Quantifier Scope in German – Analysis

Kiss (2001, p. 157) provides the following two definitions:

Quantifier Scope Principle in German: The scope of a quantifier is either the semantic contribution of the syntactic sister of the quantifier or the semantic contribution of a more oblique co-dependent of the quantifier.

(Less oblique) Co-dependency: A co-dependent of an element X is an element Y which is found on the same ARG-ST as X. X is less oblique than Y if X is realized to the left of Y on ARG-ST.

To capture the co-dependency aspect, he proposes to percolate ARG-ST along the head projection.
Alternative formulation of the Scope Principle

The Scope Principle can be reformulated in terms of the local o-command relation of Pollard and Sag (1994, p. 253):

Quantifier Scope Principle in German: “The scope of a quantifier is either the semantic contribution of the syntactic sister of the quantifier or the semantic contribution of an element which is locally o-commanded by the quantifier.” Kiss (2001, p. 157, fn. 16)

⇒ Percolation of ARG-ST along head projection not required.
The local o-command relation is only encoded in the lexical head of the domain though! The second disjunct of the principle must thus take effect with respect to the lexical head to have access to this information.

Ambiguous example

(4) daß er mindestens ein Gedicht fast jedem Verleger anbot
that he at-least one poem almost every publisher offered

References

Tibor’s answers to the guiding questions

Which properties need to be accessible?
- The obliqueness relations among co-dependents.

How far and when are the obliqueness relations visible?
- They always need to be visible throughout the entire head domain.

Theoretical interpretation:
- Which representation and percolation mechanisms achieve the desired?
 - ARG-ST list containing synsem values of all arguments
 - redefined as cat feature + new Argument Projection Principle projects along head path (not HFP to allow for HEAD identity in coordination).
- How is the obliqueness relation used once it is visible?
 - Dedicated principle determining quantifier scope.