	Some useful tasks involving language	More useful tasks involving language
Finite-State Machines and Regular Languages Detmar Meurers: Intro to Computational Linguistics I OSU, LING 684.01	 Find all phone numbers in a text, e.g., occurrences such as <i>When you call (614) 292-8833, you reach the fax machine.</i> Find multiple adjacent occurrences of the same word in a text, as in <i>I read the the book.</i> Determine the language of the following utterance: French or Polish? <i>Czy pasazer jadacy do Warszawy moze jechac przez Londyn?</i> 	 e. Look up the following words in a dictionary: <i>laughs, became, unidentifiable, Thatcherization</i> e. Determine the part-of-speech of words like the following, even if you can't find them in the dictionary: <i>conurbation, cadence, disproportionality, lyricism, parlance</i> e. Such tasks can be addressed using so-called finite-state machines. e. How can such machines be specified?
Regular expressions	The syntax of regular expressions (1)	The syntax of regular expressions (2)
 A regular expression is a description of a set of strings, i.e., a language. They can be used to search for occurrences of these strings A variety of unix tools (grep, sed), editors (emacs), and programming languages (perl, python) incorporate regular expressions. Just like any other formalism, regular expressions as such have no linguistic contents, but they can be used to refer to linguistic units. 	<pre>Regular expressions consist of strings of characters: c, A100, natural language, 30 years! disjunction: ordinary disjunction: devoured ate, famil(y ies) character classes: [Tt]he, bec[oa]me ranges: [A-Z] (a capital letter) negation:[^a] (any symbol but a) [^A-Z0-9] (not an uppercase letter or number) </pre>	 example a sequence of the sequence o
The syntax of regular expressions (3)	Regular languages	Properties of regular languages
<pre>Operator precedence, from highest to lowest: parentheses () counters * + ? character sequences disjunction Note: The various unix tools and languages differ w.r.t. the exact syntax of the regular expressions they allow.</pre>	 How can the class of regular languages which is specified by regular expressions be characterized? Let Σ be the set of all symbols of the language, the alphabet, then: 1. {} is a regular language 2. ∀a ∈ Σ: {a} is a regular language 3. If L₁ and L₂ are regular languages, so are: (a) the concatenation of L₁ and L₂: L₁ · L₂ = {xy x ∈ L₁, y ∈ L₂} (b) the union of L₁ and L₂: L₁ ∪ L₂ (c) the Kleene closure of L: L* = L₀ ∪ L₁ ∪ L₂ ∪ where L_i is the language of all strings of length <i>i</i>. 	 The regular languages are closed under (L₁ and L₂ regular languages): a, concatenation: L₁ · L₂ set of strings with beginning in L₁ and continuation in L₂ b, Gheene closure: L₁[*] set of repeated concatenation of a string in L₁ a, union: L₁ ∪ L₂ set of strings in L₁ or in L₂ a, omplementation: Σ* - L₁ set of all possible strings that are not in L₁ b, difference: L₁ - L₂ set of strings which are in L₁ but not in L₂

<text></text>	<section-header><section-header><section-header><section-header><text><text><text><list-item><text></text></list-item></text></text></text></section-header></section-header></section-header></section-header>	<section-header><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><equation-block></equation-block></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></text></section-header>
<section-header><text><equation-block><equation-block><text><text><text></text></text></text></equation-block></equation-block></text></section-header>	<section-header><section-header><text><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></text></section-header></section-header>	<section-header><section-header><section-header><text><text><text></text></text></text></section-header></section-header></section-header>
<section-header><section-header><text><text><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></text></text></section-header></section-header>	The example specified as finite state transition table $ \frac{a \ b \ c \ d}{\underline{S0. S1 \ S2}} $	Some properties of finite state machines • Recognition problem can be solved in linear time (independent of the size of the automaton). • There is an algorithm to transform each automaton into a unique equivalent automaton with the least number of states.

Deterministic Finite State Automata Example: Determinization of FSA From Automata to Transducers A finite state automaton is deterministic iff it has Needed: mechanism to keep track of path taken • no ϵ transitions and A finite state transducer is a 6-tuple $(Q, \Sigma_1, \Sigma_2, E, S, F)$ with • for each state and each symbol there is at most one applicable • Q a finite set of states transition. • Σ_1 a finite set of symbols, the input alphabet Every non-deterministic automaton can be transformed into a deterministic one: • Σ_2 a finite set of symbols, the output alphabet • Define new states representing a disjunction of old states for each • $S \subseteq Q$ the set of start states non-determinacy which arises. • $F \subseteq Q$ the set of final states • Define arcs for these states corresponding to each transition which • *E* a set of edges $Q \times (\Sigma_1 \cup \{\epsilon\}) \times Q \times (\Sigma_2 \cup \{\epsilon\})$ is defined in the non-deterministic automaton for one of the disjuncts in the new state names. 19 20 Transducers and determinization Summary **Reading assignment 2** A finite state transducer understood as consuming an input and • Notations for characterizing regular languages: producing an output cannot generally be determinized. • Chapter 1 "Finite State Techniques" of course notes Regular expressions Example: • Finite state transition networks · Chapter 2 "Regular expressions and automata" of Finite state transition tables Jurafsky and Martin (2000) • Finite state machines and regular languages: Definitions and some properties · Finite state transducers

22

23

21

24