Towards more complex grammar systems Some basic formal language theory Detmar Meurers: Intro to Computational Linguistics I OSU, LING 684.01	Overview • Grammars, or: how to specify linguistic knowledge • Automata, or: how to process with linguistic knowledge • Levels of complexity in grammars and automata: The Chomsky hierarchy 2
<section-header><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></text></section-header>	$A \text{ simple example}$ $N = \{S, NP, VP, V_i, V_t, V_s\}$ $\Sigma = \{John, Mary, laughs, loves, thinks\}$ $S = S$ $P = \left\{ \begin{array}{ccc} S & \rightarrow & NP \ VP & NP & \rightarrow & John \\ S & \rightarrow & NP \ VP & \rightarrow & Mary \\ VP & \rightarrow & V_i & V_i & \rightarrow & laughs \\ VP & \rightarrow & V_t \ NP & V_t & \rightarrow & loves \\ VP & \rightarrow & V_s \ S & V_s & \rightarrow & thinks \end{array} \right\}$
 How does a grammar define a language? Assume α, β ∈ (N ∪ Σ)*, with α containing at least one non-terminal. A sentential form for a grammar G is defined as: The start symbol S of G is a sentential form. If αβγ is a sentential form and there is a rewrite rule β → δ then αδγ is a sentential form. α (directly or immediately) derives β if α → β ∈ P. One writes: α ⇒* β if β is derived from α in zero or more steps α ⇒* β if β is derived from α in one or more steps A sentence is a sentential form consisting only of terminal symbols. The language L(G) generated by the grammar G is the set of all sentences which can be derived from the start symbol S, i.e., L(G) = {γ S ⇒* γ} 	<section-header><section-header><section-header><text><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></text></section-header></section-header></section-header>

Different levels of complexity in grammars and automata

automata	A right-linear grammar is a 4-tuple (N, Σ, S, P) with
Let $A, B \in N$, $x \in \Sigma$, $\alpha, \beta, \gamma \in (\Sigma \cup T)*$, and $\delta \in (\Sigma \cup T)+$, then:	
Type Automaton Grammar	<i>P</i> a finite set of rewrite rules of the form $\alpha \to \beta$, with $\alpha \in N$ and $\beta \in \{1, 2\}, \beta \in \mathbb{N} $ and $\beta \in \{1, 2\}, \beta \in \mathbb{N} $
Memory Name Rule Name	$\{\gamma\delta \gamma\in\Sigma*,\delta\in N\cup\{\epsilon\}\},$ i.e.:
0 Unbounded TM $\alpha \rightarrow \beta$ General rewrite 1 Bounded LBA $\beta A \gamma \rightarrow \beta \delta \gamma$ Context-sensitive	 left-hand side of rule: a single non-terminal, and
2 Stack PDA $A \rightarrow \beta$ Context-sensitive	 right-hand side of rule: a string containing at most one non-terminal,
3 None FSA $A \rightarrow xB$, $A \rightarrow x$ Right linear	as the rightmost symbol
Abbreviations:	Right-linear grammars are formally equivalent to left-linear grammars.
– TM: Turing Machine	
 – LBA: Linear-Bounded Automaton 	A finite-state automaton consists of
- PDA: Push-Down Automaton	 – a tape – a finite-state control
 FSA: Finite-State Automaton 	 no auxiliary memory
7	8
A regular language example: $(ab c)ab * (a cb)$? Right-linear grammar: $N = \{Expr, X, Y, Z\} \\ \Sigma = \{a,b,c\} \\ S = Expr$ $P = \begin{cases} Expr \rightarrow ab X & X \rightarrow a Y \\ Expr \rightarrow c X & Z \rightarrow a \\ Y \rightarrow b Y & Z \rightarrow cb \\ Y \rightarrow Z & Z \rightarrow \epsilon \end{cases}$ Finite-state transition network: $-\underbrace{0 & a & 4 & 1 & c & 2 \end{cases}$	 Thinking about regular languages A language is regular iff one can define a FSM (or regular expression) for it. An FSM only has a fixed amount of memory, namely the number of states. Strings longer than the number of states, in particular also any infinite ones, must result from a loop in the FSM. Pumping Lemma: if for an infinite string there is no such loop, the string cannot be part of a regular language.
5	10
Type 2: Context-Free Grammars and Push-Down Automata	A context-free language example: $a^n b^n$
A context-free grammar is a 4-tuple (N, Σ, S, P) with	Context-free grammar: Push-down automaton:
P a finite set of rewrite rules of the form $\alpha\to\beta,$ with $\alpha\in N$ and $\beta\in(\Sigma\cup N)*,$ i.e.:	$N = \{S\}$ $\Sigma = \{a, b\}$
 left-hand side of rule: a single non-terminal, and 	S = S
 right-hand side of rule: a string of terminals and/or non-terminals 	$P = \left\{ \begin{array}{ccc} S & \to & a S b \\ S & \to & \epsilon \end{array} \right\} \qquad $
	$1 S \rightarrow \epsilon \int$
A push-down automaton is a	
 finite state automaton, with a 	
 stack as auxiliary memory 	
11	12

Type 3: Right-Linear Grammars and FSAs

Type 1: Context-Sensitive Grammars and Linear-Bounded Automata

A rule of a context-sensitive grammar

- rewrites at most one non-terminal from the left-hand side.
- right-hand side of a rule required to be at least as long as the lefthand side, i.e. only contains rules of the form

 $\alpha \rightarrow \beta$ with $|\alpha| \leq |\beta|$

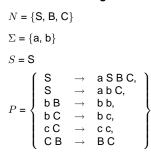
and optionally $S \rightarrow \epsilon$ with the start symbol S not occurring in any β .

A linear-bounded automaton is a

- finite state automaton, with an
- auxiliary memory which cannot exceed the length of the input string.

A context-sensitive language example: $a^n b^n c^n$

Context-sensitive grammar:



Type 0: General Rewrite Grammar and Turing Machines

- In a general rewrite grammar there are no restrictions on the form of a rewrite rule.
- A turing machine has an unbounded auxiliary memory.
- Any language for which there is a recognition procedure can be defined, but recognition problem is not decidable.

Properties of different language classes

Languages are sets of strings, so that one can apply set operations to languages and investigate the results for particular language classes.

Some closure properties:

- All language classes are closed under union with themselves.
- All language classes are closed under intersection with regular languages.
- The class of context-free languages is not closed under intersection with itself.

Proof: The intersection of the two context-free languages L_1 and L_2 is not context free:

$$L_1 = \left\{ a^n b^n c^i | n \ge 1 \text{ and } i \ge 0 \right\}$$

$$L_2 = \left\{ a^j b^n c^n | n \ge 1 \text{ and } j \ge 0 \right\}$$

$$L_1 \cap L_2 = \left\{ a^n b^n c^n | n \ge 1 \right\}$$

Criteria under which to evaluate grammar formalisms

There are three kinds of criteria:

- linguistic naturalness
- mathematical power
- computational effectiveness and efficiency

The weaker the type of grammar:

- the stronger the claim made about possible languages
- the greater the potential efficiency of the parsing procedure

Reasons for choosing a stronger grammar class:

- to capture the empirical reality of actual languages
- to provide for elegant analyses capturing more generalizations (\rightarrow more "compact" grammars)

13

15

Language classes and natural languages Natural languages are not regular

- (1) a. The mouse escaped.
 - b. The mouse that the cat chased escaped.
 - c. The mouse that the cat that the dog saw chased escaped.

:

:

- d.
- (2) a. aa
- b. abba
 - c. abccba d.

Center-embedding of arbitrary depth needs to be captured to capture language competence \rightarrow Not possible with a finite state automaton.

16

14

Accounting for the facts Language classes and natural languages (cont.) vs. linguistically sensible analyses • Any finite language is a regular language. Looking at grammars from a linguistic perspective, one can distinguish their • The argument that natural languages are not regular relies on competence as an idealization, not performance. - weak generative capacity, considering only the set of strings generated by a grammar • Note that even if English were regular, a context-free grammar - strong generative capacity, considering the set of strings and their characterization could be preferable on the grounds that it is more syntactic analyses generated by a grammar transparent than one using only finite-state methods. Two grammars can be strongly or weakly equivalent. 19 20 S First analysis: Example for weakly equivalent grammars if T then else S s 1 Example string: b х then S if Т if x then if y then a else b а у Grammar 1: S Second analysis: $S \rightarrow if T$ then S else S, $S \rightarrow if T$ then S. if T then $\textbf{S} \rightarrow \textbf{a}$ S $\textbf{S} \rightarrow \textbf{b}$ $T \to x \,$ х if T then S else S T а b y 21 22 Grammar 2 rules: A weekly equivalent grammar eliminating the Reading assignment ambiguity (only licenses second structure). $S1 \rightarrow if T then S1$, $S1 \rightarrow if T$ then S2 else S1, • Ch. 2 "Basic Formal Language Theory" and Ch. 3 "Formal Languages $S1 \rightarrow a,$ and Natural Languages" of our Lecture Notes $S1 \rightarrow b$. • Ch. 13 "Language and complexity" of Jurafsky and Martin (2000) $S2 \rightarrow if T$ then S2 else S2, $S2 \rightarrow a$ Good background reading/reference books on the topic: $S2 \to b$ • "Elements of the theory of computation" H.R. Lewis, C.H.

 $\begin{array}{l} T \rightarrow x \\ T \rightarrow y \end{array}$

Papadimitriou. Prentice-Hall. 2nd Ed. 1998
"Introduction to Automata Theory, Languages, and Computation." John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. 2nd Ed. 2001. Addison-Wesley. or the 1979 version by John E. Hopcroft and Jeffrey D. Ullman.