Towards more efficient parsers

Detmar Meurers: Intro to Computational Linguistics I
OSU, LING 684.01

Ideas

- Combining bottom-up parsing with top-down prediction
- From shift-reduce to left-corner parsing
- Adding more top-down filtering: link tables
- Memoization of partial results
- well-formed substring tables
- active charts

From shift-reduce to left-corner parsing

- Shift-reduce parsing is not goal directed at all:
- Reduction of every possible substring,
- obtaining every possible analysis for it.
- Idea to revise shift-reduce strategy:
- Take a particular element x (here: the leftmost).
- x triggers those rules it can occur in, to make predictions about the material occurring around x.

Left-corner, left-right, depth-first tree traversal

$$
\begin{aligned}
& S \rightarrow N P V P \\
& V P \rightarrow V t N P \\
& N P \rightarrow \text { Det } N \\
& N \rightarrow \text { Adj } N
\end{aligned}
$$

$$
\begin{aligned}
& \text { Vt } \rightarrow \text { saw } \\
& \text { Det } \rightarrow \text { the } \\
& \text { Det } \rightarrow \text { a } \\
& \mathrm{N} \rightarrow \text { dragon } \\
& \mathrm{N} \rightarrow \text { boy } \\
& \text { Adj } \rightarrow \text { young }
\end{aligned}
$$

the ${ }_{1}$

In the figure above, we numbered the mother in the tree at the time the rule is looked up of which it is the left-hand side category. Alternatively, one could number the mother only at the time when the parser tries to prove it's the left corner of something.

Left-corner, left-right, depth-first tree traversal

$$
\begin{aligned}
& S \rightarrow \text { NP VP } \\
& \mathrm{VP} \rightarrow \mathrm{Vt} \mathrm{NP} \\
& \mathrm{NP} \rightarrow \operatorname{Det} N \\
& \mathrm{~N} \rightarrow \operatorname{Adj} N
\end{aligned}
$$

Det $_{2}$
Vt \rightarrow saw
Det \rightarrow the
Det \rightarrow a
$N \rightarrow$ dragon
$N \rightarrow$ boy
Adj \rightarrow young
the ${ }_{1}$

In the figure above, we numbered the mother in the tree at the time the rule is looked up of which it is the left-hand side category. Alternatively, one could number the mother only at the time when the parser tries to prove it's the left corner of something.

Left-corner, left-right, depth-first tree traversal

$$
\mathrm{NP}_{3}
$$

$$
\begin{aligned}
& S \rightarrow \text { NP VP } \\
& \mathrm{VP} \rightarrow \mathrm{Vt} \mathrm{NP} \\
& \mathrm{NP} \rightarrow \operatorname{Det} N \\
& \mathrm{~N} \rightarrow \operatorname{Adj} N
\end{aligned}
$$

Det_{2}

$$
\begin{aligned}
& \mathrm{Vt} \rightarrow \text { saw } \\
& \text { Det } \rightarrow \text { the } \\
& \text { Det } \rightarrow \text { a } \\
& \mathrm{N} \rightarrow \text { dragon } \\
& \mathrm{N} \rightarrow \text { boy } \\
& \text { Adj } \rightarrow \text { young }
\end{aligned}
$$

the ${ }_{1}$

In the figure above, we numbered the mother in the tree at the time the rule is looked up of which it is the left-hand side category. Alternatively, one could number the mother only at the time when the parser tries to prove it's the left corner of something.

Left-corner, left-right, depth-first tree traversal

Left-corner, left-right, depth-first tree traversal

$$
\begin{aligned}
& S \rightarrow \text { NP VP } \\
& \mathrm{VP} \rightarrow \mathrm{Vt} \mathrm{NP} \\
& \mathrm{NP} \rightarrow \operatorname{Det} N \\
& \mathrm{~N} \rightarrow \text { Adj } N
\end{aligned}
$$

Det $_{2}$

$$
\begin{aligned}
& \mathrm{Vt} \rightarrow \text { saw } \\
& \text { Det } \rightarrow \text { the } \\
& \text { Det } \rightarrow \text { a } \\
& \mathrm{N} \rightarrow \text { dragon } \\
& \mathrm{N} \rightarrow \text { boy } \\
& \text { Adj } \rightarrow \text { young }
\end{aligned}
$$

In the figure above, we numbered the mother in the tree at the time the rule is looked up of which it is the left-hand side category. Alternatively, one could number the mother only at the time when the parser tries to prove it's the left corner of something.

Left-corner, left-right, depth-first tree traversal

$$
\begin{aligned}
& S \rightarrow N P V P \\
& V P \rightarrow V t N P \\
& N P \rightarrow \operatorname{Det} N \\
& N \rightarrow \operatorname{Adj} N
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Vt} \rightarrow \text { saw } \\
& \text { Det } \rightarrow \text { the } \\
& \text { Det } \rightarrow \text { a } \\
& \mathrm{N} \rightarrow \text { dragon } \\
& \mathrm{N} \rightarrow \text { boy } \\
& \text { Adj } \rightarrow \text { young }
\end{aligned}
$$

In the figure above, we numbered the mother in the tree at the time the rule is looked up of which it is the left-hand side category. Alternatively, one could number the mother only at the time when the parser tries to prove it's the left corner of something.

Left-corner, left-right, depth-first tree traversal

$$
\begin{aligned}
& S \rightarrow \text { NP VP } \\
& \mathrm{VP} \rightarrow \mathrm{Vt} \mathrm{NP} \\
& \mathrm{NP} \rightarrow \operatorname{Det} N \\
& \mathrm{~N} \rightarrow \operatorname{Adj} N
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Vt} \rightarrow \text { saw } \\
& \text { Det } \rightarrow \text { the } \\
& \text { Det } \rightarrow \text { a } \\
& \mathrm{N} \rightarrow \text { dragon } \\
& \mathrm{N} \rightarrow \text { boy } \\
& \text { Adj } \rightarrow \text { young }
\end{aligned}
$$

In the figure above, we numbered the mother in the tree at the time the rule is looked up of which it is the left-hand side category. Alternatively, one could number the mother only at the time when the parser tries to prove it's the left corner of something.

Left-corner, left-right, depth-first tree traversal

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP} \\
& \mathrm{VP} \rightarrow \mathrm{Vt} \mathrm{NP} \\
& \mathrm{NP} \rightarrow \text { Det } \mathrm{N} \\
& \mathrm{~N} \rightarrow \text { Adj } N \\
& \mathrm{Vt} \rightarrow \text { saw } \\
& \text { Det } \rightarrow \text { the } \\
& \text { Det } \rightarrow \text { a } \\
& \mathrm{N} \rightarrow \text { dragon } \\
& \mathrm{N} \rightarrow \text { boy } \\
& \mathrm{Adj} \rightarrow \text { young }
\end{aligned}
$$

the $_{1} \operatorname{Det}_{\text {young }}^{5}$

In the figure above, we numbered the mother in the tree at the time the rule is looked up of which it is the left-hand side category. Alternatively, one could number the mother only at the time when the parser tries to prove it's the left corner of something.

Left-corner, left-right, depth-first tree traversal

$$
5_{9}
$$

S_{9}

$$
\mathrm{NP}_{3}
$$

$$
\begin{aligned}
& S \rightarrow \text { NP VP } \\
& V P \rightarrow V t N P \\
& N P \rightarrow \operatorname{Det} N \\
& N \rightarrow \operatorname{Adj} N
\end{aligned}
$$

Vt \rightarrow saw
Det \rightarrow the
Det \rightarrow a
$\mathrm{N} \rightarrow$ dragon
$\mathrm{N} \rightarrow$ boy
Adj \rightarrow young

In the figure above, we numbered the mother in the tree at the time the rule is looked up of which it is the left-hand side category. Alternatively, one could number the mother only at the time when the parser tries to prove it's the left corner of something.

Left-corner, left-right, depth-first tree traversal

$$
\begin{aligned}
& S \rightarrow N P V P \\
& V P \rightarrow V t N P \\
& N P \rightarrow \operatorname{Det} N \\
& N \rightarrow \operatorname{Adj} N
\end{aligned}
$$

Vt \rightarrow saw
Det \rightarrow the
Det \rightarrow a
$N \rightarrow$ dragon
$N \rightarrow$ boy
Adj \rightarrow young

In the figure above, we numbered the mother in the tree at the time the rule is looked up of which it is the left-hand side category. Alternatively, one could number the mother only at the time when the parser tries to prove it's the left corner of something.

Left-corner, left-right, depth-first tree traversal

$$
\text { the }_{1} \text { young }_{5} \text { boy }_{8} \text { saw }_{11}
$$

$$
\begin{aligned}
& S \rightarrow \text { NP VP } \\
& V P \rightarrow V t N P \\
& N P \rightarrow \operatorname{Det} N \\
& N \rightarrow \operatorname{Adj} N
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Vt} \rightarrow \text { saw } \\
& \text { Det } \rightarrow \text { the } \\
& \text { Det } \rightarrow \text { a } \\
& \mathrm{N} \rightarrow \text { dragon } \\
& \mathrm{N} \rightarrow \text { boy } \\
& \text { Adj } \rightarrow \text { young }
\end{aligned}
$$

In the figure above, we numbered the mother in the tree at the time the rule is looked up of which it is the left-hand side category. Alternatively, one could number the mother only at the time when the parser tries to prove it's the left corner of something.

Left-corner, left-right, depth-first tree traversal

$$
\begin{aligned}
& S \rightarrow \text { NP VP } \\
& V P \rightarrow V t N P \\
& N P \rightarrow \operatorname{Det} N \\
& N \rightarrow \operatorname{Adj} N
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Vt} \rightarrow \text { saw } \\
& \text { Det } \rightarrow \text { the } \\
& \text { Det } \rightarrow \text { a } \\
& \mathrm{N} \rightarrow \text { dragon } \\
& \mathrm{N} \rightarrow \text { boy } \\
& \text { Adj } \rightarrow \text { young }
\end{aligned}
$$

In the figure above, we numbered the mother in the tree at the time the rule is looked up of which it is the left-hand side category. Alternatively, one could number the mother only at the time when the parser tries to prove it's the left corner of something.

Left-corner, left-right, depth-first tree traversal

NP_{3}

Det $_{2}$

$$
S \rightarrow N P V P
$$

In the figure above, we numbered the mother in the tree at the time the rule is looked up of which it is the left-hand side category. Alternatively, one could number the mother only at the time when the parser tries to prove it's the left corner of something.

Left-corner, left-right, depth-first tree traversal

NP_{3}

$$
\begin{aligned}
& S \rightarrow \text { NP VP } \\
& \mathrm{VP} \rightarrow \mathrm{Vt} \mathrm{NP} \\
& \mathrm{NP} \rightarrow \operatorname{Det} N \\
& \mathrm{~N} \rightarrow \text { Adj } N
\end{aligned}
$$

$$
\mathrm{Vt} \rightarrow \text { saw }
$$

$$
\text { Det } \rightarrow \text { the }
$$

$$
\text { Det } \rightarrow \text { a }
$$

$$
N \rightarrow \text { dragon }
$$

$$
N \rightarrow \text { boy }
$$

$$
\text { Adj } \rightarrow \text { young }
$$

In the figure above, we numbered the mother in the tree at the time the rule is looked up of which it is the left-hand side category. Alternatively, one could number the mother only at the time when the parser tries to prove it's the left corner of something.

Left-corner, left-right, depth-first tree traversal

$$
\begin{aligned}
& S \rightarrow \text { NP VP } \\
& V P \rightarrow V t N P \\
& N P \rightarrow \operatorname{Det} N \\
& N \rightarrow \operatorname{Adj} N
\end{aligned}
$$

In the figure above, we numbered the mother in the tree at the time the rule is looked up of which it is the left-hand side category. Alternatively, one could number the mother only at the time when the parser tries to prove it's the left corner of something.

Left-corner, left-right, depth-first tree traversal

$$
\begin{aligned}
& S \rightarrow \text { NP VP } \\
& V P \rightarrow V t N P \\
& N P \rightarrow \operatorname{Det} N \\
& N \rightarrow \operatorname{Adj} N
\end{aligned}
$$

In the figure above, we numbered the mother in the tree at the time the rule is looked up of which it is the left-hand side category. Alternatively, one could number the mother only at the time when the parser tries to prove it's the left corner of something.

Left-corner, left-right, depth-first tree traversal

$$
\begin{aligned}
& S \rightarrow N P V P \\
& V P \rightarrow V t N P \\
& N P \rightarrow \operatorname{Det} N \\
& N \rightarrow \operatorname{Adj} N
\end{aligned}
$$

Vt \rightarrow saw
Det \rightarrow the
Det \rightarrow a
$\mathrm{N} \rightarrow$ dragon
$N \rightarrow$ boy
Adj \rightarrow young

In the figure above, we numbered the mother in the tree at the time the rule is looked up of which it is the left-hand side category. Alternatively, one could number the mother only at the time when the parser tries to prove it's the left corner of something.

A left-corner parser for grammars in CNF using ordinary strings (parser/simple/cnf_lc.pl)

:- op(1100,xfx,'--->').

```
recognise(Phrase, [Word|Rest]) :-
    (Cat ---> [Word]),
    lc(Cat, Phrase, Rest).
lc(Phrase, Phrase, []).
lc(SubPhrase, SuperPhrase, String) :-
    (Phrase ---> [SubPhrase,Right]),
    append(SubString,Rest,String),
    recognise(Right, SubString),
    lc(Phrase, SuperPharse, Rest).
```

```
A left-corner parser for grammars in CNF using difference lists to encode the string (parser/simple/cnf_Ic_diff_list.pl)
:- op(1100,xfx,'--->').
```

```
recognise(Phrase, [Word|S0], S) :-
```

recognise(Phrase, [Word|S0], S) :-
(Cat ---> [Word]),
(Cat ---> [Word]),
lc(Cat, Phrase, SO, S).
lc(Cat, Phrase, SO, S).
lc(Phrase,Phrase, S, S).
lc(Phrase,Phrase, S, S).
lc(SubPhrase, SuperPhrase, S0, S) :-
lc(SubPhrase, SuperPhrase, S0, S) :-
(Phrase ---> [SubPhrase,Right]),
(Phrase ---> [SubPhrase,Right]),
recognise(Right, S0, S1),
recognise(Right, S0, S1),
lc(Phrase, SuperPharse, S1, S).

```
    lc(Phrase, SuperPharse, S1, S).
```


A left-corner parser for grammars in CNF using DCG notation to encode the string (parser/simple/cnf_lc_dcg.pl)

```
:- op(1100,xfx,'--->').
% ?- recognise(s,<list(word)>,[]).
recognise(Phrase) --> [Word],
        {Cat ---> [Word]},
        lc(Cat,Phrase).
lc(Phrase,Phrase) --> [].
lc(SubPhrase,SuperPhrase) -->
    {Phrase ---> [SubPhrase,Right]},
    recognise(Right),
    lc(Phrase,SuperPhrase).
```


Problems of basic left-corner approach

- There can be a choice involved in picking a rule which
- projects a particular word
- projects a particular phrase
- How do we make sure we only pick a category which is on our path up to the goal?
- Define a link table encoding the transitive closure of the left-corner relation. This is always a finite table!
- Use it as an oracle guiding us to pick a reasonable candidate.

Example for a link table

For a grammar with the following non-terminal rules
:- op(1100,xfx,'--->').

$$
\left.\begin{array}{ll}
s & \text { vp }--->[v, ~
\end{array} \text { np, } \mathrm{np}\right] . .
$$

one can define or automatically deduce the link table

$\operatorname{link}(\mathrm{s}, \mathrm{s})$.	$\operatorname{link}(\mathrm{np}, \mathrm{np})$.	$\operatorname{link}(\mathrm{pp}, \mathrm{pp})$.	
$\operatorname{link}(\operatorname{det}, \operatorname{det})$.	$\operatorname{link}(\mathrm{n}, \mathrm{n})$.	$\operatorname{link}(\mathrm{p}, \mathrm{p})$.	
$\operatorname{link}(\mathrm{np}, \mathrm{s})$.	$\operatorname{link}(\operatorname{det}, \mathrm{np})$.	$\operatorname{link}(\mathrm{p}, \mathrm{pp})$.	$\operatorname{link}(\mathrm{v}, \mathrm{vp})$.
$\operatorname{link}(\operatorname{det}, \mathrm{s})$.			

Using a link table in a left-corner parser

```
:- op(1100,xfx,'--->').
recognise(Phrase) --> [Word],
    {Cat ---> [Word]},
    {link(Cat,Phrase)},
    lc(Cat,Phrase).
lc(Phrase,Phrase) --> [].
lc(SubPhrase,SuperPhrase) -->
    {Phrase ---> [SubPhrase,Right]},
    {link(Phrase,SuperPhrase)},
    recognise(Right),
    lc(Phrase,SuperPhrase).
```

