A DCG for English using gap threading for unbounded dependencies Detmar Meurers: Intro to Computational Linguistics I OSU, LING 684.01	<section-header><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></section-header>
<pre>Duration provide the set of the set of</pre>	<pre>v(2,Vform,Num)> v(1,Vform,Num). v(1,Vform,Num)> adv, v(1,Vform,Num). v(1,Vform,Num)> v(1,Vform,Num), verb_postmods. v(1,Vform,Num)> v(0,intrans,Vform,Num). v(1,Vform,Num)> v(0,ditrans,Vform,Num), n(2), n(2). s(vform)> n(2,Num), v(2,Vform,Num).</pre>
<section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header>	A first example: 'M-elements Melements can have different functions: (1) a. Who did Hobbs see ? Object of web (2) A. Who did Hobbs see ? Object of web (3) Mo did Hobbs give the book to ? Object of prep (4) Mo did Hobbs consider _ to be a foo? Object of prep (5) Mo did Hobbs consider _ to be a foo? Object of prep (6) Mo did Hobbs consider _ to be a foo? Object of prep (7) Methements can also occur in subordinate clauses: Methements can also occur in subordinate clauses: (8) A. A. Stade who the man saw (1) A. Stade who the man saw (5) A. Stade who the man considered _ to be a fool. (2) A. Stade who Hobbs gave the book to (6) A. Stade who mous output _ saw Hobbs. (2) A. Stade who you thought _ saw Hobbs.

Different categories can be extracted:	Unbounded dependency constructions
(3) a. Which man did you talk to _ ? NP b. [To [which man]] did you talk _ ? PP c. [How ill] has the man been _ ? AdjP d. [How frequently] did you see the man _ ? AdvP This sometimes provides multiple options for a constituent:	An unbounded dependency construction – involves constituents with different functions – involves constituents of different categories – is in principle unbounded
 (4) a. Who does he rely [on _]? b. [On whom] does he rely _ ? Unboundedness: (5) a. Who do you think Hobbs saw _ ? b. Who do you think Hobbs said he saw _ ? c. Who do you think Hobbs said he imagined that he saw _ ? 	Two kind of unbounded dependency constructions (UDCs) – Strong UDCs – Weak UDCs (<i>easy</i> , purpose infinives,) \rightarrow not addressed here
Strong UDCs An overt constituent occurs in a non-argument position: Topicalization: (6) Kim _i , Sandy loves _ _i . Wh-questions: (7) I wonder [who _i Sandy loves _ _i]. Wh-relative clauses: (8) This is the politician [who _i Sandy loves _ _i]. It-clefts: (9) It is Kim _i [who _i Sandy loves _ _i]. Pseudoclefts: (10) [What _i Sandy loves _ _i] is Kim _i .	 Link from filler to gap needed to identify category (11) a. Kim_i, Sandy trusts _i. b. [On Kim]_i, Sandy depends _i. (12) a. * [On Kim]_i, Sandy trusts _i. b. * Kim_i, Sandy depends _i. And this link has to be established for an unbounded length: (13) a. Kim_i, Chris knows Sandy trusts _i. b. [On Kim]_i, Chris knows Sandy trusts _i. b. [On Kim]_i, Chris knows Sandy trusts _i. b. * Kim_i, Chris knows Sandy depends _i. (14) a. * [On Kim]_i, Chris knows Sandy depends _i. (15) a. Kim_i, Dana believes Chris knows Sandy trusts _i. b. [On Kim]_i, Dana believes Chris knows Sandy trusts _i. b. [On Kim]_i, Dana believes Chris knows Sandy trusts _i. b. * Kim_i, Dana believes Chris knows Sandy depends _i.

A small DCG (dcg/udc/dcg_basis.pl)

np> [mary] ;[john]	s>	np, vp.
;[fido].		
	vp>	νt,
p> [to].		np.
pp> p,		
np.	vp>	vd,
		np,
vt> [loves].		pp.
vd> [gives].		
vs> [knows].	vp>	vs,
		s.

Towards a Prolog encoding of strong UDCs

A mini grammar with gans (deglude/deg gans1 pl)		Towards different kinds of gans (deglude/deg gans2 pl)
		Towards different kinds of gaps (dcg/udc/dcg_gaps2.pl)
% 1) Top of UDC: realizing filler s(nogap)> np(nogap), s(gap).		% 1) Top of UDC: realizing filler s(nogap)> np(nogap), s(gap).
<pre>% 2) Middle of UDC: passing info s(GapInfo)> np(nogap), vp(GapInfo). % no subject vp(GapInfo)> vt np(GapInfo)</pre>	t gaps	s(nogap)> pp(nogap), s(gap).
<pre>% 3) Bottom of UDC np(gap)> [].</pre>		% 2) Middle of UDC: passing info s(GapInfo)> np(nogap), vp(GapInfo). % no subject gaps
<pre>% "Lexicon" np(nogap)> [mary];[john];[fido].</pre>		vp(GapInfo)> vt, np(GapInfo). vp(GapInfo)> vd, np(GapInfo), pp(nogap). vp(GapInfo)> vd, np(nogap), pp(GapInfo).
vt> [loves].		<pre>pp(GapInfo)> p, np(GapInfo).</pre>
Towards a Prolog encoding of strong UDCs	13	Towards a Prolog encoding of strong UDCs 14
<pre>% 3) Bottom of UDC np(gap)> []. pp(gap)> [].</pre>		Different kinds of gaps (dcg/udc/dcg_gaps3.pl)
<pre>% "Lexicon" np(nogap)> [mary];[john];[fido].</pre>		% 1) Top of UDC: realizing filler s(nogap)> np(nogap), s(gap(np)).
<pre>p> [to]. vt> [loves].</pre>		<pre>s(nogap)> pp(nogap), s(gap(pp)).</pre>
vd> [gives].		% 2) Middle of UDC: passing info s(GapInfo)> np(nogap), vp(GapInfo). % no subject gaps
		<pre>vp(GapInfo)> vt, np(GapInfo). vp(GapInfo)> vd, np(GapInfo), pp(nogap). vp(GapInfo)> vd, np(nogap), pp(GapInfo).</pre>
		<pre>pp(GapInfo)> p, np(GapInfo).</pre>
Towards a Prolog encoding of strong UDCs	15	Towards a Prolog encoding of strong UDCs 16
<pre>% 3) Bottom of UDC np(gap(np))> []. pp(gap(pp))> [].</pre>		From hardcoded gap percolation to gap threading
% "Lexicon"		Two problems of current encoding:
<pre>p (nogap)> [mary],[joini],[iido]. p> [to]. vt> [loves].</pre>		• Two rules are needed to license ditransitive VPs.
vd> [gives].		 In sentences without topicalization, two identical analyses arise for ditransitive VPs.
		Idea:
		• Use difference-list encoding to thread occurrence of gaps through the tree ("gap threading").
Towards a Prolog encoding of strong UDCs	17	Towards a Prolog encoding of strong UDCs 18

An encoding using gap threading (dcg/udc/dcg_gaps4.pl)	<pre>% 3) Bottom of UDC np([gap(np)],[])> []. pp([gap(pp)],[])> [].</pre>	
<pre>% 1) Top of UDC: realizing filler</pre>	% "Lexicon" np(X.X)> [mary];[john];[fido].	
s([],[])> np([],[]), s([gap(np)],[]). s([],[])> pp([],[]), s([gap(pp)],[]).	p> [to]. vt> [loves]. vd> [gives].	
% 2) Middle of UDC: passing info		
s(G0,G)> np([],[]), vp(G0,G).		
<pre>vp(G0,G)> vt, np(G0,G). vp(G0,G)> vd, np(G0,G1), pp(G1,G). pp(G0,G)> p, np(G0,G).</pre>		
Towards a Prolog encoding of strong UDCs 19	Towards a Prolog encoding of strong UDCs	20
Reading assignment		
Read the following chapters from the lecture notes:		
Chapter 4: DCGs as a Grammar Formalism		
Chapter 5: Unbounded Dependencies in DCGs		
Towards a Prolog encoding of strong UDCs 21		