
A DCG for English
using gap threading for unbounded dependencies

Detmar Meurers: Intro to Computational Linguistics I
OSU, LING 684.01

Towards a basic DCG for English: X-bar Theory

Generalizing over possible phrase structure rules, one can attempt to
specify DCG rules fitting the following general pattern:

X2 → specifier2 X1

X1 → X1 modifier2

X1 → modifier2 X1

X1 → X0 complement2∗
To turn this general X-bar pattern into actual DCG rules,

• X has to be replaced by one of the atoms encoding syntactic
categories, and

• the bar-level needs to be encoded as an argument of each predicate
encoding a syntactic category.

2

Noun, preposition, and adjective phrases

n(2,Num) --> pronoun(Num).
n(2,Num) --> proper_noun(Num).
n(2,Num) --> det(Num), n(1,Num).
n(2,plur) --> n(1,plur).
n(1,Num) --> pre_mod, n(1,Num).
n(1,Num) --> n(1,Num), post_mod.
n(1,Num) --> n(0,Num).
...

p(2,Pform) --> p(1,Pform).
p(1,Pform) --> adv, p(1,Pform). % slowly past the window
p(1,Pform) --> p(0,Pform), n(2,_).
...

a(2) --> deg, a(1). % very simple
a(1) --> adv, a(1). % commonly used
a(1) --> a(0). 3

Verb phrases and sentences

v(2,Vform,Num) --> v(1,Vform,Num).
v(1,Vform,Num) --> adv, v(1,Vform,Num).
v(1,Vform,Num) --> v(1,Vform,Num), verb_postmods.
v(1,Vform,Num) --> v(0,intrans,Vform,Num).
v(1,Vform,Num) --> v(0,trans,Vform,Num), n(2).
v(1,Vform,Num) --> v(0,ditrans,Vform,Num), n(2), n(2).
...

s(Vform) --> n(2,Num), v(2,Vform,Num).

4

From local to non-local dependencies

• A head generally realizes its arguments locally within its head
domain, i.e., within a local tree if the X-bar schema is assumed.

• Certain kind of constructions resist this generalization, such as, for
example, the wh-questions discussed below.

• How can the non-local relation between a head and such arguments
be licensed? How can the properties be captured?

5

A first example: Wh-elements

Wh-elements can have different functions:

(1) a. Who did Hobbs see ? Object of verb

b. Who do you think saw the man? Subject of verb

c. Who did Hobbs give the book to ? Object of prep

d. Who did Hobbs consider to be a fool? Object of obj-control verb

Wh-elements can also occur in subordinate clauses:

(2) a. I asked who the man saw .
b. I asked who the man considered to be a fool .
c. I asked who Hobbs gave the book to .
d. I asked who you thought saw Hobbs.

6



Different categories can be extracted:

(3) a. Which man did you talk to ? NP

b. [To [which man]] did you talk ? PP

c. [How ill] has the man been ? AdjP

d. [How frequently] did you see the man ? AdvP

This sometimes provides multiple options for a constituent:

(4) a. Who does he rely [on ]?
b. [On whom] does he rely ?

Unboundedness:

(5) a. Who do you think Hobbs saw ?
b. Who do you think Hobbs said he saw ?
c. Who do you think Hobbs said he imagined that he saw ?

7

Unbounded dependency constructions

An unbounded dependency construction

– involves constituents with different functions
– involves constituents of different categories
– is in principle unbounded

Two kind of unbounded dependency constructions (UDCs)

– Strong UDCs
– Weak UDCs (easy, purpose infinives, . . . ) → not addressed here

8

Strong UDCs

An overt constituent occurs in a non-argument position:

Topicalization:
(6) Kimi, Sandy loves i .

Wh-questions:
(7) I wonder [whoi Sandy loves i ].

Wh-relative clauses:
(8) This is the politician [whoi Sandy loves i ].

It-clefts:
(9) It is Kimi [whoi Sandy loves i ].

Pseudoclefts:
(10) [Whati Sandy loves i ] is Kimi.

9

Link from filler to gap needed to identify category

(11) a. Kimi, Sandy trusts i.
b. [On Kim]i, Sandy depends i.

(12) a. * [On Kim]i, Sandy trusts i.
b. * Kimi, Sandy depends i.

And this link has to be established for an unbounded length:

(13) a. Kimi, Chris knows Sandy trusts i.
b. [On Kim]i, Chris knows Sandy depends i.

(14) a. * [On Kim]i, Chris knows Sandy trusts i.
b. * Kimi, Chris knows Sandy depends i.

(15) a. Kimi, Dana believes Chris knows Sandy trusts i.
b. [On Kim]i, Dana believes Chris knows Sandy depends i.

(16) a. * [On Kim]i, Dana believes Chris knows Sandy trusts i.
b. * Kimi, Dana believes Chris knows Sandy depends i.

10

An example for a strong UDC

Fidoi

NPi

Mary

NP

knows

V

John

NP

likes

V

i

NP/NPi

VP/NPi

S/NPi

VP/NPi

S/NPi

S



Top




Middle




Bottom

11

A small DCG (dcg/udc/dcg basis.pl)

np --> [mary]
;[john]
;[fido].

p --> [to].
pp --> p,

np.

vt --> [loves].
vd --> [gives].
vs --> [knows].

s --> np,
vp.

vp --> vt,
np.

vp --> vd,
np,
pp.

vp --> vs,
s.

Towards a Prolog encoding of strong UDCs 12



A mini grammar with gaps (dcg/udc/dcg gaps1.pl)

% 1) Top of UDC: realizing filler
s(nogap) --> np(nogap), s(gap).

% 2) Middle of UDC: passing info
s(GapInfo) --> np(nogap), vp(GapInfo). % no subject gaps
vp(GapInfo) --> vt, np(GapInfo).

% 3) Bottom of UDC
np(gap) --> [].

% "Lexicon"
np(nogap) --> [mary];[john];[fido].

vt --> [loves].

Towards a Prolog encoding of strong UDCs 13

Towards different kinds of gaps (dcg/udc/dcg gaps2.pl)

% 1) Top of UDC: realizing filler
s(nogap) --> np(nogap), s(gap).

s(nogap) --> pp(nogap), s(gap).

% 2) Middle of UDC: passing info
s(GapInfo) --> np(nogap), vp(GapInfo). % no subject gaps

vp(GapInfo) --> vt, np(GapInfo).
vp(GapInfo) --> vd, np(GapInfo), pp(nogap).
vp(GapInfo) --> vd, np(nogap), pp(GapInfo).

pp(GapInfo) --> p, np(GapInfo).

Towards a Prolog encoding of strong UDCs 14

% 3) Bottom of UDC
np(gap) --> [].
pp(gap) --> [].

% "Lexicon"
np(nogap) --> [mary];[john];[fido].
p --> [to].
vt --> [loves].
vd --> [gives].

Towards a Prolog encoding of strong UDCs 15

Different kinds of gaps (dcg/udc/dcg gaps3.pl)

% 1) Top of UDC: realizing filler
s(nogap) --> np(nogap), s(gap(np)).

s(nogap) --> pp(nogap), s(gap(pp)).

% 2) Middle of UDC: passing info
s(GapInfo) --> np(nogap), vp(GapInfo). % no subject gaps

vp(GapInfo) --> vt, np(GapInfo).
vp(GapInfo) --> vd, np(GapInfo), pp(nogap).
vp(GapInfo) --> vd, np(nogap), pp(GapInfo).

pp(GapInfo) --> p, np(GapInfo).

Towards a Prolog encoding of strong UDCs 16

% 3) Bottom of UDC
np(gap(np)) --> [].
pp(gap(pp)) --> [].

% "Lexicon"
np(nogap) --> [mary];[john];[fido].
p --> [to].
vt --> [loves].
vd --> [gives].

Towards a Prolog encoding of strong UDCs 17

From hardcoded gap percolation to gap threading

Two problems of current encoding:

• Two rules are needed to license ditransitive VPs.

• In sentences without topicalization, two identical analyses arise for
ditransitive VPs.

Idea:

• Use difference-list encoding to thread occurrence of gaps through the
tree (“gap threading”).

Towards a Prolog encoding of strong UDCs 18



An encoding using gap threading (dcg/udc/dcg gaps4.pl)

% 1) Top of UDC: realizing filler

s([],[]) --> np([],[]), s([gap(np)],[]).
s([],[]) --> pp([],[]), s([gap(pp)],[]).

% 2) Middle of UDC: passing info

s(G0,G) --> np([],[]), vp(G0,G).

vp(G0,G) --> vt, np(G0,G).
vp(G0,G) --> vd, np(G0,G1), pp(G1,G).
pp(G0,G) --> p, np(G0,G).

Towards a Prolog encoding of strong UDCs 19

% 3) Bottom of UDC
np([gap(np)],[]) --> [].
pp([gap(pp)],[]) --> [].

% "Lexicon"
np(X,X) --> [mary];[john];[fido].
p --> [to].
vt --> [loves]. vd --> [gives].

Towards a Prolog encoding of strong UDCs 20

Reading assignment

Read the following chapters from the lecture notes:

• Chapter 4: DCGs as a Grammar Formalism

• Chapter 5: Unbounded Dependencies in DCGs

Towards a Prolog encoding of strong UDCs 21


