
Example: development of Chinese character horse:

- Ideographs (Ideograms): representations of abstract ideas
- Compounds: combinations of two or more logographs

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic

Syllabic

Logographic

Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Logographic writing systems

- Logographs (also called Logograms):
- Pictographs (Pictograms): originally pictures of things, now stylized and simplified.
Example: development of Chinese character horse:

- Ideographs (Ideograms): representations of abstract ideas
- Compounds: combinations of two or more logographs
- Semantic-phonetic compounds: symbols with a meaning element (hints at meaning) and a phonetic element (hints at pronunciation).

Writing systems
Alphabetic
Syllabic

Logographic

Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Logographic writing systems

－Logographs（also called Logograms）：
－Pictographs（Pictograms）：originally pictures of things，now stylized and simplified．
Example：development of Chinese character horse：

－Ideographs（Ideograms）：representations of abstract ideas
－Compounds：combinations of two or more logographs
－Semantic－phonetic compounds：symbols with a meaning element（hints at meaning）and a phonetic element（hints at pronunciation）．
－Examples：Chinese（Zhōngwén），Japanese（Nihongo）， Mayan，Vietnamese，Ancient Egyptian

Writing systems
Alphabetic
Syllabic

Logographic

Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and
spoken language
From Speech to Text
From Text to Speech

Logograph writing system example: Chinese

Pictographs

Language and

 ComputersTopic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Logograph writing system example: Chinese

Pictographs

Ideographs

Language and

 ComputersTopic 1: Text and Speech Encoding

Writing systems

Alphabetic

Syllabic

Logographic

Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Logograph writing system example：Chinese

Pictographs

Ideographs

二	三	上	下	中	力	凸		$凹$
two	trree	above	below	midale	stengh	convex		

Compounds of Pictographs／Ideographs

good
（woman
＋child）
（woman under
a roof）

Language and

 ComputersTopic 1：Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Semantic－phonetic compounds

旁 páng	兟 y \％
傍 bāng （beside）	佳 jiào （Iucky）
謗 bèng （to litel）	譊 nío （o argue）
螃 páng （crab）	蛙 ráo （ nom ）
鎊 bàng （pound steriing）	鐃 náo （cymbak）

Language and Computers

Topic 1：Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Semantic－phonetic compounds

	古gŭ	扁 tiăn	敖aó	旁 pang	堯 ソ \％
$\begin{aligned} & \text { 人 } \\ & \text { (person) } \\ & \text { 黄 } \end{aligned}$	估gŭ （to guess）	偏 pan （biesed）	傲 ${ }^{\text {ào }}$ （proud）	傍 bāng （beside）	僥 jiào （lucky）
$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{N}} \text { 言 } \\ & \stackrel{8}{8} \text { (words) } \\ & \frac{3}{8} \end{aligned}$	詁gŭ （commentaries）	諞 pián （to quibble）	謷 a o （to stander）	謗 bàng （to litel）	譊 náo （o argue）
$\frac{\stackrel{\circ}{3}}{\frac{\text { 虫 }}{7}}$	蛄gu （mole crichet）	蝙 bān （bat）		$\begin{aligned} & \text { 螃 páng } \\ & \text { (crab) } \end{aligned}$	蟯 ráo （ nom ）
$\stackrel{\stackrel{\rightharpoonup}{\mathbf{\omega}}}{=} \underset{(\mathrm{metal})}{\text { 金 }}$	鈷gu （cobelt）		素金 áo （griddle）	鎊 bàng （pound sterling）	鐃 náo （cymbals）

Language and
Computers
Topic 1：Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Two writing systems with unusual realization

Tactile

- Braille is a writing system that makes it possible to read and write through touch; primarily used by the (partially) blind.
- It uses patterns of raised dots arranged in cells of up to six dots in a 3×2 configuration.
- Each pattern represents a character, but some frequent words and letter combinations have their own pattern.

Chromatographic

The Benin and Edo people in southern Nigeria have developed a system of writing based on different color combinations and symbols.
(cf. http://www.library.cornell.edu/africana/Writing_Systems/Chroma.html)

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Braille alphabet

-	-	-	\bullet	\bullet -	$\because \bullet$:\%	:。	-	\therefore	-	:	$\bullet \bullet$
A	B	C	D	E	F	G	H	I	J	K	L	M
1	2	3	4	$\begin{gathered} 5 \\ \text { every } \end{gathered}$	$\begin{gathered} 6 \\ \text { from } \end{gathered}$	7 go	$\begin{gathered} 8 \\ \text { have } \end{gathered}$	9	$\underset{\text { just }}{0}$	knowledge		more
\because	\bullet	$:^{\bullet}$	$\because:$:•	$\stackrel{\bullet}{*}$	$::^{\circ}$	$\bullet \bullet$	$:$	\because	$\bullet \bullet$		$\therefore:$
$\begin{array}{r} \mathrm{N} \\ \text { not } \end{array}$	\bigcirc	$\begin{array}{\|c} \mathrm{P} \\ \text { people } \end{array}$	$\begin{gathered} \mathrm{Q} \\ \text { quite } \end{gathered}$	R rather	$\begin{aligned} & \hline \text { S } \\ & \text { so } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{T} \\ \text { that } \end{gathered}$	$\begin{aligned} & \text { U } \\ & \text { us } \\ & \hline \end{aligned}$	$\begin{gathered} V \\ \text { very } \end{gathered}$	$\begin{aligned} & \text { W } \\ & \text { will } \end{aligned}$	$\begin{aligned} & \hline X \\ & \text { it } \end{aligned}$	$\begin{aligned} & \hline Y \\ & \text { you } \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & \text { as } \end{aligned}$
\because	::	$\because:$	\therefore	$\because:$	-	$:$	\bullet	\because	\bullet	\because	$\because:$	$\because:$
$\underset{\text { and }}{ }$	$\begin{aligned} & \text { É } \\ & \text { for } \end{aligned}$	$\begin{aligned} & \dot{A} \\ & \text { of } \end{aligned}$	$\begin{aligned} & \text { È } \\ & \text { the } \end{aligned}$	$\begin{gathered} \text { Ù } \\ \text { with } \end{gathered}$	$\begin{array}{\|c\|} \hline \hat{\mathrm{A}} \\ \text { child } \\ \text { ch } \\ \hline \end{array}$	Ê gh	$\begin{gathered} \hat{\jmath} \\ \text { shall } \\ \text { sh } \end{gathered}$	$\begin{gathered} \hat{0} \\ \text { this } \\ \text { th } \\ \hline \end{gathered}$	\hat{U} which wh	Ë ed	er	$\begin{aligned} & \text { Uu } \\ & \text { out } \\ & \text { ou } \end{aligned}$
	-	:	-•	\because	-	:*	::	:	-	-	-	\bullet
$\begin{gathered} \hline O C E \\ 0 \mathrm{OW} \\ \hline \end{gathered}$,	bb	co	dd	en	!	() gg; were	?"	in	"	Ì fraction line st	oे ing
$:$	$:$	-	-•	-	:	-	$:$	-				
$\left.\begin{gathered} \text { numeral } \\ \text { sign } \end{gathered} \right\rvert\,$	Äf ar	,	-	$\left.\begin{gathered}\text { numetioal } \\ \text { indes } \\ \text { accent }\end{gathered} \right\rvert\,$	literal inden	$\begin{array}{\|c\|} \hline \text { italic sign } \\ \text { decimal } \\ \text { sign } \end{array}$	$\begin{aligned} & \text { letter } \\ & \text { sign } \end{aligned}$	$\begin{gathered} \text { capital } \\ \text { sign } \end{gathered}$				

Language and
 Computers

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization

Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Chromatographic system
Language and Computers

Topic 1: Text and Speech Encoding

 theh

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Relating writing systems to languages

- There is not a simple correspondence between a writing system and a language.
- For example, English uses the Roman alphabet, but Arabic numerals (e.g., 2 instead of the Roman II). Computers

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Relating writing systems to languages

- There is not a simple correspondence between a writing system and a language.
- For example, English uses the Roman alphabet, but Arabic numerals (e.g., 2 instead of the Roman II).
- We'll look at three other examples:
- Japanese
- Korean
- Azeri

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Japanese

Topic 1: Text and Speech Encoding

Japanese: logographic system kanji, syllabary katakana, syllabary hiragana

- kanji: 5,000-10,000 borrowed Chinese characters

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Japanese

Topic 1: Text and Speech Encoding

Japanese: logographic system kanji, syllabary katakana, syllabary hiragana

- kanji: 5,000-10,000 borrowed Chinese characters
- katakana
- Used mainly for non-Chinese loan words, onomatopoeic words, foreign names, and for emphasis

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Japanese

Topic 1: Text and Speech Encoding

Japanese: logographic system kanji, syllabary katakana, syllabary hiragana

- kanji: 5,000-10,000 borrowed Chinese characters
- katakana
- Used mainly for non-Chinese loan words, onomatopoeic words, foreign names, and for emphasis
- hiragana
- Originally used only by women (10th century), but codified in 1946 with 48 syllables
- used mainly for word endings, kids' books, and for words with obscure kanji symbols

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Japanese

Topic 1: Text and Speech Encoding

Japanese: logographic system kanji, syllabary katakana, syllabary hiragana

- kanji: 5,000-10,000 borrowed Chinese characters
- katakana
- Used mainly for non-Chinese loan words, onomatopoeic words, foreign names, and for emphasis
- hiragana
- Originally used only by women (10th century), but codified in 1946 with 48 syllables
- used mainly for word endings, kids' books, and for words with obscure kanji symbols
- Romaji: Roman characters

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Japanese example

カプセルホテル

各室がカプセル形の簡易ホテル。終電に乗け遅れたサラリーマンなどが高いタタシ
一代を払って帰宅するより安く済むことから，手軽に利用している。
kanji（red），hiragana（black），katakana（blue）

Translation：

Capsule Hotel
A simple hotel where each room is capsule－shaped．When businessmen miss the last train home，they can stay overnight very cheaply instead of paying a lot of money to go home by taxi．

Topic 1：Text and Speech Encoding

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Korean

 ComputersTopic 1: Text and Speech Encoding
"Korean writing is an alphabet, a syllabary and logographs all at once." (http://home.vicnet.net.au/ozideas/writkor.htm)

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Korean

"Korean writing is an alphabet, a syllabary and logographs all at once." (http://home.vicnet.net.au/ozideas/writkor.htm)

- The hangul system was developed in 1444 during King Sejong's reign.
- There are 24 letters: 14 consonants and 10 vowels
- But the letters are grouped into syllables, i.e. the letters in a syllable are not written separately as in the English system, but together form a single character.
E.g., "Hangeul" (from: http://www.omniglot.com/writing/korean.htm):

$$
\text { 한 (han) ㅎ(} \mathrm{h})+\mathrm{F}(\mathrm{a})+\llcorner(\mathrm{n}) \text { 글 }(\mathrm{geul}) \neg(\mathrm{g})+-(\mathrm{eu})+\mathrm{e}(\mathrm{l}
$$

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Korean

Topic 1: Text and Speech Encoding
"Korean writing is an alphabet, a syllabary and logographs all at once." (http://home.vicnet.net.au/ozideas/writkor.htm)

- The hangul system was developed in 1444 during King Sejong's reign.
- There are 24 letters: 14 consonants and 10 vowels
- But the letters are grouped into syllables, i.e. the letters in a syllable are not written separately as in the English system, but together form a single character.
E.g., "Hangeul" (from: http://www.omniglot.com/writing/korean.htm):

$$
\text { 한 (han) ㅎ(} \mathrm{h})+\mathrm{F}(\mathrm{a})+\mathrm{L}_{(\mathrm{n})} \text { 글 (geul) } \neg(\mathrm{g})+-(\mathrm{eu})+\mathrm{e}(\mathrm{l}
$$

- In South Korea, hanja (logographic Chinese characters) are also used.

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization

Azeri

 ComputersTopic 1: Text and Speech Encoding

A Turkish language with speakers in Azerbaijan, northwest Iran, and (former Soviet) Georgia

- 7th century until 1920s: Arabic scripts. Three different Arabic scripts used

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written

ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Azeri

A Turkish language with speakers in Azerbaijan, northwest Iran, and (former Soviet) Georgia

- 7th century until 1920s: Arabic scripts. Three different Arabic scripts used
- 1929: Latin alphabet enforced by Soviets to reduce Islamic influence. Computers

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Azeri

A Turkish language with speakers in Azerbaijan, northwest Iran, and (former Soviet) Georgia

- 7th century until 1920s: Arabic scripts. Three different Arabic scripts used
- 1929: Latin alphabet enforced by Soviets to reduce Islamic influence.
- 1939: Cyrillic alphabet enforced by Stalin

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Azeri

A Turkish language with speakers in Azerbaijan, northwest Iran, and (former Soviet) Georgia

- 7th century until 1920s: Arabic scripts. Three different Arabic scripts used
- 1929: Latin alphabet enforced by Soviets to reduce Islamic influence.
- 1939: Cyrillic alphabet enforced by Stalin
- 1991: Back to Latin alphabet, but slightly different than before.
\rightarrow Latin typewriters and computer fonts were in great demand in 1991

Computers
Computers
Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization

Comparison of writing systems

Language and

 ComputersTopic 1: Text and Speech Encoding

What are the pros and cons of each type of system?

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Comparison of writing systems

What are the pros and cons of each type of system?

- accuracy: Can every word be written down accurately?

Language and

 ComputersTopic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Comparison of writing systems

What are the pros and cons of each type of system?

- accuracy: Can every word be written down accurately?
- learnability: How long does it take to learn the system? Computers

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Comparison of writing systems

What are the pros and cons of each type of system?

- accuracy: Can every word be written down accurately?
- learnability: How long does it take to learn the system?
- cognitive ability: Are some systems unnatural? (e.g. Does dyslexia show that alphabets are unnatural?)

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Comparison of writing systems

What are the pros and cons of each type of system?

- accuracy: Can every word be written down accurately?
- learnability: How long does it take to learn the system?
- cognitive ability: Are some systems unnatural? (e.g. Does dyslexia show that alphabets are unnatural?)
- language-particular differences: English has thousands of possible syllables; Japanese has very few in comparison

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Comparison of writing systems

What are the pros and cons of each type of system?

- accuracy: Can every word be written down accurately?
- learnability: How long does it take to learn the system?
- cognitive ability: Are some systems unnatural? (e.g. Does dyslexia show that alphabets are unnatural?)
- language-particular differences: English has thousands of possible syllables; Japanese has very few in comparison
- connection to history/culture: Will changing a writing system have social consequences?

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Encoding written language

- Information on a computer is stored in bits.
- A bit is either on (= 1 , yes) or off $(=0, n o)$.

Language and

 ComputersTopic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems

Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Encoding written language

- Information on a computer is stored in bits.
- A bit is either on (=1, yes) or off (= $0, \mathrm{no}$).
- A list of 8 bits makes up a byte, e.g., 01001010
- Just like with the base 10 numbers we're used to, the order of the bits in a byte matters:
- Big Endian: most important bit is leftmost (the standard way of doing things)
- The positions in a byte thus encode: 128643216842 1
- "There are 10 kinds of people in the world; those who know binary and those who don't"
(from: http://www.wlug.org.nz/LittleEndian)
- Little Endian: most important bit is rightmost (only used on Intel machines)
- The positions in a byte thus encode: 1248163264 128

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and
spoken language
From Speech to Text
From Text to Speech

Using bytes to store characters

With 8 bits (a single byte), you can represent 256 different characters. Why would we want so many?

Language and Computers
Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems

Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Using bytes to store characters

Topic 1: Text and Speech Encoding

With 8 bits (a single byte), you can represent 256 different characters. Why would we want so many?

- If you look at a keyboard, you will find lots of non-English characters.
- With 256 possible characters, we can store every single letter used in English, plus all the things like commas, periods, space bar, percent sign (\%), back space, and so on.

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

An encoding standard: ASCII

- ASCII = the American Standard Code for Information Interchange
- 7-bit code for storing English text
- 7 bits = 128 possible characters.
- The numeric order reflects alphabetic ordering. Computers

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

The ASCII chart

Language and
Computers
Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language

ASCII

Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

The ASCII chart

Language and
Computers
Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language

ASCII

Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

E-mail issues

Language and Computers

Topic 1: Text and Speech Encoding

Writing systems

- Have you ever had something like the following at the top of an e-mail sent to you?
[The following text is in the "'ISO-8859-1', character set.] [Your display is set for the '"US-ASCII'’ character set.]
[Some characters may be displayed incorrectly.]

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

E-mail issues

Topic 1: Text and Speech Encoding

- Have you ever had something like the following at the top of an e-mail sent to you?
[The following text is in the "'ISO-8859-1', character set.] [Your display is set for the '"US-ASCII'’ character set.]
[Some characters may be displayed incorrectly.]
- Mail sent on the internet used to only be able to transfer the 7-bit ASCII messages. But now we can detect the incoming character set and adjust the input.

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in

Spoken language

Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

E-mail issues

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Multipurpose Internet Mail Extensions (MIME)

MIME provides meta-information on the text, which tells us:

Language and Computers
Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Multipurpose Internet Mail Extensions (MIME)

MIME provides meta-information on the text, which tells us:

- which version of MIME is being used
- what the charcter set is
- if that character set was altered, how it was altered

Mime-Version: 1.0 Content-Type: text/plain; charset=US-ASCII
Content-Transfer-Encoding: 7bit Computers

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Different coding systems

Topic 1: Text and Speech Encoding

But wait, didn't we want to be able to encode all languages? There are ways ...

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Different coding systems

Topic 1: Text and Speech Encoding

But wait, didn't we want to be able to encode all languages?
There are ways ...

- Extend the ASCII system with various other systems, for example:
- ISO 8859-1: includes extra letters needed for French, German, Spanish, etc.
- ISO 8859-7: Greek alphabet
- ISO 8859-8: Hebrew alphabet
- JIS X 0208: Japanese characters

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Different coding systems

Topic 1: Text and Speech Encoding

But wait, didn't we want to be able to encode all languages?
There are ways ...

- Extend the ASCII system with various other systems, for example:
- ISO 8859-1: includes extra letters needed for French, German, Spanish, etc.
- ISO 8859-7: Greek alphabet
- ISO 8859-8: Hebrew alphabet
- JIS X 0208: Japanese characters
- Have one system for everything \rightarrow Unicode

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Unicode

Topic 1: Text and Speech Encoding

Problems with having multiple encoding systems:

- Conflicts: two encodings can use the same number for two different characters and use different numbers for the same character.
- Hassle: have to install many, many systems if you want to be able to deal with various languages

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Unicode

Problems with having multiple encoding systems:

- Conflicts: two encodings can use the same number for two different characters and use different numbers for the same character.
- Hassle: have to install many, many systems if you want to be able to deal with various languages

Unicode tries to fix that by having a single representation for every possible character.
"Unicode provides a unique number for every character, no matter what the platform, no matter what the program, no matter what the language." (www.unicode.org)

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and
spoken language
From Speech to Text
From Text to Speech

How big is Unicode?

Version 3.2 has codes for 95,221 characters from alphabets, syllabaries and logographic systems.

- Uses 32 bits - meaning we can store $2^{32}=4,294,967,296$ characters.
- 4 billion possibilities for each character? That takes a lot of space on the computer!

Computers
Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Compact encoding of Unicode characters

Topic 1: Text and Speech Encoding

- Unicode has three versions
- UTF-32 (32 bits): direct representation
- UTF-16 (16 bits): $2^{16}=65536$
- UTF-8 (8 bits): $2^{8}=256$
- How is it possible to encode 2^{32} possibilities in 8 bits (UTF-8)?
- Several bytes are used to represent one character.
- Use the highest bit as flag:
- highest bit 0: single character
- highest bit 1: part of a multi byte character
- Nice consequence: ASCII text is in a valid UTF-8 encoding.

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

How do we type everything in?

- Use a keyboard tailored to your specific language e.g. Highly noticeable how much slower your English typing is when using a Danish-designed keyboard. Computers

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

How do we type everything in?

Topic 1: Text and Speech Encoding

- Use a keyboard tailored to your specific language e.g. Highly noticeable how much slower your English typing is when using a Danish-designed keyboard.
- Use a processor that allows you to switch between different character systems.
e.g. Type in Cyrillic characters on your English keyboard.

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

How do we type everything in?

- Use a keyboard tailored to your specific language e.g. Highly noticeable how much slower your English typing is when using a Danish-designed keyboard.
- Use a processor that allows you to switch between different character systems.
e.g. Type in Cyrillic characters on your English keyboard.
- Use combinations of characters.

An e followed by an 'might result in an é

Computers
Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

How do we type everything in?

- Use a keyboard tailored to your specific language e.g. Highly noticeable how much slower your English typing is when using a Danish-designed keyboard.
- Use a processor that allows you to switch between different character systems.
e.g. Type in Cyrillic characters on your English keyboard.
- Use combinations of characters. An e followed by an 'might result in an é
- Pick and choose from a table of characters.

So, now we can encode every language, as long as it's written.

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Unwritten languages

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in

Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

The need for speech

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in

Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

The need for speech

- What if we want to work with an unwritten language?
- What if we want to examine the way someone talks and don't have time to write it down?

Many applications for encoding speech:

- Building spoken dialogue systems, i.e. speak with a computer (and have it speak back).
- Helping people sound like native speakers of a foreign language.
- Helping speech pathologists diagnose problems

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in

Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

What does speech look like?

We can transcribe (write down) the speech into a phonetic alphabet.

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language

Transcription

Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

What does speech look like?

We can transcribe (write down) the speech into a phonetic alphabet.

- It is very expensive and time-consuming to have humans do all the transcription.
- To automatically transcribe, we need to know how to relate the audio file to the individual sounds that we hear. Computers

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language

Transcription

Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

What does speech look like?

We can transcribe (write down) the speech into a phonetic alphabet.

- It is very expensive and time-consuming to have humans do all the transcription.
- To automatically transcribe, we need to know how to relate the audio file to the individual sounds that we hear.
\Rightarrow We need to know:
- some properties of speech
- how to measure these speech properties
- how these measurements correspond to sounds we hear

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in

What makes representing speech hard?

Difficulties:

- People have different dialects and different size vocal tracts and thus say things differently

Language and

 ComputersTopic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

What makes representing speech hard?

Difficulties:

- People have different dialects and different size vocal tracts and thus say things differently
- Sounds run together, and it's hard to tell where one sound ends and another begins. Computers

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

What makes representing speech hard?

Difficulties:

- People have different dialects and different size vocal tracts and thus say things differently
- Sounds run together, and it's hard to tell where one sound ends and another begins.
- What we think of as one sound is not always (usually) said the same: coarticulation = sounds affecting the way neighboring sounds are said
e.g. k is said differently depending on if it is followed by ee or by oo.

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

What makes representing speech hard?

Difficulties:

- People have different dialects and different size vocal tracts and thus say things differently
- Sounds run together, and it's hard to tell where one sound ends and another begins.
- What we think of as one sound is not always (usually) said the same: coarticulation = sounds affecting the way neighboring sounds are said
e.g. k is said differently depending on if it is followed by ee or by oo.
- What we think of as two sounds are not always all that different.
e.g. The s see is very acoustically similar to the sh in shoe

Computers
Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and
spoken language
From Speech to Text
From Text to Speech

Articulatory properties: How it's produced

Language and

 ComputersTopic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent

Articulation

Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Articulatory properties: How it's produced

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Articulatory properties: How it's produced

We could talk about how sounds are produced in the vocal tract, i.e. articulatory phonetics

- place of articulation (where): [t] vs. [k]
- manner of articulation (how): [t] vs. [s]
- voicing (vocal cord vibration): [t] vs. [d]

But unless the computer is modeling a vocal tract, we need to know acoustic properties of speech which we can quantify.

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Acoustic properties: What it sounds like

Sound waves = "small variations in air pressure that occur very rapidly one after another" (Ladefoged, A Course in Phonetics)
\Rightarrow Akin to ripples in a pond

- speech flow = rate of speaking, number and length of pauses (seconds)
- loudness (amplitude) = amount of energy (decibels)
- frequencies = how fast the sound waves are repeating (cycles per second, i.e. Hertz)
- pitch = how high or low a sound is
- In speech, there is a fundamental frequency, or pitch, along with higher-frequency overtones.
- intonation = rise and fall in pitch

Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Oszillogram (Waveform)

Language and

 ComputersTopic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Oszillogram (Waveform)

Language and Computers

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Fundamental frequency (F0, pitch)

Language and Computers

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Fundamental frequency (F0, pitch)

Language and Computers

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Spectrograms

Language and

 ComputersTopic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language Comparison of systems

Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Spectrograms

Language and

 ComputersTopic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

How measurements correspond to sounds we hear

 ComputersTopic 1: Text and Speech Encoding

- How dark is the picture? \rightarrow How loud is the sound? We can measure this in decibels.

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization

Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

How measurements correspond to sounds we hear

- How dark is the picture? \rightarrow How loud is the sound? We can measure this in decibels.
- Where are the lines the darkest? \rightarrow Which frequencies are the loudest and most important?
We can measure this in terms of Hertz, and it tells us what the vowels are.

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

How measurements correspond to sounds we hear

- How dark is the picture? \rightarrow How loud is the sound? We can measure this in decibels.
- Where are the lines the darkest? \rightarrow Which frequencies are the loudest and most important?
We can measure this in terms of Hertz, and it tells us what the vowels are.
- How do these dark lines change? \rightarrow How are the frequencies changing over time?
Which consonants are we transitioning into? Computers

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

How did we get these measurements?

sampling rate = how many times in a given second we extract a moment of sound; measured in samples per second Computers

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

How did we get these measurements?

sampling rate = how many times in a given second we extract a moment of sound; measured in samples per second

- Sound is continuous, but we have to store data in a discrete manner.

CONTINUOUS

- We store data at each discrete point, in order to capture the general pattern of the sound

Computers
Computers
Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Sampling rate

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent

Articulation

Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Sampling rate

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent

Articulation

Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Sampling rate

- The sampling rate is often 8000 or 16,000 samples per second. The rate for CDs is 44,100 samples/second (or Hertz (Hz))
- The higher the sampling rate, the better quality the recording ... but the more space it takes.
- Speech needs at least 8000 samples/second, but most likely 16,000 or $22,050 \mathrm{~Hz}$ will be used nowadays.

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Applications of speech encoding

Mapping sounds to symbols (alphabet), and vice versa, isn't all that easy.

- Automatic Speech Recognition (ASR): sounds to text
- Text-to-Speech Synthesis (TTS): texts to sounds

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Automatic Speech Recognition (ASR)

Language and

 ComputersTopic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language

Automatic Speech Recognition (ASR)

Automatic speech recognition = process by which the computer maps a speech signal to text. Uses/Applications:

- Dictation
- Telephone conversations
- People with disabilities - e.g. a person hard of hearing could use an ASR system to get the text Computers

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Kinds of ASR systems

Different kinds of systems:

- Speaker dependent = work for a single speaker
- Speaker independent = work for any speaker of a given variety of a language, e.g. American English
- Speaker adaptive = start as independent but begin to adapt to a single speaker to improve accuracy

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Kinds of ASR systems

- Differing sizes of vocabularies, from tens of words to tens of thousands of words

Language and

 ComputersTopic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language

Kinds of ASR systems

- Differing sizes of vocabularies, from tens of words to tens of thousands of words
- continuous speech vs. isolated-word systems:
- continuous speech systems = words connected together and not separated by pauses
- isolated-word systems = single words recognized at a time, requiring pauses to be inserted between words
\rightarrow easier to find the endpoints of words Computers

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Steps in an ASR system

Language and

 ComputersTopic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language

From Text to Speech

Steps in an ASR system

1. Digital sampling of speech
2. Acoustic signal processing = converting the speech samples into particular measurable units

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language

Steps in an ASR system

1. Digital sampling of speech
2. Acoustic signal processing = converting the speech samples into particular measurable units
3. Recognition of sounds, groups of sounds, and words

Language and Computers

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language

Steps in an ASR system

1. Digital sampling of speech
2. Acoustic signal processing = converting the speech samples into particular measurable units
3. Recognition of sounds, groups of sounds, and words

May or may not use more sophisticated analysis of the utterance to help.

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Text-to-Speech Synthesis (TTS)

Topic 1: Text and Speech Encoding

Could just record a voice saying phrases or words and then play back those words in the appropriate order. Or can break the text down into smaller units

1. Convert input text into phonetic alphabet
2. Synthesize phonetic characters into speech

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Text-to-Speech Synthesis (TTS)

Topic 1: Text and Speech Encoding

Could just record a voice saying phrases or words and then play back those words in the appropriate order. Or can break the text down into smaller units

1. Convert input text into phonetic alphabet
2. Synthesize phonetic characters into speech

To synthesize characters into speech, people have tried:

- using formulas which adjust the values of the frequencies, the loudness, etc.
- using a model of the vocal tract and trying to produce sounds based on how a human would speak

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and
spoken language
From Speech to Text

It's hard to be natural

When trying to make synthesized speech sound natural, we encounter the same problems as what makes speech encoding in general hard:

- The same sound is said differently in different contexts.
- Different sounds are sometimes said nearly the same.
- Different sentences have different intonation patterns.
- Lengths of words vary depending on where in the sentence they are spoken.
The car crashed into the tree.
It's my car.
Cars, trucks, and bikes are vehicles.

Speech to Text to Speech

Topic 1: Text and Speech Encoding

Writing systems
Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems
Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

Demos

Language and Computers

Topic 1: Text and Speech Encoding

Writing systems

Alphabetic
Syllabic
Logographic
Systems with unusual
realization
Relation to language
Comparison of systems

- AT\&T mulitilingual TTS system: http://www.research.att.com/projects/tts/demo.html
- various systems and languages: http://www.ims.uni-stuttgart.de//moehler/synthspeech/

Encoding written
language
ASCII
Unicode
Typing it in
Spoken language
Transcription
Why speech is hard to represent
Articulation
Acoustics
Relating written and spoken language
From Speech to Text
From Text to Speech

[^0]: * The course was created together with Markus Dickinson and Chris Brew.

[^1]: （from：http：／／www．omniglot．com／writing／lao．htm）

