MASTER'S THESIS

COMPUTATIONAL LINGUISTICS

Combining

Automatic Generation of Form-based
Grammar Exercises from Authentic Texts

with Language Aware Text Search

Supervisors:
Prof. Dr. Detmar MEURERS
Dr. Stephen BODNAR

Author:
Tanja HECK

SEMINAR FUR SPRACHWISSENSCHAFT
EBERHARD-KARLS-UNIVERSITAT TUBINGEN

September 2021

EBERHARD KARLS

UNI\/FPSHAI
TUBINGEN

Philosophische
Fakultat

Name: Heck

Vorname: Tanja

Matrikel-Nummer: 5420771

Adresse: Viktor-Renner-Stral3e 1-9, 72074 Tiibingen

Hiermit versichere ich, die Arbeit mit dem Titel:

Combining Automatic Generation of Form-based Grammar Exercises from Authentic Texts with
Language Aware Text Search

im Rahmen der Lehrveranstaltung Masterarbeit

im Sommer-Mintersemester 2021 bei Prof. Dr. Detmar Meurers

selbstandig und nur mit den in der Arbeit angegebenen Hilfsmitteln verfasst zu haben.

Mir ist bekannt, dass ich alle schriftlichen Arbeiten, die ich im Verlauf meines Studiums als Studien-
oder Priifungsleistung einreiche, selbstandig verfassen muss. Zitate sowie der Gebrauch von fremden
Quellen und Hilfsmitteln missen nach den Regeln wissenschaftlicher Dokumentation von mir
eindeutig gekennzeichnet werden. Ich darf fremde Texte oder Textpassagen (auch aus dem Internet)
nicht als meine eigenen ausgeben.

Ein Versto3 gegen diese Grundregeln wissenschaftlichen Arbeitens gilt als Tauschungs- bzw.
Betrugsversuch und zieht entsprechende Konsequenzen nach sich. In jedem Fall wird die Leistung
mit ,nicht ausreichend“ (5,0) bewertet. In besonders schwerwiegenden Féllen kann der
Prifungsausschuss den Kandidaten/die Kandidatin von der Erbringung weiterer Priifungsleistungen
ausschlielen (vgl. § 12 Abs. 3 der Prifungsordnung fur die Magisterstudiengange vom 11. und 25.
September 1995 bzw. § 13 Abs. 3 der Prifungsordnung fir die kulturwissenschaftlichen Bachelor-
und Masterstudiengdnge vom 12.10.2006 und 23.11.2007).

: P
Datum: A5.03. 2024 Unterschrift: %ﬁ e

Contents

[Abstract]

[Acknowledgements|

[List of Figures|

[List_of Tables|
LT Related workl
(1.2 Document ranking systems|.
(1.3 Feedback generation systems|
(L4 Exercise formslo
(1.4.1 Exercise types|.
(1.4.2 Exercise topics| Lo
(1.5 Exercise complexity|. oo
(1.5.1 Complexity of exercise types|
[1.5.2 Topic-dependent complexity parameters|
2 System Architecture|
2.1 FLAIR base system|.
[2.2 Exercise generation functionality]
[2.3 Interaction of components
[3 Implementation|
B.I1 HbP exercises
[3.1.2 Single Choice exercises|
B.1.3 Mark-the-Words exercisesl
[3.1.4 Drag and Drop exercises|
[3.1.6 Quizzes|
[3.2 Exercise configuration|
[3.3 Exercise generation|
[3.3.1 Adjustments to existing modules,
.32 Web downloadl
[3.3.3 Post-processing of exercise elements|
[3.3.4 HTML indexing
3.3.5 Feedback Generation|
[3.3.6 DOM manipulations|

vii

ix

xi

xiii

11
12
14
14
17
19
21
23

26
26
28
29

I Fvaliation & Di S0l
4.1 Methodology|

[4.1.1 Comparison with related work{

[4.2.1 Versatility|

[4.2.2 Coverage of learning scenarios|

4.2.3 Robustness and correctnessl

24 Usabilityl.
4.3 Discussionl

[4.3.1 Scope of the tool’s applicability]

[4.3.2 Scope of applicable documents|

[4.3.3 Performance for generating content|

[4.3.4 Technical performance|
[4.3.5 Scope of the evaluation|

5 Conclusion|

(Bibliography|

(Evaluation Source Documents|

[A_Evaluation results|

68
68
68
70
74
74
75
79
89
90
90
91
92
95
96

99

102

111

116

Abstract

The need for automatic exercise generation has long since been acknowledged in
Instructed Second Language Acquisition in order to meet the demand for supple-
mentary practice material adapted to the learner’s individual needs. While a consid-
erable amount of research has focused on how to automatically generate form-based
grammar exercises in the past years, existing approaches struggle to overcome the
challenge of integrating exercises into authentic contexts that are rich in the targeted
linguistic constructions. We addresses this issue by integrating our tool for exercise
generation into a language aware search engine, thus assisting the task of identifying
suitable documents. In addition, we incorporate a range of features including au-
tomatically generated feedback, a portable output format, context preservation and
customization of the exercises. An evaluation of exercises generated from a repre-
sentative sample of web documents showed that our application effectively bundles
the strengths and overcomes the weaknesses of previous approaches to automatic

exercise generation.

Vil

Acknowledgements

My most sincere thanks go to my supervisors Detmar Meurers and Stephen Bodnar
who provided not only guidance for my work but, even more importantly, encour-
aging support and motivating feedback.

I am also most grateful to all those taking the time to provide assistance or profes-
sional input, including Ramoén Ziai’s initial presentation of H5P, Aleksandar Dim-
itrov’s gentle introduction to VIEW, Bjorn Rudzewitz’s invaluable insights into
FeedBook’s feedback generation and Jochen Saile’s patient support with deploy-
ment.

As this thesis is based on existing systems for document retrieval and feedback gen-
eration, I owe my gratitude to researchers who, although some of them I have never
met with, have laid the foundation for my own work.

With all my heart, I thank my sister Melanie for answering all my questions on
academic writing and proof-reading this thesis; and, along with with my parents,
my sister Isabella and my soon-to-be brother-in-law Riku, for being my tower of

strength, always willing to lend an open ear or a strong shoulder.

1X

List of Figures

(1.4.1 Exercise types|

[2.1.1 UML Component Diagram of the system architecturel

[2.2.1 UML Component Diagram of the extended system architecture|. . . .
[2.3.1 Workflow Activity Diagram|

[3.1.1 Excerpt of a generated H5P exercise in the LMS|
[3.1.2 T'ypes of DD exercises|

[3.2.2 Visual display of exercise validity]

[3.3.1 Indexing of relative pronouns| L.

[3.3.2 Edit graph for operations supported by the Myers algorithm|

[4.2.1 Boxplots for precision ot construction identification|

[4.2.2 Boxplots for target generation ratios]

[4.2.3 Correlation between number of targets and execution times|.

[4.3.1 Dependency graph for compound tense example]

x1

List of Tables

[1.1.2 Exercise generation systems| 8
(1.1.4 Portable exercise formats/ 11
[1.4.2 Exercise types per topic| L 19
[4.2.2 Support for curriculum topics|o 76
[4.2.4 Support for web sites| 84
[4.2.6 Target generation ratiof 87
4.3.2 Evaluation criterial L. oo 96
[A.0.1Results of the target identification assessment| 119
[A.0.2Results of the performance assessment| 124

xiil

Chapter 1
Introduction & Motivation

Web-based language learning resources are becoming more and more readily avail-
able, yet textbooks still constitute the primary source of language material in tra-
ditional classroom teaching (Hadjerrouit| [2010)). Available practice exercises are
thus usually limited to those provided by the textbook a learner follows, possibly
supplemented by additional exercises offered by the instructor. Since compiling
supplementary exercises is a time-consuming task, however, additional exercises are
often neglected in classroom teaching. Although task repetition has been shown to
be beneficial to language learning, this concept requires the tasks to be slightly mod-
ified at each repetition (Ahmadian| 2012)). It is thus necessary to provide similar,
but not identical, exercises which target the relevant linguistic constructions in new
contexts. Contexts which cover current topics as well as the learner’s interests are
especially beneficial. As textbook exercises are neither personalized nor updated on
a regular basis, they cannot meet this requirement. The lack of suitable exercise
material can thus constitute an important bottleneck in Instructed Second Language
Acquisition (SLA).

Apart from being limited in terms of numbers and diversity, textbook exercises
are faced with the additional shortcoming of fixed task complexity. According to
Stephen Krashen’s Input Hypothesis, learning requires input at the level of 7 + 1,
© representing the user’s current level and 7 an increment indicating slightly more
advanced input (Ortega, 2014). Exercise complexity which allows for optimal learn-

ing outcomes thus depends on the learner’s current proficiency. Textbook exercises,

however, cannot account for individual differences between learners. In order to
meet a learner’s individual needs, it is therefore necessary to provide exercises at
different difficulty levels. Factors influencing task complexity may depend on char-
acteristics of the text such as the used vocabulary, or else on the implementation of
exercise characteristics such as the amount of information given in the instructions.
The latter kind of factors allows to compile exercises of varying difficulty from the

same text base.

Automated exercise generation, which applies Natural Language Processing (NLP)
technology in order to compile exercises with no or minimal manual effort, addresses
the issues of both exercise sparsity and exercise uniformity by making it feasible
to provide large amounts of exercises at varying complexity levels. However, two
main challenges need to be considered when implementing corpus-based exercise
generation. (1) Items which the learner needs to provide or identify, henceforth
referred to as EXERCISE TARGETS, consist in linguistic constructions. Although
increasing reliability of NLP tools allows to identify target constructions with high
accuracy, occasional mis-identifications cannot be prevented. It is therefore crucial
to offer some editing functionality for the generated exercises in which potential
errors may be removed before presenting the exercise to a learner. (2) Using arbitrary
documents from the web to generate language exercises may result in large text
overhead with very few exercise targets or in unsuccessful exercise generation due
to a lack of relevant target constructions in the selected text. In order to ensure
that the selected document contains a sufficient amount of exercise targets, exercise
generation may be combined with an intelligent text search to rank the search results

and filter texts that are rich in the desired constructions.

Irrespective of manual or automatic compilation, traditional form-based exercises in
SLA, which focus on the formation of a specific grammar item (Willis and Willis,
2001)), are usually of a mechanical nature that is little captivating to language learn-
ers (Walz, |1989). In order to boost motivation, current approaches tend to contex-
tualize the exercises (Peacock |1997)). Contextualization is here often understood
as embedding exercises in some text which does not necessarily come from an au-
thentic source but may also be compiled for the purpose of the exercise. Yet using
real-world texts, which are available abundantly on the web (Chun| 2016)), has the

additional advantages of improving reading skills by exposing learners to authentic

native language (Wilcox et al., [1999), and fostering cultural understanding (Garcial,
2008). By preserving not only the LINGUISTIC but also the VISUAL CONTEXT in
terms of the original markup of the web pages, learners are in addition provided
with implicit assistance through illustrating material such as images, and through

linked resources providing additional information on the topic (Romney, 2016).

Generated exercises are usually used as supplementary practice material outside of
class so that no instructor is available at the time when students work on the exer-
cises. However, immediate feedback is considered an essential aspect to successful
language learning (Mackey, [2006)). For long-term knowledge retention, Finn and
Metcalfe (2010) found immediate, scaffolding feedback, which incrementally guides
a learner towards the correct answer, to be the most successful feedback method.
Feedback should thus be provided with the exercise on the target platform. By inte-
grating automatically generated feedback into the compiled exercises, post-editing
effort can be reduced to verifying the generated content instead of enriching it with

additional features.

As automatic, immediate feedback requires the target platform to support the rele-
vant functionalities, compliance between the generated exercises and the distribution
platform needs to be ensured. While it is possible to host both exercise generation
and exercise distribution in a single application, most language classes already use
some specific Learning Management System (LMS). It is therefore preferable to
make the generated exercises available in the existing e-learning platform. Various
file exchange formats exist which are supported by a range of common LMSs. Such
exercise formats allow to generate portable exercises which may be used outside of

the exercise generation system.

Taking into account these considerations, this thesis presents a tool for exercise
generation integrated into a document ranking system. The tool, which we call
FLAIRE Gen, aims at providing exercises of varying complexity with integrated feed-
back for learners of English at beginner and lower intermediate levels. By using a
portable output format, the project aims to generate exercises which may be re-used

and shared outside of the exercise generation system.

The rest of this thesis is structured as follows. The subsequent sections of this
chapter introduce related work on exercise generation and existing systems for doc-

ument ranking and feedback generation, as well as relevant topics and exercise types

1.1. Related work 4

including possibilities to adjust their complexity. Chapter [2] presents the existing
architecture of the base system for document ranking as well as the new feature
for exercise generation. Chapter |3 describes the implementation details. Chapter
evaluates the project and discusses emerging issues. Chapter | summarizes and

concludes with an outlook on future work.

1.1 Related work

The requirements we impose on our exercise generation system comprise the quality
criteria outlined above. While letting users supply arbitrary input texts allows to
tailor exercises to the learner’s interests, integrating a document ranking mechanism
ensures that the texts are suitable for exercise generation. Preserving visual in
addition to linguistic context helps to quickly categorize the topic of the exercise
text (Romney, 2016). In order to adjust task complexity to the learner’s level,
exercise settings need to be configurable. Optimal support for learners while they
work on the exercises requires integrated feedback that guides the student towards
the correct answer. While functionalities to modify the generated exercises may be
implemented within the system, providing the tasks in a portable output format
supported by an editing tool is equally suitable. Such a format is preferable at any

rate in order to integrate the exercises into a LMS used by the learners.

In SLA, tools designed to preserve authentic context by providing learning material
based on real-world texts are referred to as Authentic Text Intelligent Computer-
Assisted Language Learning (ATICALL) systems. Most of these tools focus on input
enhancement in order raise a learner’s awareness for specified constructions by high-
lighting them. The web plugin by The Alpheios Project| (2018)) constitutes a reading
support tool for classical languages which displays vocabulary information when the
user clicks on any word of the web page. The desktop application for Macintosh
COMPASS, with its own editing interface, also provides vocabulary information
for clicked words (Breidt and Feldweg, 1997). Most other ATICALL tools do not
preserve the original markup of the web page. They often constitute reading as-
sistants which present the extracted text in an enhanced manner. SMILLE (Zilio
et al., 2017)) highlights the user-specified constructions in the selected web text.
SmartReader does not focus on specific constructions selected by the user but

provides a range of meta-information when clicking on any word (Azab et al [2013).

1.1. Related work 5

Similarly, Glosser-RuG provides vocabulary information for clicked words (Dokter
et al., [1997). Preservation of context in exercise generation tools is examined in the

following.

In terms of automatic exercise generation, there has been a considerable amount of
research over the past years and a range of tools to generate form-based grammar
exercises exist. They can be subdivided into two categories: tools that generate sim-
ple exercise sentences using a rule-based approach and tools that extract sentences

which contain the targeted constructions from existing texts.

In the first category, featuring rule-based tools, the Mgbeg exercise generator can
create a range of exercises of different types based on a grammar specification for
context-free languages (Almeida et al.,[2017). GramEx generates Fill-in-the-Blanks
(FiB) and Word ordering exercises for French based on a constraint language (Perez-
Beltrachini et al.; 2012). The constraints which the generated sentences must satisfy
can be specified by the user. The authors highlight the suitability of the exercises
especially for low proficiency levels due to the simple and controlled nature of the

generated exercise contexts.

Examples in the second category, with texts based on extracted sentences, include
the more vocabulary-focused mobile application WordGapH. It generates Multiple
Choice (MC) exercises from English web or locally stored texts for a part of speech
(POS) selected by the user in the graphical interface (Knoop and Wilske, 2013]).
Although the main focus is on vocabulary practice, choosing a closed class POS like
prepositions allows for practice of such grammar topics. In terms of post-editing
support, the tool provides neither functionalities within the system nor an interface
to external editing systems. In a similar vein, VISL with its KillerFilleIﬂ extension
generates FiB exercises on inflection (Bick, 2000)). Texts in the 22 supported lan-
guages are taken from the system’s annotated corpora. Target words are determined
based on the POS selected by the user and hints in brackets are given whenever nec-
essary for disambiguation in order to allow only a single correct answer. The tool
supports post-editing of the generated exercises in the authoring tool Hot Potatoesﬂ.

The Tutor Assistant’s Task Generator supports FiB and sentence formation ex-

Thttps://github.com /wordgap /wordgap
Zhttps:/ /visl.sdu.dk /visI2 /killerfiller.html
3https://hotpot.uvic.ca/

https://github.com/wordgap/wordgap
https://visl.sdu.dk/visl2/killerfiller.html
https://hotpot.uvic.ca/

1.1. Related work 6

ercises with automatic feedback for a range of grammatical constructions based on
a user-supplied English text (Toole and Heift} 2001)). Post-editing is possible within
the Tutor Assistant. MIRTO provides automatically generated Mark-the-Words
(MtW) and FiB exercises for texts from its corpus database or supplied by the user
(Antoniadis et al., [2004; |Antoniadis and Ponton, 2004). It supports roughly 10 lan-
guages and is highly configurable regarding the target forms and the specified help
such as meta-information in brackets. Targets and exercise components are auto-
matically compiled based on these settings. Tasks may be sequenced within the tool,
yet post-editing of the generated exercises is not possible. The Grammar Exer-
cise Generator may be used to automatically generate FiB and Single Choice (SC)
exercises in 7 languages (Schwartz et al., [2004; MELERO and FON'T) [2001). When
using the tool within the NLP-based Game Generator, users can manually include
image and game elements, but not otherwise modify the exercises. FAST extracts
large numbers of single sentences from the web in order to convert them into MC
and Error detection exercises for English (Chen et al.; 2006). An editing interface
is not available. ArikIturri does the same for Basque and also supports FiB and
Word formation exercises (Aldabe et al., 2006). It uses XML formats for input and
output and assumes that the linguistic constructions to target in the exercises are
specified in an external assessment platform. Post-processing in order to modify
the generated exercises is also outsourced to that platform. WebExperimenter,
supporting only English, uses a machine learning approach to generate MC exercises
from BBC news articles (Hoshino and Nakagaway, 2005a,b)). Apart from choosing
the article and the number of blanks, the user has no influence on target construc-
tions and cannot choose between grammar and vocabulary exercises. Post-editing
is not possible. In its initial version, Sakumon assists the user in generating an
exercise from a text in its database of English web articles by offering the con-
tained linguistic constructions as potential target words for MC or FiB exercises
and providing distractor suggestions. Target words and distractors can then be
manually selected from the suggestions. Hoshino and Nakagawa| (2008) proposed
an extension for automatic blanks generation and text upload, but no according
implementation has yet been published. While the web plugin WERTi only high-
lights user-specified constructions, its extension VIEWE] can generate MtW, FiB
and SC exercises for them by directly manipulating the source HTML of the web

4https://addons.mozilla.org/en-US /firefox /addon /view /

https://addons.mozilla.org/en-US/firefox/addon/view/

1.1. Related work 7

page (Meurers et al., 2010). Supported languages include English, German, Spanish
and Russian (Reynolds et al. 2014). Post-editing is not possible. The ClozeFoxE]
web plugin offers similar functionalities for English and Dutch: It generates FiB and
MC exercises for any visited web page (Colpaert and Sevind}, 2010)). ClozeFox does
not offer any post-editing functionalities, either. The web-based Language Exer-
cise App generates FiB, MC and Sentence Shuffling exercises for a user-supplied
text in English, Spanish, French or Basque (Naiara Perez Miguel, 2017)). The exer-
cises are highly configurable in terms of target constructions, brackets contents for
FiB exercises and distractors for MC tasks. Targets may be rejected in order not
to use them for the exercise, but not otherwise modified within the system. The
exercises can, however, be exported in a format supported by the LMS Moodld’|
Liirka'| offers SC vocabulary and inflectional grammar exercises for Swedish at a
user-specified proficiency level based on single sentences extracted from its corpus.
Automatically generated feedback is included, but the generated exercises cannot be
modified (Volodina et al., 2014). The web tool COLLIEﬁ automatically generates a
range of scaffolded exercises from user-supplied texts to practice French grammatical
gender (Bodnar and Lyster, 2021)). Supported exercise types include FiB, sorting
and speaking activities. REAP.PT focuses on vocabulary exercises for Portuguese
in a gamified environment, but also offers pronominalization, subordinate clause and
passive transformation exercises (Lourencol [2015)). Feedback is generated automati-
cally. [Ferreira and Pereira Jr.| (2018]) present work to generate FiB, MC, True/False
and Tense transposition exercises for English verbs. The implementations by EWR
and Senefl (2007) and Lee et al.| (2016]) are both centered on generating SC exercises
for English prepositions with a focus an distractor generation. They are not inte-
grated into fully deployable systems and do not fulfill any of the other requirements

we impose on our system.

Table provides an overview of the presented existing work on automatic gener-
ation of grammar exercises. It highlights that, while many of these systems incorpo-
rate, at least to some extent, a selection of the characteristics we consider relevant to
automatically generated, form-based grammar exercises, none of them combines the

features in their entirety. Especially the selection of suitable documents is hardly

Shttps://wiki.mozilla.org/Education/Projects/JetpackForLearning /Profiles/ ClozeFox
Shttps://moodle.org

"https:/ /spraakbanken.gu.se/larkalabb/

8https://www.collietool.ca/

https://wiki.mozilla.org/Education/Projects/JetpackForLearning/Profiles/ClozeFox
https://moodle.org
https://spraakbanken.gu.se/larkalabb/
https://www.collietool.ca/

1.1. Related work

Mgbeg

GramEx

WordGap

KillerFiller

Task Generator

MIRTO

Grammar Exercise Genera-
tor

FAST

ArikIturri
WebExperimenter
Sakumon

VIEW

ClozeFox

Language Exercise App
Larka

COLLIE

REAP.PT
Ferreira__and__Pereira__Jr.
(2018)

EWR and Seneff (2007)
Lee et al.| (2016)

(¢)

(o)

Table 1.1.2: Exercise generation systems

Requirements marked with a dot are fulfilled by the tool. Dots in parenthesis indicate
requirements that are only partially fulfilled.

targeted at all. Support for automatically generated feedback, post-editing of the

generated exercises and portable output formats varies considerably from system

to system. The user often has only rudimentary influence on the properties of the

generated exercises, although many systems allow to base the exercises on custom

texts. Some ATICALL systems exist, yet only few preserve the entire HTML con-
text (e.g. Meurers et all 2010; |Colpaert and Sevinc, [2010). Instead, the focus is

usually on maintaining linguistic rather than visual authenticity. This is not sur-

1.1. Related work 9

prising considering that practice exercises primarily target learners at beginner and
lower intermediate levels who still need guidance in their learning process. The more
advanced and thus more independent a learner is, the more relevant autonomously
chosen reading material becomes. For this kind of language input, maintaining visual
authenticity of (enhanced) texts is more important than in the context of practice
exercises provided to the learner by an instructor. However, resources such as im-
ages or videos often have a decorative effect for more impact or a less intimidating
first impression of the exercises. In addition, they can have supportive effects to
introduce the exercise context at a glance and thus activate the learner’s relevant
existing knowledge (Romney, 2016)). Our exercise generation component therefore
aims to preserve as much context as possible, including HTML markup such as links
and resources like images, while at the same time accepting minor deficiencies in the

rendering which may arise from technical challenges.

Most of the exercise generation tools provide the generated exercises within the
system and do not offer any export functionalities. Noticeable exceptions include
KillerFiller, MIRTO and the web plugins VIEW and ClozeFox. MIRTO provides
an export functionality generating a file in Moodle CLOZE syntax which can then
be uploaded to that e-learning platform. However, it only supports Cloze exercises.
KillerFiller uses a XML output format supported by Hot Potatoes. Since this au-
thoring tool for exercises provides output compliant with the e-learning standard
SCORMH, it is portable in nature and allows integrating the generated exercises
into any LMS that supports this standard, such as Moodle. VIEW and ClozeFox
are implemented as web plugins for Mozilla Firefox so that they can be applied to
any web site, thus ensuring maximum portability. Although VIEW does support
building a learner model, the database is not connected to a LMS, so that the col-
lected data cannot be integrated into already existing learner models. ClozeFox
does not support a learner model at all. While both projects are open source, thus
allowing for modification and extension to support additional exercise types and
feedback, generated exercises cannot be post-edited. In addition, exercises are only
accessible as long as the source web site exists and contains the content intended for

the exercises.

Since post-editing is a hard requirement in our project, an exercise format based on

9https://adlnet.gov /projects/scorm

https://adlnet.gov/projects/scorm

1.1. Related work 10

e-learning standards is most suitable for our purposes. A set of such standards have
been developed to facilitate sharing content between LMSs (Bianco et al.; 2004). The
most commonly applied standards and specifications include SCORM, XAPIE and
cmifT] SCORM is based on a range of older standards such as AIC(and LOM|
(Bohl et al., 2002). While it is still the most widely used e-learning specification
(Papazoglakis, 2013)), new standards are constantly being developed. xAPI covers
only a fraction of SCORM’s spectrum, yet its extension cmi5 is considered SCORM’s
more powerful successor (Victor and Werkenthin, 2016). Authoring tools to compile
content compliant with those standards are abundant (e.g. Capterra;, 2021} eLearning
Industry}, 2021)).

However, manually compiling a package, usually based on XML definitions and ad-
ditional resources such as images, is cumbersome. The H5PE (HTML5 Package)
project was initiated to address this issue by providing libraries to easily create a
range of exercise types, so-called CONTENT TYPES (Joubel, [2016). Table sum-
marizes how H5P combines the strengths of applying e-learning standards and using
plugins by making post-editing possible and at the same time keeping the exercise
files manageable. Although specifying exercise content is highly simplified in H5P,
the open source framework also integrates its own authoring tool available for all
content types. Users with low technical affinity can therefore generate and manip-
ulate exercises in a graphical interface. Implemented standards such as xAPI and
LT IE within the H5P framework increase compatibility with other systems (Joubel,
2018|, n.d.b) and allow for integration of H5P packages via interfaces. Side projects
by private contributors such as the H5P SCORM Packager by Rettig (2019) to con-
vert a HHP package into a SCORM package further increase the range of compatible
platforms. H5P is thus supported by numerous popular LMSs including Canvaﬂ,
Blackboardm and Moodle (Joubel, 2021). An additional advantage of using this
exercise format consists in H5P’s support of xAPI specifications which allows com-

munication with the host system. Most content types thus already provide data to

1.2. Document ranking systems 11

LMS integration Post-editing support Manageability

Plugins (o) .
E-learning standards ° °
H5P ° ° °

Table 1.1.4: Portable exercise formats

Features marked with a dot are realized by the format. Dots in parentheses indicate
features that are realized only to some degree.

maintain the learner model on the distribution platform.

1.2 Document ranking systems

Tools providing intelligent text search often base their filter algorithm on learner-
specific parameters. The REAP system selects documents from the web suitable
for the student’s proficiency level based on the learner model (Brown and Eskenazi,
2004). An extension to this system generates vocabulary questions for the selected
texts, thus making sure that the targeted vocabulary is at the learner’s proficiency
level (Brown et al., 2005). TextFinder also matches the learner’s proficiency de-
termined from the learner model, which is generated from previous interaction of
the student with the system, against readability scores calculated for the docu-
ments in its database of online news articles in order to select the most suitable
one (Bennohr], 2005). The web extension LAWSE can analyze arbitrary web texts
and provides the calculated readability scores without relating them to the learner’s
proficiency (Ott and Meurers, [2011). The standalone tool READ-X filters web
results according to a learner-specified reading level ranging from grades 1 through
12 to college level (Miltsakaki and Troutt, |2011). SourceFinder targets university
students by identifying texts at advanced reading levels (Sheehan et al., 2007). It

currently only operates on a pre-selected corpus of online journals. While these

Ohttps://github.com/adlnet /x API-Spec

Hhttps: //aicc.github.io/CMI-5 Spec Current,/

2https: //github.com/ADL- AICC/AICC-Document- Archive /
3https://standards.ieee.org/standard /1484 12 1-2020.html
Mhttps://h5p.org/

5https://www.imsglobal.org/activity /learning-tools-interoperability
16https: //www.instructure.com/product /higher-education /canvas-Ims
"https://intelliboard.net/

https://github.com/adlnet/xAPI-Spec
https://aicc.github.io/CMI-5_Spec_Current/
https://github.com/ADL-AICC/AICC-Document-Archive/
https://standards.ieee.org/standard/1484_12_1-2020.html
https://h5p.org/
https://www.imsglobal.org/activity/learning-tools-interoperability
 https://www.instructure.com/product/higher-education/canvas-lms
https://intelliboard.net/

1.3. Feedback generation systems 12

tools do not or only marginally take grammatical features into account, the author-
ing assistance tool Sakumon maintains information on the article’s reading level as
well as on contained grammatical constructions in its database (Hoshino and Nak-
agawa, 2008). Filtering functionalities help the user to identify articles featuring

those characteristics relevant for the exercises to be generated.

FLAIR@ (Form-Focused Linguistically Aware Information Retrieval) constitutes a
language aware search engine that combines web search with custom configurable
linguistic construction weighting (Chinkina et al., 2016). Supported weight options
encompass all 87 grammatical constructions covered by the English curriculum of
high schools in Baden-Wiirttemberg (Chinkina et al., 2016). FLAIR thus provides
a selection of documents rich in and ranked according to the number of contained
targeted constructions. This kind of re-ranking of search results filters suitable texts
while at the same time not restricting the user to a single suggested document.
We therefore choose this tool to pre-select texts that contain a sufficient amount of
exercise targets. We then apply our exercise generation functionality to the extracted

set of documents.

While FLAIR addresses the challenge of selecting texts rich in target constructions,
the issue of reliability in detecting those constructions remains. Some linguistic
constructions can be identified correctly with Fl-scores of up to 1.0, yet |Chinkina
et al.| (2016) report only moderate f-scores of .88 and .73 for identifying tenses and
conditionals respectively, two of the central topics for lower-level learners. Providing

an authoring interface to post-process the generated exercises is therefore essential.

1.3 Feedback generation systems

Early approaches to automatic feedback generation rely on offline compilation of
feedback for possible learner answers, so-called TARGET HYPOTHESES. At runtime,
the most suitable hypothesis is determined through pattern matching of the learner’s
answer to the pre-compiled target hypotheses. Although it is employed in a range
of tools (e.g. Feuerman et al., |1987; [Levison et al| [2000; Paramskas, 2013)), the large
amount of target hypotheses and often rigid matching strategies make this approach

less and less feasible and reliable the more complex and diverse the tasks are (Faltin,

Bhttp://sifnos.sfs.uni-tuebingen.de /FLAIR /

1.3. Feedback generation systems 13

2003).

With the increasing spread of more and more reliable NLP tools, the focus of feed-
back generation has shifted towards online analysis of learner answers (e.g. Nagata,,
1995; [Yang and Akahori, (1998} Reuer, 2003; |Delmonte|, 2003; Heift, 2003; |Amaral,
2007}, Dickinson and Herring) 2008; Nagata, |[2009] [2011} |[Dansuwan et al., 2013; Heift],
2015). Since standard NLP tools are designed to process correctly formed language,
however, analyzing learner language requires modifying those tools (Meurers|, [2012).
Constraint relaxation approaches have been widely applied (Weischedel and Black,
1980; Heinecke et al., (1998} |L’haire and Faltin, 2003). They modify the parser in or-
der to allow parsing a sentence even if some linguistic constraints such as agreement
are not fulfilled. Since each constraint relaxation is associated with a particular
error, the nature of the learner’s error is also determined in the process. A sec-
ond approach introduces manually specified mal-rules to anticipate ungrammatical
productions, thus allowing to parse them (Schneider and McCoy, 1998; (Crysmann
et al., 2008). While such approaches enable standard NLP tools to analyze learner
language, they do not take into account the task context. The nature of the error is

therefore often mis-diagnosed, thus making it difficult to provide helpful feedback.

Hybrid approaches that combine online and offline analysis allow to take into ac-
count the task context by deriving target hypotheses from the correct answer, while
at the same time using NLP tools for more flexible matching of learner answers
and target hypotheses. |L’haire and Faltin (2003))’s FreeText system uses a syntactic
parser which employs constraint relaxation. The authors report improved results
when adding a sentence comparison component which generates ill-formed target

hypotheses.

The feedback strategy applied in Rudzewitz et al. (2018))’s FeedBoole_g] clearly sep-
arates online from offline processing. For offline processing, target hypotheses are
generated from the correct answer. By pre-estimating the space of possible tar-
get answers, the feedback generation mechanism shifts the processing weight from
latency-critical online processing to offline feedback generation on high performance
servers. The online feedback generation then takes the task context into account
and allows for flexible matching of learner input to target hypotheses. FeedBook

supports both form-based and semantic exercises for a range of topics of the 7th

9http://feedbook.website/

http://feedbook.website/

1.4. FExercise forms 14

grade curriculum for English of high schools in Baden-Wiirttemberg (Rudzewitz
et al |2018). Possible exercise types include Short Answers, FiB, Mapping of text
or images and MC exercises (Rudzewitz et al., [2017). Although the current imple-
mentation does not allow for external applications to use the feedback generation
functionality, an ongoing project aims at modularizing the application and providing
its central functionalities as microservices. We thus integrate this microservice to

provide scaffolding feedback with the generated exercises.

1.4 Exercise forms

At the most basic level, exercises are defined through an exercise type as well as
an exercise topic. Their range, as well as supported type-topic combinations, are

determined by the application.

1.4.1 Exercise types

We considered 8 potentially suitable H5P content types for form-based ATICALL

exercises:

1 True/False Questions ask a learner to decide whether a sentence is correct or
test the learner’s knowledge about linguistic meta-information. The former has the
disadvantage of not emphasizing the correct answer, except in potentially specified
feedback with additional information. The latter interrupts the text flow and is
thus not suitable for exercises embedded in authentic contexts. We therefore did

not consider this content type suitable for our system.

2 Single Choice exercises ask a learner to choose the correct form from a list
of options. While they are often referred to as Multiple Choice exercises, HHP does
make the distinction between SC with only a single correct answer and MC where
multiple options may be correct. However, the H5P implementation does not intend
the exercises to be embedded into a text. Using this type in such a scenario would
therefore interrupt the text flow. We therefore did not include it in FLAIR gxgen.

3 Multiple Choice exercises represent MC exercises. Although it is possible

to mark only a single answer as the correct solution, this content type is intended

1.4. FExercise forms 15

for questions with multiple correct answers. In the context of form-based grammar
exercises, however, there usually is exactly one correct form. Moreover, determining
whether multiple forms might be correct would defeat the purpose of basing the
exercises on authentic texts that inherently provide the correct answer. In addition,
this type also faces the issue concerning integration into the text flow. We thus

excluded it from further consideration.

4 Fill in the Blanks exercises implement one of the most common exercise
types in which the learner needs to enter a more or less complex form into the
provided slots called BLANKS. Each blank constitutes a placeholder for a linguistic
construction. Hints are usually given in brackets following a blank. This H5P
content type provides only rudimentary feedback functionalities. In fact, the only
means for guiding the user towards the correct answer consists in static hints which
are displayed permanently and provide the same help text irrespective of the learner’s

answer. We did not further consider this content type.

5 Advanced fill the blanks exercises combine two task types: FiB and SC
exercises. The latter is implemented with dropdown fields, thus well suited to be
integrated into the document text. Feedback is improved compared to Fill in the
Blanks exercises and incorporates fuzzy matching. We therefore considered this

content type suitable for our tool.

6 Essay exercises accept longer input texts in response to a question and are
thus well suited for input requiring entire clauses or sentences. However, Advanced
fill the blanks exercises automatically adjust the blank size to the length of
the target so that they may also be applied to entire sentences and clauses. They
also have the additional advantage of being integrated into the text flow which is

not the case for Essay exercise. We therefore discarded this content type.

7 Drag the Words exercises represent Drag and Drop (DD) tasks with in-
teractive, draggable components. They provide a bag of DRAGGABLE constructions
and a text with empty slots called DROPPABLES. The learner needs to solve the ex-
ercise by moving each draggable into its corresponding droppable. All draggables of

the text are accumulated in a single bag of words, thus not supporting sub-exercises

1.4. Exercise forms 16

within the same document. We nevertheless considered this content type worth

pursuing for FLAIRgqen-

8 Mark the Words exercises provide a text in which all words constitute
interactive items. The learner has to identify the occurrences of given target con-
structions within the text by clicking on them. Binary feedback is given in the form

of colour highlighting. This content type is well suited for our application.

Figure [I.4.7] illustrates the four exercise types we chose for FLAIRggen: FiB, SC,
MtW and DD exercises. While none of the content types that we considered suitable
fulfills all our requirements, they constitute sophisticated base types from which to
derive custom content types adapted to our needs. It is also possible to develop new
content types from scratch. However, modifying existing ones reduces implementa-

tion effort considerably and provides established and well-tested functionalities.

Lorem ipsum dolor sit amet,| consetetur\/| sadipscing
Lorem ipsum dolor sit amet,:] (conseter)

elitr, sed diam nonumy eirm aliquyam Junt ut
sadipscing elitr, sed diam nonumy eirmod tempor labore et dolore magna aliqt

L) accusam
invidunt ut labore et dolore magna aliquyam.

gubergren

(a) Fill-in-the-Blanks (b) Single Choice

. . o Lorem ipsum dolor sit amet, consetetur
Lorem ipsum dolor sit amet, consetetur sadipscing s) I
i d di - q invid :]sadlpscmg elitr, sed diam
elitr, sed diam nonumy eirmod tempor invidunt ut :]eirmod tempor invidunt nonumy

labore et dolore magna aliquyam. ut labore et dolore magna aliquyam.

(c) Mark-the-Words (d) Drag and Drop

Figure 1.4.1: Exercise types

Especially in scenarios where only part of a document is used for one exercise and
another part of the same document for another exercise type or configuration, it

makes sense to bundle those exercises. H5P offers two sequencing content types:

1 Interactive Books combine multiple exercises and other contents like inter-
active videos or presentations. They support all out-of-the-box content types, but no
custom content types. Since we only have exercises, other contents are not relevant

to our purposes. We therefore discarded this type.

1.4. FExercise forms 17

2 Quizzes combine multiple content types. Only 7 types are supported, not
including Advanced fill the blanks or any custom content types. We still con-
sidered this type for our application with the aim of deriving a custom content type

that suits our purposes.

1.4.2 Exercise topics

Practice exercises are most important at beginner and (lower) intermediate levels
in order to develop automated, fluent language (Meurers et al., 2019)). We therefore
focus on frequent language targets outlined by the Baden-Wiirttemberg Ministerium
fir Kultus (2016]) for the first years of instruction of English with a focus on 7th
and 8th grade. Since we aim to integrate FLAIR’s document ranking as well as
FeedBook’s feedback generation, we consider a subset of the curriculum’s topics
which are supported by both tools: tenses, conditional sentences, relative pronouns,

comparison and passive.

1 Tenses With respect to simple present tense, the use of the third person
singular -s presents a challenge to many learners. Simple MtW exercises may be
employed to raise awareness of the use of the suffix. The learner can either be asked
to mark all present tense verbs or only those in third person singular. For more
advanced practicing, the most useful exercise types constitute FiB exercises where
the learner needs to give the correct present tense form for a given lemma, as well
as SC exercises which ask the learner to decide between the forms with and without
the suffix.

Past tenses constitute another relevant topic in this category. The regular -ed
suffix and irregular verb forms, as well as determining the required tense need prac-
ticing. MtW exercises might again serve as introductory exercises to identify the
indicated verbs. FiB exercises with the lemma given for each blank are also relevant.
Similarly to SC exercises, they can be used to practice correct formation and tense
determination. Reasonable distractors for SC exercises thus include irregularly and
regularly formed variations of the verb and forms in other tenses. DD exercises are
most instructive when multiple tenses are practiced, requiring the learner to deter-
mine the correct tense. However, they may also be used for semantic training when

focusing on only one tense.

1.4. Exercise forms 18

2 Conditional sentences Conditional sentences need practice both in isolation,
targeting only real or only unreal conditionals at a time, as well as in combination.
FiB exercises make sense in a variety of constellations: Introducing blanks only for
conditional clauses, only for main clauses, for either clause randomly selected per
sentence, or for both clauses. Brackets can contain hints about the required tense,
mood and lemma. SC exercises may follow the same pattern, offering distractors in
variations of mood and tense. DD exercises for the verbs of the two clauses could
also prove valuable if semantic support should be allowed in addition to grammatical
evidence. By increasing the scope of a DD exercise so as to encompass the entire

text, the challenge will become of a more semantic nature.

3 Relative pronouns With relative clauses, both choosing the correct relative
pronoun and word order formation need practicing. As an introduction to the topic,
MtW exercises are again useful to teach the learner to recognize relative pronouns. In
order to practice pronoun usage, FiB exercises are relevant as well. For SC exercises,
reasonable distractors include the three most common relative pronouns who, which
and that as well as occurrences of other relative pronouns in the same document.
DD exercises operating on the entire text might also be useful, provided the text
contains enough different relative pronouns to make assigning them to the correct
relative clause reasonably challenging. In order to practice correct word order, DD
exercises will be the most useful exercise type when applied to one relative clause
at a time. Draggable elements should include the pronoun, the verb, the subject,

object(s), and the rest of the sentence.

4 Comparison Comparative and superlative forms of adjectives and adverbs
are particularly challenging in the use of an analytic form as opposed to a synthetic
form (Parrott} 2010, p. 89). MtW exercises are, once more, a good starting point
as they help learners to recognize comparison forms. SC exercises and FiB exercises
are both suitable choices to focus on the distinction between analytic and synthetic
forms. While SC exercises offer both alternatives as possible choices, FiB tasks
require learners to produce the correct form themselves. DD exercises will pose
grammatical as well as semantic demands on the learner as some draggable items
may have similar meta-linguistic properties. The correct form then needs to be

selected from the grammatically possible draggables based on the semantic context.

1.5. Exercise complexity 19

5 Passive Since passive constructions affect the structure of the entire sentence,
FiB exercises also need to offer blanks spanning complete sentences. Brackets will
then contain the active counterpart of the passive sentence. An additional variant
where the lemmatized agent, verb and patient are given in brackets might also be
considered. Leaving a blank only for the verb constitutes yet another alternative.
DD exercises may be used to practice correct word order of passive sentences, offering

the subject, the verb, and the by-clause as draggables.

Practice exercises for these exercise topics thus constitute form-based grammar ex-
ercises. Table illustrates that all four examined exercise types are widely
applicable to the proposed topics and therefore relevant to FLAIRgxgen-

Fill-in- Single Drag and Mark-the-

the-Blanks Choice Drop Words
Simple present ° °
Past tenses ° ° °
Conditional ° ° °
Relative clauses ° ° °
Comparison ° ° °
Passive ° °

Table 1.4.2: Exercise types per topic

Each row represents a particular exercise topic, each column an exercise type. The dots
indicate type-topic combinations for which FLAIRgxgen offers exercise generation support.

1.5 Exercise complexity

Current literature often distinguishes between task COMPLEXITY and task DIFFI-
CcULTY (Robinson, 2001). While the former relates to task-specific characteristics,
the latter encompasses learner-specific properties like motivation. However, we do
not make such a distinction in this thesis. The two terms will henceforth be used
interchangeably with the core meaning of complexity. In a similar vein, EXERCISES
are usually understood as form-based practice units whereas TASKS focus on con-
tent and meaning (Xavier} [2007)). In the following, we use both terms to refer to the

notion of thus defined exercises.

Estimating the complexity of an exercise is particularly important in the context

1.5. Exercise complexity 20

of Intelligent Tutoring Systems (ITS) where the task of providing exercises at the
learner’s proficiency level resides with the system. |[Nunan (1989) outlines the im-
portance of both grammatical and general text complexity measures such as length,
propositional density or vocabulary frequency and highlights that estimating task
difficulty is challenging not only due to the number of influencing factors but also
because of interaction effects between them. [Liu and Li| (2012) identify a range of
factors influencing complexity ranging from input-dependent characteristics such as
clarity and diversity of the material to time-related factors like pressure put on the
learner by the task setting. These factors are defined in a very general manner and
need to be applied to the domain of the task in order to derive relevant charac-
teristics. |Conejo et al| (2014) outline three strategies to approach the challenge of
determining task complexity. (1) Statistical methods rely on data from previous
attempts of learners at solving the exercise. (2) Heuristic methods require a human
expert to rate the exercises. (3) Finally, mathematical methods calculate difficulty
based on some characteristics of the exercise. The set of characteristics and the
formula for translating them into a difficulty score depends on the task domain and
the individual implementation. Yet although |[Robinson et al.| (1995) have long since
recognized the need to define valid criteria to determine task complexity, necessary
research especially concerning the complexity of exercise targets instead of the entire

text context is still scarce.

For language exercises, studies related to difficulty estimation are centered on vo-
cabulary and reading exercises. They typically use mathematical approaches (Chen
and Hsu, [2008; |Chen and Chung, [2008; Heilman et al., 2010; Beinborn) 2016) or
combine them with a statistical approach to gradually adjust an initial score based
on exercise characteristics as more and more learner data becomes available (Wu
and Sung, 2017, Sandberg et al.| 2014). The approaches by Pandarova et al.| (2019)
and Hoshino and Nakagawa/ (2010) differ in that exercise characteristics are not used
as input to a scoring formula but to a machine learning model trained to distinguish

between ’easy’ and ’difficult’ exercises.

For the purpose of determining the difficulty of an automatically generated exercise
for an arbitrary text at compile-time, neither statistical nor heuristic approaches are
applicable as the exercises have yet to be presented to students and no human evalu-

ator is involved in the generation process. As for mathematical or machine learning

1.5. Exercise complexity 21

methods, they are usually applied to exercises after they have been generated. It
thus makes sense to also take into account text complexity measures computed on
the entire textual context (Pelanek et al., 2021). However, only considering those
characteristics will yield identical complexity values for any exercises compiled from
the same document, regardless of the exercise type or exercise components such as
instructions or distractors. Moreover, such strategies do not allow to influence the
difficulty of exercises but merely to select tasks at an appropriate level from an

existing pool of exercises.

In order to allow for users to influence the difficulty of an exercise for a given
text it is thus necessary to supply means to configure exercise parameters. Text
complexity measures determining the overall complexity of a document are already
considered in the document ranking. The configurable parameters therefore do not
refer to characteristics of the context but of the exercise targets. The configurable

parameters depend both on the topic and on the type of the generated exercise.

1.5.1 Complexity of exercise types

Some difficulty parameters are inherent to the exercise type and apply to all exercises
irrespective of the practiced grammar topic. To the best of our knowledge, published
research on the relative complexity of individual task types is limited to a comparison
of FiB and MC exercises (Medawela et al.,[2017) which found the former to be more

challenging. The study was, however, not specific to language exercises.

Mark-the-Words We generally assume that MtW exercises, where the learner
only needs to identify tokens with certain meta-linguistic characteristics, are the
easiest of our four exercise types. Specifying the number of target constructions in
the text will provide the learner with additional information, thus reducing difficulty.
We suggest that MtW exercises become more difficult when the learner needs to
make more fine-grained meta-linguistic distinctions in order to determine whether a
token is a target word. As this increases the number of concepts required to solve
the exercise, complexity increases (Pelanek et al. 2021)). We therefore assume that
targeting all forms of a topic results in easier exercises than targeting only a sub-
sample which is meta-linguistically more constrained. However, research needs yet

to confirm that this hypothesis applies to linguistic grammar exercises.

1.5. Exercise complexity 22

Drag and Drop DD exercises could also be represented as SC exercises where each
droppable field contains the values of the other draggable items as distractors. They
can thus be considered to be similar in complexity to SC exercises. Both exercise
types provide the correct answer as one of several options so that the challenge
resides in choosing the correct form from a limited range of alternatives. Guessing
the correct answer is thus possible with a probability depending on the amount of
alternatives (Medawela et al., [2017)). Since all draggables need to be inserted into
a droppable slot, difficult exercise targets might be determined by first solving the
easier items. As such a process of elimination is not possible with SC exercises, DD

tasks might be considered slightly less challenging.

Single Choice In addition to the characteristics outlined for DD exercises, we
generally assume that using variants which vary in a larger number of features,
including well-formed and ill-formed variations, increases task complexity as the
learner needs to consider a greater amount of concepts. However, if distractors
are too unlikely, they will be easily discarded by learners (Hoshino, 2013). This

assumption must therefore be applied with caution.

Fill-in-the-Blanks For FiB exercises, the learner needs to actually produce lan-
guage. The solution space is not restricted, making this the most challenging exercise
type. Specifying meta-linguistic information in brackets provides the learner with
hints, thus reducing task difficulty. Giving certain characteristics such as the lemmas
of all target constructions in the task description instead of in brackets introduces
an additional semantic challenge to the exercise, thus increasing complexity. Exam-
ple [1] demonstrates how providing the lemmas of all targets in the task description
requires the learner to identify the correct slot in addition to determining the correct

form, thus making the exercise more challenging.

(1) a. Give the correct simple present form for the verbs in brackets.
My brother (eat) ice cream all the time. He
(love) it.
b. Give the correct simple present form. Use one of the following
verbs for each blank: eat, love

My brother ice cream all the time. He it.

1.5. Exercise complexity 23

Depending on other exercise parameters, a generally more difficult exercise type
might still be considered easier than a generally less difficult type. Example
illustrates that, in order to practice the correct formation of comparison forms, a
FiB exercise may specify the required POS, comparison level and comparison form
(Example [2a]). This can be perceived as easier than the SC exercise in Example [2b]
Although possible answers are already given, the learner is not provided with any

meta-information on the correct POS, comparison level or comparison form.

(2) a. Give the correct comparative form for the adjectives in brack-
ets.
Peter is (popular, analytic) than Max. He is
(nice, synthetic).

b. Select the correct comparison form from the given alternatives.

Peter is (popularer | popularlier | more popular | more pop-
ularly | popularest | popularliest | most popular | most popularly) than
Max. He is (nicer | nicelier | more nice | more nicely | nicest |

niceliest | most nice | most nicely).

1.5.2 Topic-dependent complexity parameters

Depending on the grammar topic, difficulty parameters include variables which re-
strict the practiced target forms. They may apply to all or only a sub-sample of the

supported exercise types.

Tenses For FiB and SC exercises, complexity can be varied by optionally including
negated sentences and/or questions. Since these sentence types require knowledge
of additional grammar topics, excluding them decreases exercise difficulty. With
past tenses, restricting the range of possible tenses and focusing on only regular or
irregular verbs instead of including both may also be used to adjust difficulty. If
multiple past tenses are included, specifying the correct tense in brackets for FiB
exercises will reduce task complexity. Exercise difficulty for DD as well as MtW

exercises may be influenced by including only regular or irregular verbs or both.

Conditional sentences Focusing on only one conditional type or only one clause

type per FiB, SC or document-spanning DD exercise reduces task difficulty. Specify-

1.5. Exercise complexity 24

ing the required tense and/or mood in the brackets of FiB exercises will additionally

decrease complexity.

Relative pronouns Since relative pronouns constitute a closed-class category,
FiB exercises are comparable to SC exercises with the three most common relative
pronouns who, which and that as distractors. Further narrowing down possible
selection options, either as distractors for SC or as allowed target forms specified in

the task description for FiB exercises, can be used to decrease exercise difficulty.

Comparison Variable parameters include the POS (adjectives and adverbs), the
comparison level (comparatives and superlatives) and the comparison form (syn-
thetic and analytic forms). By restricting the exercises to use only one of the re-
spective forms, exercise complexity may be adjusted for all exercise types. Giving
the required form as meta-information in brackets of FiB exercises or limiting the
distractors of SC exercises to contain only forms matching one of the respective

characteristics also results in variations of exercise difficulty.

Passive Variation in complexity can be introduced by including only passive or
also active sentences and by restricting the possible tenses of target sentences. FiB
exercises requiring the learner to give the entire passive sentence may be considered
more difficult than those leaving blanks only for the verb. Brackets specifying the
tense and whether it is an active or passive sentence will reduce difficulty. Complex-
ity for DD exercises might be adjusted by either keeping the verb cluster as a single
draggable element or splitting it into the form of be and the past participle, as well

as by restricting the possible tenses of target sentences.

Chapter 2
System Architecture

We integrated FLAIRE gen into the existing FLAIR project. While exercise gener-
ation itself is handled entirely within this system, the implementation of the new
feature also needs to consider interaction with LMS systems, which are intended as

deployment platforms for the generated exercises.

2.1 FLAIR base system

FLAIR’s existing implementation provides input enhancement in the form of colour
highlighting for linguistic constructions whose weights the user has increased. Apart
from using the integrated web search, users may also upload and rank their own

texts.

The implementation of the web application is based on the Google Web Toolkit
(GWT)E]. The toolkit provides libraries and an infrastructure to develop both server
and client components of a web application in Java. The project is thus based on
a client-server architecture with the main components as illustrated in Figure 2.1.1]
The client implements the Model View Presenter (MVP) pattern: The View defines
user interface (UI) components for user interactions, thus determining the visual
design presented to the user; the Presenter implements the logic which populates
the View with dynamically compiled values; the Model maintains the data on which

the Presenter operates. FLAIR’s View components are made up of GWT widgets.

Thttp: / /www.gwtproject.org/

26

http://www.gwtproject.org/

2.1. FLAIR base system 27

Static components can be declared in XML definitions which may be referenced
in the code through bindings. Dynamic components which need to be generated
based on user interactions can be specified directly in the code. The Presenter
mediates between the View and the Model, managing dynamic visualizations and
also triggering communication with the server. Responses from the server are then
used to update the Model and the View. Each of these components is in turn
modularized into different functionalities. The main functionality consists in the
web search and subsequent ranking of the documents. In the View, this module
maintains the Search Widget as well as the Ranking Configuration UI to adjust
the weights used to prioritize documents containing certain linguistic constructions
in the ranking. On the Presenter level, the module forwards the search term to the
server, stores the returned documents in the Model, re-ranks them according to the

construction weights and prepares the document previews for the View.

FLAIR
Client 3 |
View 3] Presenter 3] Model 3 |
Search Widget] Web Search] Ranked Document 2]
Ranker 3 |
Ranking Configuration Ul 2 |

@

Server 3 |
Document Provider 3 |

Crawler 2]| |Analyzer 2|

Figure 2.1.1: UML Component Diagram of the system architecture

FLAIR uses a highly modularized client-server architecture (gray) with a MVP structure
(white) on the client side. The main module (orange) performs the web search and ranks
the documents.

The server hosts all resource consuming operations. This includes primarily the

2.2. Exercise generation functionality 28

Crawler’s document retrieval and the Analyzer’s NLP analyses. The search func-
tionality uses the Bing Web Search APIP| to identify documents that are relevant
for the requested topic. The plain texts are then extracted from the retrieved doc-
uments with the highly efficient Boilerpipeﬂ library (Chinkina et al., 2016|). This
algorithm extracts the main content of a web page, excluding boilerplate elements
such as navigation and advertisements (Kohlschiitter et al.; [2010). To this purpose,
it analyzes not only a range of HTML elements but also shallow text features such as
average word and sentence lengths, and text density in terms of tokens per line. The
thus extracted plain texts serve as input to FLAIR’s NLP analysis which extracts
all supported linguistic constructions. Constructions are identified based on POS
tags, constituency trees and dependency relations. Linguistic annotations consisting
of the start and end indices of the extracted occurrences within the plain text and
their construction types are returned to the client along with the document plain

text.

2.2 Exercise generation functionality

Thanks to FLAIR’s modular structure, the new feature for exercise generation can
be integrated as a mostly independent module with only minor changes to existing
modules. This leads to the extended architecture depicted in Figure [2.2.1] where
the exercise generation component operates without interfering with the existing

modules.

Exercise generation comes into play after the documents have been retrieved and
ranked. On the client side, the Presenter uses the linguistic annotations to dynami-
cally display the Exercise Configuration UI, in which users can specify exercise
settings, in such a way that it only offers those options which are applicable to the
selected text. It then sends completed exercise configurations to the server which
generates and returns an exercise based on those settings. The client offers the

exercise file to the user for download.

On the server side, two new components are introduced. The first component down-

loads the document with preserved HTML markup. The second component gen-

https: / /www.microsoft.com /en-us/bing /apis/bing-web-search-api
3https://github.com /kohlschutter /boilerpipe

https://www.microsoft.com/en-us/bing/apis/bing-web-search-api
https://github.com/kohlschutter/boilerpipe

2.3. Interaction of components 29

FLAIR
Client =]
View 3]
Search Widget 2] Presenter 2] Model g]
Web Search 2| Exercise Generator 2 | Ranked Document &
RankingiConfigdration|UIR: Ranker | Exercise Configurator 2|
Exercise Configuration = |
Exercise Configuration Ul 2]

@))
K_Q Server % 2]

Document Provider 2| Exercise Provider =]
Crawler]| |Analyzer | Web Downloader Z]| | Exercise Generator & |
FeedBook Microservice ? g]

Feedback Generator 2]

Figure 2.2.1: UML Component Diagram of the extended system architecture

The new component (yellow) can be integrated as a largely independent module. The
existing modules (orange) are not impacted by the new functionality.

erates an exercise from the downloaded document. It first identifies the annotated
constructions in the Document Object Model (DOM). Then it generates exercise
components such as task descriptions and distractors. It adds pre-compiled feed-
back generated by the FeedBook microservice and converts the DOM into the format
required by the JSON specification for the H5P package. Finally, it generates a H5P
file populated with the thus created content.

2.3 Interaction of components

We aim at providing the exercises in a portable format which can be integrated
into an existing LMS. The end user, typically a language instructor, will therefore
interact with FLAIR on the one hand in order to generate an exercise and with the

LMS on the other hand in order to provide the exercise to learners. The activity

2.3. Interaction of components

30

FeedBook

FLAIR server . :
microservice

Instructor

Perform web search

Weigh constructions

Select document
Configure exercise

Confirm exercise
configuration

Generate
pre-compiled
feedback

Generate H5P
exercise

Add feedback
to exercise

Send exercise
to client

Upload exercise to
content bank

Modify exercise in
authoring tool

Student

H5P plugin

[Generate LMS activity]

s 't

Work on exercise

Provide pre-
compiled
feedback

Finish exercise

1Julien Monty| (2015)

Figure 2.3.1: Workflow Activity Diagram

The instructor configures a H5P exercise in FLAIR whose server then generates the exer-
cise, also including feedback compiled by the FeedBook microservice. The instructor then
post-processes and distributes the exercise in a LMS such as Moodle where the H5P plugin

displays it to students.

2.3. Interaction of components 31

diagram in Figure outlines the prototypical scenario for using FLAIRg.Gen.
The instructor first invokes FLAIR’s web search. Weighting linguistic constructions
to re-rank the results is optional. After choosing a document from the results, the
instructor configures one or multiple exercises. When exercise generation is trig-
gered, the configuration is sent to the server. The FLAIR server then generates
the H5P exercise including pre-compiled feedback generated by the FeedBook mi-
croservice. The feedback, which maps a scaffolding message to each pre-compiled
target hypothesis, is stored with the exercise in form of a dictionary. The H5P file
is sent back to the client so that the instructor may download the exercise. The
teacher then uploads the file to the content bank of a LMS such as Moodle where
he or she may review the generated exercise in the H5P authoring tool and make
adjustments where desired. The instructor thus represents the interface between
FLAIR and the LMS. Although it is possible to add content such as textual ele-
ments, exercise targets or feedback, the primary focus of post-editing automatically
generated exercises is on removing or modifying incorrect or unsuitable elements.
In order to provide the exercise to students, the instructor may for example include
it in a Moodle activity. This allows for post-generation sequencing of exercises as
well as for including additional manually generated exercises. While working on
the exercise, students will receive instant, dynamic feedback based on the feedback

dictionary included in the H5P exercise until they complete the task.

In order to differentiate between operations performed in the two systems, we intro-
duce the terms GENERATION RUNTIME to refer to tasks executed in FLAIR, whereas
RENDERING RUNTIME denotes execution in the LMS.

Chapter 3
Implementation

The implementation is centered on two main aspects. The first one consists in mod-
ifying the H5P content types to fulfill the requirements for context-based exercises
with intelligent feedback. The second aspect concerns extending FLAIR to host
the exercise generation functionality. As the new architecture outlined in Chapter
suggests, this requires implementation effort both on the client side for configuration

and on the server side for generation.

3.1 Hb5P exercises

All H5P content types are based on JavaScript implementations and CSS style for-
matting. The authoring interface provided by the H5P environment is available for
all content types. Its particular outline is defined in the semantics JSON speci-
fication as part of an exercise definition. It is made up of re-usable widgets and
populated dynamically with exercise-specific information specified in the content
JSON file. This file constitutes the variable component of any H5P exercise. Its
structure needs to comply with the semantics format and contains the exercise
context as well as all information on target constructions, including feedback for
wrong answers. In addition, resources such as images may be added to the H5P
file, although allowed file types are limited to just over 40 formats recognized by the

framework (Joubel, n.d.al).

The existing content types cover the range of exercise types we want to offer, but they

33

3.1. HJ5P exercises 34

do not fulfill our requirement of preserving HTML context. We therefore created
custom content types which are derived from existing ones. As a naming convention
within our project, we prefix the names of the original content types with a X in
order to designate our types as extensions of those types. The necessary modifica-
tions concern the JavaScript implementations for the content types as well as the
semantics files. When deriving custom H5P content types from existing ones, the
benefit of profiting from improvements and bugfixes to those content types is lost.
They need to be maintained and updated manually instead. However, consider-
ing that the existing content types are not applicable to our use cases, which aim
at including HTML context and intelligent feedback, continual maintenance of the

content types constitutes a justifiable effort.

A requirement shared by all our custom content types consists in the ability to
process text embedded in HTML elements. However, the H5P framework supports
only a very limited number of HTML tags and removes any other XML tags from
textual input before the content becomes available in the JavaScript code. Our
custom content types therefore expect HTML content to be pre-processed in a way
that HTML special characters are replaced with dummy strings. These strings
were composed with the aim of minimizing their likelihood of occurring in any
downloaded document so that escaping them in the original texts is not necessary.
They are then converted back into the HTML characters at rendering runtime. The
result are exercises embedded in marked-up pages such as the excerpt shown in
Figure [3.1.1] The document’s layout is mostly preserved, including resources such
as images. Target constructions are replaced with the interactive widgets used by

the exercise type, such as input fields for FiB exercises.

An additional challenge resides in keeping the editing interface manageable. If the
HTML content was included in the editable text, manipulating the generated exer-
cises would be unfeasible for the average language instructor as the plain text would
be strewn with markup tags. We therefore separate HT ML content from plain text
content so that users may manipulate the plain text without getting distracted by
interfering markup elements. At rendering runtime, the plain text fragments thus
need to be inserted into their original position within the HTML content. In the
specification, they are therefore embedded within HTML elements which are sup-

ported by the H5P framework. These elements are assigned attributes with unique

3.1. H5P exercises 35

IDs which are referenced in placeholder elements inserted into the HT'ML text. This
allows our JavaScript code to correctly reconstruct the document at rendering run-
time by replacing the placeholders with the correct plain text fragments. Although
the HTML elements need to be provided in the content JSON file, we do not want
to expose instructors to them. Since H5P does by default not support elements
which are contained in the JSON file but not displayed in the authoring interface,
we created a new widget to this purpose. This widget implements the editor inter-
face provided by H5P and prevents the associated elements specified in the content

JSON file from being displayed in the authoring tool.

lalmud reter 1o many events related to dance, and contain over 3U direrent dance terms.'=! In Chinese pottery as early as the Neollthic period, groups or

people are depicted dancing in a line holding hands,!1%! and the (early, adjective, superlative) Chinese word for "dance" is found written in
the oracle bones ! Dance is (furth, adverb, comparative) described in the Ltishi Chungiu.[12113] Primitive dance in ancient China was

associated with sorcery and shamanic rituals.[14]

Greek bronze statuette of

a veiled and masked
dancer, 3rd-2nd century

BC, Alexandria, Egypt.

During the first millennium BCE in India, many texts were composed which attempted to codify aspects of daily life. Bharata Muni's Natyashastra (literally

"the text of dramaturgy”) is one of the (early, adjective, comparative) texts. It mainly deals with drama, in which dance plays an important
part in Indian culture. It categorizes dance into four types — secular, ritual, abstract, and, interpretive — and into four regional varieties. The text elaborates

various hand-gestures (mudras) and classifies movements of the various limbs, steps and so on. A strong continuous tradition of dance has since continued

in India thronah to modern times where it continnies to nlav a role in culture ritual and notablv the Rallvwond entertainment industrv. Manv other

Figure 3.1.1: Excerpt of a generated H5P exercise in the LMS

The exercise was generated from a web article selected in FLAIR (Wikipedia contributors,
2021c)). Formatting and resources are mostly preserved. The identified targets were re-
placed by exercise components which, for the FiB exercise, consist of blanks input fields.
Brackets behind the blanks were inserted into the text of the web page.

Another necessary replacement performed in the JavaScript code concerns image
paths. Since path management is regulated by the H5P framework, it is not possible
to specify relative paths at generation runtime. We therefore specify only the unique
file names assigned to the downloaded resources in the exercise specification and

transform them into full, valid paths at rendering runtime by means of H5P functions

3.1. HJ5P exercises 36

provided by the framework.

Since removing plain text segments in the authoring tool does not affect corre-
sponding HTML elements, such deletions may result in empty HTML elements still
contained in the DOM. While most HTML elements have formatting and layout
functionalities, a couple of elements such as list items do manifest some visible dis-
play even if they do not contain any text content. We therefore manipulated the

JavaScript implementation to remove any such elements without text content.

In order to specify incorrect answers and corresponding feedback, the existing H5P
content types generally pursue one of two conceptually different approaches. The
first approach constitutes an inline specification in which all answer and feedback
information is specified as meta-information within the exercise plain text. This
requires the adherence to some defined syntax differing form one content type to
another. In addition, special characters of that syntax need to be escaped if used
as ordinary characters. Such a strategy allows to maintain all relevant information
concerning a target in one place. However, with large amounts of incorrect answers
the exercise text gets cluttered with meta-information, making it hard to make ad-
justments to the text itself. The second approach uses separate fields in the JSON
specification to define correct as well as incorrect answers and feedback. The plain
text only contains a placeholder symbol which also needs to be escaped in the rest
of the text if used as an ordinary character. The JSON fields for the exercise tar-
gets are mapped to the placeholder symbols in order of appearance. While this has
the advantage of keeping the exercise text clean and manageable, the task of keep-
ing track of correspondences between in-text placeholders and specification fields
quickly becomes unfeasible as the number of targets increases. Since large amounts
of both target forms and incorrect answers per target are frequent features of our
generated exercises, neither of these two approaches is suitable. Instead, we opt for
a hybrid approach which specifies incorrect answers with corresponding feedback as
separate JSON fields. At the same time, it gives the correct answer, along with
a reference ID to the corresponding field of incorrect answers, in the exercise text.
This meta-information is enclosed in asterisks. As some feedback messages contain
hyperlinks to web pages providing additional information on technical vocabulary,
feedback may also contain markup elements. Since such reference material consti-

tutes an important component of helpful, scaffolding feedback, we want to preserve

3.1. H5P exercises 37

the links in the H5P exercises. The resulting problem is in its core similar to that
of HTML elements in the exercise text: H5P does not support link tags. How-
ever, as the amount of these HI'ML elements is rather manageable, we opt to keep
them within the feedback messages in the authoring tool. This has the additional
advantage of allowing users to change the link to their preferred reference page.
Since this approach does not separate HTML from plain text elements, no markup
for referencing IDs is required. Therefore, the H5P plain text widget can be used
for feedback messages. This widget interprets any text input as plain text so that
not supported markup tags are not removed. Instead, HI'ML special symbols are
replaced with their character entity references. We therefore adjust the JavaScript
code to transform special characters of link tags back into HTML characters at
rendering runtime. The feedback messages do not, however, need to be altered at

generation runtime.

These modifications are required for all content types with the exception of the
sequencing Quiz content type. As it constitutes a wrapper type, the adjustments
are already contained in the enclosed exercises. The following sections discuss other

modifications that concern only individual types.

3.1.1 Fill-in-the-Blanks exercises

FiB exercises are based on the Advanced fill the blanks content type. Blanks
are here implemented as inline input fields into which the learner needs to type the
target answer. Feedback is provided in popup windows either instantly after typing
an answer or on pressing the Check button. Which of the two feedback strategies is
applied may be defined in the authoring tool. Although a fuzzy matching approach
allows for more flexible matching of learner answers to target hypotheses, the H5P
implementation might result in unforeseen and undesired side effects when applied
to our exercises. Since feedback messages are associated with a particular error type,
fuzzy matching might result in incorrect associations so that misleading feedback
might be displayed. We therefore disable it by default, yet keep this configuration
option in the authoring interface so that instructors can enable it if they so desire.
For cases where the learner’s input does not match any target hypothesis, we added
a default feedback to the implementation alerting the learner that the answer is

incorrect.

3.1. H5P exercises 38

The original Advanced fill the blanks content type uses triple underscores to
mark blanks. Since it is not unlikely that such a string might occur in an arbitrary
web document (e.g. Kirka and Gannon, [2021) and also to keep our target specifica-
tion uniform across content types, we replaced this with the asterisk notation.
Another necessary adjustment relates to using this content type in Quizzes. The
original implementation uses IDs for HTML elements which are unique within a
single task instance but not when multiple tasks of that content type are included
in the same Quiz instance. We therefore modified the code to use globally unique
IDs.

3.1.2 Single Choice exercises

Since Advanced fill the blanks exercises also support dropdown blanks, the cus-
tom content type for FiB exercises can be re-used for SC exercises without further
modifications. By setting the exercise mode to selection in the content JSON
file, the content type uses dropdown fields from which the learner needs to select

the correct answer instead of input fields.

3.1.3 Mark-the-Words exercises

Based on the Mark the Words content type, these exercises consist of texts in which
all space-delimited words constitute a clickable item. Colour feedback is given on
activating the Check button by highlighting all correctly marked target words in
green and all incorrectly marked non-target words as well as not marked target

words in red.

Unlike the other content types we use, Mark the Words exercises do not provide
instant feedback functionalities. Instead, only accumulated feedback after activating
the Check button is available. We therefore added an implementation for instant
feedback as well as the configuration controls in the authoring interface to choose

between the two feedback mechanisms.

3.1. H5P exercises 39

3.1.4 Drag and Drop exercises

The H5P Drag and Drop content type provides a text in which the targets are
replaced with non-editable input fields. They are instead displayed on the right
margin of the page in random order. If the learner drags a target to the correct
input field, green colour highlighting indicates the correctness of the assignment.

Incorrectly placed targets are marked in red.

Apart from colour highlighting, this content type does not support feedback provi-
sioning. However, it does have an information icon which is displayed next to each
target construction for which a hint has been specified in the content JSON file.
Clicking on the item then displays a tooltip with the configured text. We changed
the purpose of this icon into providing feedback by only displaying it when feed-
back needs to be shown. Since the hint was intended to be used with a static text
message, we also needed to add an implementation to select the correct feedback
corresponding to the dropped item. This consists in a string comparison between
the draggable and the target hypotheses stored with the droppable. In addition,
although the original implementation uses asterisks to mark target constructions, it
does not support escaping asterisks used as normal characters in the text. In order
to correctly process our documents, we included an implementation analogous to

that for FiB exercises.

We want to support the two types of DD exercises illustrated in Figure 3.1.2} (1)
tasks consisting of a single exercise spanning the entire document and (2) tasks
containing multiple sub-exercises, each spanning only a sentence or short paragraph.
This results in two custom content types which need some additional individual
adjustments. For multiple DD exercises within a single document, we modified the
content type to support sub-exercises. To this purpose, we mark all text fragments
belonging to a sub-exercise with the same sentence ID in the content JSON file. For
each group of fragments with the same sentence ID, the modified code dynamically
creates an exercise widget at rendering runtime. Each exercise widget consists of the
text context of the contained fragments, target blanks and a bag of words containing
the draggable elements which are displayed next to the sub-exercise paragraph. All
other fragments are displayed before and after these sub-exercises without further

modifications.

3.2. Exercise configuration 40

Lorem ipsum dolor sit amet, - nonumy eirmod tempor invidunt ut labore ——— =
consetetur sadipscing elitr, sed diam et(_ |magnaaliquyam erat, sed |
nonu my(: tempor invidunt ut - voluptua.

labore et dolore magna aliquyam erat, —] At vero eos et accusam et justo duo

sed diam voluptua. At vero eos et dolores et ea rebum.

(et justo duo dolores et ea Stet clita kasd gubergren, no sea takimata

rebum. Stet clita kasd S, no sanctus est Lorem ipsum dolor sit amet.

sea takimata sanctus est Lorem ipsum - Lorem[:dolor sit amet, consetetur
dolor sit amet. Lorem ipsum dolor sit sadipscing elitr, sed(__ Jnonumy eirmod

amet, consetetur sadipscing elitr, sed tempor invidunt ut labore et dolore
diam nonumy eirmod tempor invidunt = magna aliguyam ™
(a) Single, document-spanning exercise (b) Multiple sub-tasks

Figure 3.1.2: Types of DD exercises

Concerning tasks consisting of a single exercise, the original implementation is not
suitable for long texts. It displays all droppable items at the top right corner of
the document so that they are no longer visible when the user scrolls down the
page. While this may be sufficient for typical H5P exercises, our use cases usually
consist of long web pages where scrolling is indispensable. We therefore enabled the
draggable elements to scroll with the page so that they always float in the top right

corner of the visible page content.

3.1.5 Quizzes

The only adjustment required for this content type consists in adding the package
files of our custom content types and specifying the dependencies in the semantics
JSON file in order to make them available in Quizzes. Instead of replacing the
originally included content types with our custom types, we maintain support for
those as well. This allows users to manually add such exercises to an automatically

generated Quiz.

3.2 Exercise configuration

The generated H5P exercises are customizable in terms of the exercise type, the
grammar topic and other parameters such as restrictions on target constructions
which allow to vary exercise complexity. These customizations can be managed in
the client’s new module for exercise configuration, which is presented in Figure[3.2.1],

and result in task-specific exercise settings. The indices given in the Figure will be

3.2. Exercise configuration 41

referenced in the following description of the web interface.

v Exercise 1 Q@ X

Exercise settings
1 2 |3
Topic: Task type: (Quiz:)
Simple Pre. (Fillin the B.
Clean up text used for exercise 7
Document
Del key.
Dance | The Juilliard School
pppppp e n Updste
1o adapt o th unusua
Select document part 6
hova boo vt
fim, of ot 0 ! 4
o b e [8l
Sentence types of target sentences: &
10|
Brackets content:
A maximum of 9 blanks can be generated for
the current settings. 11
®
O

Figure 3.2.1: FLAIR web interface

The exercise generation Ul is integrated into FLAIR’s web interface. Indices of the high-
lighted areas are referenced in the text. The exercise generation panel is magnified in
order to display it entirely. The popup window (index 7) is only displayed after pressing
the corresponding button (index 6).

The new UI functionalities for exercise generation (4) are integrated into FLAIR
as a sub-module of the side panel (3) for document previews. This way, a gener-
ated exercise is automatically associated with a text selected from FLAIR’s search
results (2).

The configuration parameters (5) consist mostly of linguistic properties such as
irreqular forms or a specific tense. Other parameters include the content of brackets
for FiB exercises and distractor properties for SC tasks. If it makes sense for a
grammar topic to offer DD exercises both per sentence and for the entire text, the

user may choose between these two options.

Many configuration parameters are shared across exercise types or grammar topics
so that they need to be available for multiple type-topic constellations. The options
to include constructions in simple past, present perfect and past perfect tense, for
instance, are available for Past tense as well as for Passive exercises of all supported
exercise types. Although it would be possible to develop a distinct widget for each

grammar topic and exercise type, these shared components would then have to

3.2. Exercise configuration 42

be implemented redundantly in all widgets in which they are required. This also
implies that by changing the exercise type of a task, previous settings which might
still be relevant to the newly selected type would be lost unless transferred from
the template of the previous selection with considerable effort. For these reasons,
we developed only a single settings widget which contains configuration controls
for all possible settings parameters. The visibility of the controls is then managed
dynamically by the Presenter depending on the selected topic and exercise type so

that only those parameters are displayed which are relevant to that type and topic.

Since exercise targets are determined by a number of parameters, they constitute
items which combine multiple linguistic properties. Although FLAIR identifies items
with these properties in isolation, it does not make a fine-grained distinction into
combinations of the properties. In order to determine target constructions for exer-
cise generation, we need to identify those items which correspond to the intersection
of constructions identified by FLAIR which comply with all selected settings param-
eters. This intersection needs to be determined individually for each combination
of settings parameters since the constructions targeted by different parameters of
an exercise target are not always congruent. While Example [3a] constitutes a case
where the adverb and comparative constructions perfectly overlap, this does not
apply to Examples [BbHdl Example illustrates that questions always contain the
entire verb construction, yet the verb construction does not usually cover the entire
question. As Example [3c highlights, the negation is not always part of the identified
verb construction but may be adjacent to it. In order to determine whether the
verb is being used in a negated context, we thus also need to examine preceding and
succeeding tokens. In Example [3d] the passive construction and the future tense

construction overlap, neither of them entirely containing the other construction.

(3) a. My brother eats ice cream than I.

Constructions: Adverb, Comparative

b. Does | he love ice cream?

Constructions: Question, Simple present

c. He love ice cream.

Constructions: Simple present, Negation

3.2. Exercise configuration 43

d. You|'ll|be|punished|for eating all the ice cream.

Constructions: Future simple, Passive

The web interface also allows users to restrict the text used for exercise generation to
only part of the document. To this purpose, a button (6) opens a popup window (7)
containing the plain text of the selected web page, in which the user may delete parts
of the document. Adding content is not possible. By resetting the text selection, the
user may revert all modifications to the initial state which uses the entire document
for exercise generation. It is still possible to further modify the selected text later in
the H5P authoring tool of the target platform. However, as outlined in Section (3.1},
removing plain text in the H5P authoring tool may result in empty HTML elements.
The described workaround to remove empty elements should only be considered an
approximation of the intended rendering. It is thus recommendable to select the
desired part in FLAIR already. This has the additional benefit of reducing processing

time as well as the size of the generated file.

We also offer an option to use only those parts of the document which contain
text elements extracted by FLAIR (8). While this approach preserves local markup
related to the plain text, global page elements such as navigation bars or footers
are removed. Such elements are not relevant to language exercises and often use
absolute positioning. Removing them thus has the additional benefit of decreasing
the likelihood that absolutely positioned elements of the document overlap with H5P
exercise components such as the task description or navigation elements in Quizzes.
Since exercises are not usable if the exercise components are not visible, we display
the task description as top-level element. However, this implies that parts of the
exercise document are concealed if overlap issues occur. They should therefore be

avoided.

In order to make sure that only valid exercises are configured, only those topics are
offered to instructors in the configuration panel for which the FLAIR ranking mech-
anism has identified corresponding grammatical constructions. It would also have
been possible to only enable exercise generation after the instructor has weighted
the constructions he or she wants to target (1). The topic for the generated ex-

ercises could then have been determined automatically based on the construction

3.2. Exercise configuration 44

¥ Exercise 1 ® X ¥ Exercise 1 X ¥ Exercise 1 0O X
Exercise settings Exercise settings Exercise settings
Topic: Task type: (Quizz) Topic: Task type: (Quiz:) Topic: Task type: (Quiz:)
Relative Pr... 4 Fillinthe B... ;, — Relative Pr... 4 Fillinthe B... 4 — Simple Pre... , Drag & Drop
Document Document Document
Dance - Wikipedia Update School of Dance Update Dance - Wikipedia Update
Select document part Select document part Select document part
a O d
Pr?noun type of target words: Pr(:noun type of target words: No exercises can be generated for the current
o o settings.
A maximum of 46 blanks can be generated for
the current settings.
(a) Valid exercise configu- (b) Critical exercise con- (¢) Invalid exercise config-
ration figuration uration

Figure 3.2.2: Visual display of exercise validity

weighting. However, allowing the user to choose the topic and offering all possible
topics for exercise generation facilitates the use of the exercise generation function-
ality. It also allows users who do not wish to bother with weight configurations to
generate exercises for a selected document. Additional precautions to prevent in-
valid exercise configurations include only displaying those configuration parameters
for which corresponding constructions have been found in the selected document
part. Configuration parameters which need to be selected in order to generate any
exercise at all regardless of other parameter settings are disabled (10) so that they
cannot be deselected. Since combinations of parameter settings can still lead to
invalid exercises which do not contain any target constructions, the number of tar-
gets for the current configuration is re-calculated and displayed at the bottom of
the configuration panel (11) on each configuration modification. This number con-
stitutes an estimate based on the exercise targets determined from overlaps of the
extracted constructions. Invalid exercises such as the one displayed in Figure
are marked with an error symbol. As it is likely that not all identified targets can be
used in the generated exercise, an additional warning symbol alerts the user if the

specification may fail to produce an exercise due to low target occurrence. This is

3.2. Exercise configuration 45

the case for the example given in Figure [3.2.2b] The threshold for this is currently

set to less than five occurrences. Valid exercises receive a green icon as illustrated
in Figure

If the instructor selects another document from FLAIR’s search results, the text on
which the configured task is based is not automatically updated. This allows a user
to configure multiple exercises for a range of different documents on the same or
various topics. The text is only updated if and when the Update button of a task

configuration is pressed.

Defining multiple exercises within the same session is most useful if the generated
exercises are to be bundled in a Quiz. In order to specify whether to generate a
Quiz and, if so, which exercises to bundle together, the user may select a Quiz from
the dropdown field. The dropdown always offers all Quizzes defined in any of the
configured tasks as well as an additional one to start a new Quiz. If no Quiz is
selected, the exercise is generated as a simple exercise. Such exercises may still be

sequenced later through the means provided by the target LMS.

A global configuration option for all tasks allows instructors to specify whether re-
sources of the document, in particular images, are to be downloaded and included in
the H5P package. Since this can result in very large files, especially if the user does
not restrict the used document parts, the default is to not download the resources.
Disabling the download checkbox does not, however, remove them from the docu-
ment altogether. Instead, the paths specified in the HTTML and CSS definitions of
the web page are set to absolute paths. The resources can therefore only be dis-
played as long as they are accessible on the original site, but processing time and

file size are reduced.

Another global setting applied to all exercises concerns feedback generation. This
option is only provided if at least one of the configured exercises supports automatic
feedback generation. If this is the case, the default setting includes feedback in the
generated exercises. The instructor may, however, choose to disable the feature in

order to reduce processing time.

Once the instructor is satisfied with the task configurations and has managed to
configure at least one valid (or critical) task, a button click initiates sending all valid

configurations to the server. FLAIR'’s existing client-server architecture with thread

3.3. EXxercise generation 46

pooling on the server allows for minimal processing time for client requests. If only a
single exercise was configured or if all exercises were assigned to the same Quiz, the
server returns the generated H5P file. If multiple tasks need to be generated, they
are returned in a zipped format. After an exercise has been generated successfully,
a Download button is displayed at the bottom of the configuration panel. Pressing
it triggers the browser’s file download for the generated file. The implementation
makes use of JavaScript injection in order to provide the file, which is stored in-
memory, to the browser. The file names of the generated H5P files correspond to
the names of the specified tasks or, if they represent a Quiz task, to the name
of the Quiz, so that the instructor may associate them with their corresponding
configuration prior to opening them on the target platform. In order to verify the
suitability of the exercise within FLAIRg,qen, & preview of the exercises can be
opened when they have been successfully generated. While the preview does not
contain interactive elements such as distractors or feedback, it displays the exercise,
including the HTML context, and highlights the exercise targets in green colour.
Instructors can therefore determine at a glance whether the document is suitable,

and identify passages which they might wish to remove from the exercise.

An instructor may also abort a running exercise generation. Configurations based on
very long documents, containing large amounts of targets, and requesting resource
download and feedback generation can result in very long processing times. If a
user thus decides to modify the configurations to facilitate the process, the Cancel
functionality allows to stop the running exercise generation and start a new one
with the modified settings. As the Generate exercise button is disabled while an
exercise is being generated, the instructor would otherwise be forced to reload the
page and specify the configurations from scratch in order to issue a new exercise

generation request.

3.3 Exercise generation

Although FLAIR is highly compatible with our requirements, some adjustments to
existing modules were necessary in order to adequately support the grammar topics
intended for exercise generation. These adjustments are outlined in Section [3.3.1]
The main implementation effort is, however, centered on the new exercise generation

functionality which is presented in Sections [3.3.2}H3.3.6|

3.3. EXxercise generation A7

3.3.1 Adjustments to existing modules

FLAIR’s base implementation only supports identifying relative clauses, but not
relative pronouns for English. As Example [illustrates, relative pronouns are highly
ambiguous in English. While the first occurrence of that in Example [a] constitutes
a conjunction, the second occurrence is a determiner and in the fourth occurrence,
the same token is used adverbially. Only the third occurrence is indeed a relative
pronoun. Although not used quite as diversely as that, Example [4b|shows that other
relative pronouns like who can also be easily confused with other parts of speech like,
in the first occurrence, an interrogative pronoun. Simple string matching is therefore
not suitable to identify the pronoun of a relative clause as it may produce incorrect
results. A more sophisticated and less error-prone solution implies extending the
server back-end to also support identifying relative pronouns. Since this has already
been implemented for German, the infrastructure was in place and we only needed

to supply the parsing logic to identify the constructions.

(4) a. It is true that that is a problem that is not that bad.
b. Who is the guy who caused the problem?

As the Stanford POS tagger used for English does not support a tag for relative
pronouns, the constituent parser is best suited to identify them. To this purpose,
the tags of the individual tokens as well as those of higher-level non-terminal symbols
in the parse tree need to be considered. Tree Regular Expressions (TRegEx) allow
to efficiently identify items with the required tag and ancestors in the tree structure.
However, this structure does not preserve start and end indices of terminal symbols.
Therefore, once the terminal symbols which constitute the construction have been
determined, their indices need to be extracted from the list of POS tagged tokens.
As illustrated in Figure the index of the correct item in that list corresponds

to the amount of left leaf sisters of the identified token in the constituent tree.

3.3.2 Web download

Although downloading the document’s DOM is a trivial task in itself, we need to
account for a number of technical peculiarities in order to be able to integrate the

downloaded HTML into a H5P environment. This includes avoiding cross-domain

3.3. FExercise generation 48
o

Constituency parse

ROOT
|
S
NP VP
|
PRP
|
It VBZ ADJP SBAR
is J‘J I} 3
true th‘at /\
NP VP
|
DT
| vBz NP
that ‘
. /\
NP SBAR
PN
DT NN
‘ ‘ WHNP S
a problem ‘ ‘
WDT A\
th‘at
VBZ RB ADJP
| |
is not RB JJ

th‘at bé‘ld
POS tagged tokens

It is true that that is a problem that is not that bad
[0,2] [3,5] [6,10] [11,15] [16,21] [22,24] [25,26] [27,34] [35,39] [40,42] [43,46] [47,51] [52,55]

Figure 3.3.1: Indexing of relative pronouns

The constituency graph is based on the output generated in the web tool CoreNLPH The
pronouns are identified in the constituency tree through the tags assigned to them and their
ancestors. The terminal symbol that is identified as a relative pronoun based on the nodes
marked in red. SBAR indicates a clause, WDT represents WH-determiners according to
the Peen Treebank tagsetﬂ Since the relative pronoun has 8 left leaf sisters (blue) in the
parse tree, it appears as the ninth token (index 8) in the POS tagged list. From that list,
the corresponding start and end indices (35 and 39 respectively) are extracted.

issues with IFrames as well as modifying relative resource paths which will no longer

be valid on the platform hosting the H5P exercise.

2http://corenlp.run/
Zhttps://gist.github.com /nlothian /9240750

http://corenlp.run/
https://gist.github.com/nlothian/9240750

3.3. Exercise generation 49

We therefore download IFrames recursively analogous to downloading the main web
page and integrate the downloaded contents into content IFrames which replace
the reference IFrames. Since CSS files are not supported as resource files of H5P
packages, they cannot be downloaded and added to the package as files. Instead,

their content is transferred to HTML style elements.

As the configuration interface in FLAIR allows to remove parts of the text, some
resources specified within those segments will also be removed. It is consequently not
necessary to download all resources of the original DOM. However, the parts removed
from the plain text need to be indexed in the HTML structure in order to determine
which resources are no longer relevant. Downloading resources is therefore deferred
to a later processing step in order to avoid download overhead. URIs which do not
correspond to downloadable resources such as links to other web pages, however, are

already set to absolute paths when the document is downloaded.

3.3.3 Post-processing of exercise elements

Since we use the linguistic constructions extracted by FLAIR as exercise targets,
most of the relevant NLP processing has already been completed. Some post-
processing is still required for a number of topics and exercise types. We use the
Stanford CoreNLP tools also used to extract the constructions in order to maintain
as much consistency as possible in the linguistic analysis between document selection

and exercise generation.

Construction adjustments Whenever the exercise configuration expects targets
whose token span differs from that of the extracted constructions, the construction
indices need to be adjusted.

Concerning conditionals, FLAIR only extracts the entire conditional sentence. Since
our exercises focus on the verb constructions of the clauses, we need to extract them
from the sentence and associate them with either the main or the if-clause. We use
a constituency parser to determine the clauses by means of TRegEx specifications
and identify the verb targets through POS tags. Since the clauses are also required
to determine the brackets content, we store their indices and the clause type with
the exercise settings to make them globally available for later processing steps.

For FiB exercises on passives where an active sentence is specified in brackets and

3.3. EXxercise generation 50

learners need to give the passive sentence, the target needs to be extended to en-
compass the entire sentence. Post-processing is also needed with this topic for DD
exercises for which participles are to be used as individual targets separate from
the rest of the verb construction. For these tasks, the participles are identified and
isolated based on POS tags.

For both types of DD exercises, the droppable items can only be displayed on the
right-hand border of the web page if they are not too long. Otherwise, they are all
accumulated underneath the (sub-) task. This does not pose a problem for small
texts so that it is not an issue for DD tasks with multiple exercises as each sub-task
consists of only one or few sentences. It does, however, defeat the purpose of the
added scroll mechanism for DD exercises spanning the entire document. If the drag-
gables are displayed at the bottom of the page, they are, once again, not visible after
scrolling. Relative pronouns do not tend to be very long, yet verb constructions of
present and past tenses may easily reach problematic dimensions. For these tasks, it
is therefore likely that the draggable items cannot be displayed on the page’s border.
We thus try to limit the length of the targets for exercises on tenses by removing
arguments of the verb which are sometimes extracted by FLAIR as part of the con-
structions and keep only the verb cluster. If this still results in long targets, we use
only the main verb as exercise target. The threshold to determine what qualifies as
a long target is currently set to 30 characters.

An additional requirement for DD exercises which are made up of multiple sub-
exercises is that they need to define the scope of such a sub-task. This scope gen-
erally corresponds to a single sentence. We therefore determine the indices of all
sentences which contain at least one exercise target by means of the sentence seg-

menter of the NLP pipeline.

Task description generation Instructions in terms of a task description need to
contain all the information required by a learner of sufficient proficiency to success-
fully complete an exercise. This includes any information on the exercise targets
not given in the text context of the exercise itself or, in the case of FiB exercises, in
brackets.

While some necessary information such as the lemma of the target construction is
target specific, other properties such as the topic in terms of Relative Pronouns, Sim-

ple Present, etc. apply to the entire task and still others such as the tense of target

3.3. EXxercise generation o1

constructions may or may not be shared across all targets. We therefore rely on the
user’s configuration generated in FLAIR’s web interface to determine whether infor-
mation on target constructions of FiB exercises should be given in brackets with the
target constructions or globally for the entire exercise. The information in brackets
often determines what kind of linguistic constructions are targeted and is there-
fore relevant for successful completion of the exercise. If the user has de-selected
a configuration parameter for brackets, the brackets in the generated exercise will
not contain the corresponding information, yet it still needs to be transmitted to
the learner. It is thus provided as global information in the task description which
applies to all exercise targets.

Explicitly specifying instructions for each settings constellation would be cumber-
some and poorly maintainable. If context specific elements such as the lemmas of
the target constructions are to be included in the instructions, such an approach be-
comes outright impossible. We therefore introduce an instruction template for each
type-topic combination which is dynamically enriched at exercise generation runtime
with variable content of the configured exercise settings. While meta-information
such as tense, voice or aspect can be directly inferred from the construction type,

some variables like lemmas require additional NLP processing of the exercise targets.

Brackets for FiB exercises Since many instruction components may be specified
either in the task description or in brackets, post-processing for brackets manifests
some parallels to that required for task descriptions. This does, however, not imply
that the same information is extracted redundantly. It rather allows for the relevant
code to be executed at the place where the information is needed. This place, either
for task description generation or for brackets compilation, is defined by the exercise
configuration.

For Comparison tasks, the lemmas of the adjectives or adverbs need to be given.
Since the lemma provided by the Stanford CoreNLP lemmatizer for comparatives
and superlatives is identical to the token form instead of the positive form of the
adjective or adverb, we use a dictionary-based lemmatizer of the Apache OpenNLPH
library instead with a dictionary file compiled by [Richard Willy| (2013). As both
the dictionary file and the CoreNLP POS tagger employ the Penn Treebank tagset,

we can use the output of the existing NLP pipeline as input for the lemmatizer and

3https://opennlp.apache.org/

https://opennlp.apache.org/

3.3. EXxercise generation 52

thus obtain the lemmas with minimal additional processing effort.

For tasks on Passives, required post-processing depends on the brackets content.
If the lemma is needed in the brackets, the main verb of the verb construction needs
to be determined and its lemma extracted from the NLP pipeline. If instead the
active sentence is required as brackets content, the passive sentence needs to be
transformed accordingly. This is achieved by determining the verb construction, the
subject of the passive sentence and, if available, the by-clause through dependency
relations of the dependency parser. In order to generate the active sentence, we
use the natural language generator library SimpleNLGﬁ. By providing the lemma
of the verb, the subject of the passive sentence as object of the active sentence and
the agent of the by-clause (or a default someone or something if none is given) as
the new subject, the active sentence can be generated. Any additional parts of the
passive sentence remain unchanged so that only the part consisting of the agent, the
patient and the verb are replaced. In authentic texts, by-clauses are often omitted.
The variant with agent, verb and patient in brackets suggested in Section [1.4.2] is
not applicable in such cases. FLAIR extracts any passive sentences regardless of
whether they contain a by-clause or not and does not provide weighting options
for by-agents. Whether passive sentence are suitable for exercises with such bracket
content can therefore only be determined at exercise generation time, yet is unknown
during exercise configuration. In order to prevent a frustrating user experience where
exercise configurations fail to result in successful exercise generation, we do not use
this suggested variation for brackets in our exercises.

Analogously to extracting the main verb and lemma of passive constructions, the
verb lemma is also determined for Tense exercises. By lemmatizing the entire
verb construction and including any contained non-verb tokens such as negation or
personal pronouns, we make sure that the brackets contain all necessary information.
For tasks on Conditionals, we also extract the clause type from the settings and

determine the modals of main clauses if they are to be given in brackets.

Distractors for Single Choice exercises The challenge of generating appropri-
ate distractors has received considerable attention in the field of Computer-Assisted
Language Learning (CALL). Approaches for vocabulary, grammar and semantic lan-

guage exercises range from identifying tokens with similar properties as the target

4https://github.com/simplenlg/simplenlg

https://github.com/simplenlg/simplenlg

3.3. EXxercise generation 53

construction in the text or in external resources such as lexical databases (e.g. Co-
niam| 1997; Brown et al.l 2005; Sumita et al., 2005} [Liu et al.| 2005} [Karamanis
et al., [2006; Smith et al., 2010; Knoop and Wilske, 2013}; |(Chen et al., 2015; |Jiang
and Lee| 2017} [Susanti et al.,|2018) to using common learner errors (Sakaguchi et al.
2013) as well as applying machine learning techniques (e.g. Liang et al., 2017; Yeung
et al., 2019).

Since we aim at allowing users to vary exercise complexity by, inter alia, specifying
characteristics of distractors, these approaches are not suitable for FLAIRg Gen.
Instead, we employ a rule-based approach to derive ill-formed as well as task-
inappropriate variants, such as incorrect tenses in past tense exercises, from the
target and use them as distractors. This process has notable parallels to Feed-
Book’s generation of target hypotheses. It would, in principle, be possible to use
FeedBook’s feedback generation algorithm not only for feedback generation, but also
for distractor generation. However, this algorithm applies all applicable transforma-
tion rules for generating target hypotheses to the target forms which results in a
large number of incorrect forms. Since this can be pedagogically problematic, we
implement our own distractor generation logic which applies a limited set of rules
manually defined for each topic. This gives us more control over the proportion
of ill-formed as opposed to well-formed but context-inappropriate distractors and
allows us to control the degree to which an ill-formed distractor deviates from the
correct form.

In order to generate well-formed but context-inappropriate distractors, we again
employ the SimpleNLG generator. For ill-formed variants, we introduce rules ex-
plicitly defined for each topic to generate forms representing common mistakes for
that topic. Examples illustrate prominent errors, marking incorrect forms with
an asterisk (*). For Comparison forms, ill-formed variants include neglecting to
substitute a trailing y with an ie (Example or to double a trailing consonant
(Example or else wrongfully doubling it (Example before appending the

suffix er or est for comparative or superlative forms respectively.

(5) a. pretty: prettier *prettyer
b. big: bigger *biger

c. smart: smarter Fsmartter

3.3. EXxercise generation 54

For Simple present, incorrect forms target wrong question and negation formation
such as illustrated in Examples as well as incorrect suffix formation. In order
not to introduce too many errors within a single distractor, we apply incorrect suffix
formation only on affirmative statements. Such forms may miss an e (Example or
feature an additional e before the s suffix (Example or else, similar to comparison
forms, fail to substitute a trailing y with ie (Example .

(6) a. go (he, interrog.): Does he go? *Goes he?
b. go (he, neg.): He doesn’t go. *He not goes.
c. go: goes *00s
d. say: says *sayes
e. fly: flies *flys

Since Past tense exercises may also include forms of other tenses, generating ill-
formed variants needs to be possible for all past, present and future tenses in perfect
as well as non-perfect aspect and simple as well as progressive forms. Perfect and
progressive forms mainly target incorrect past and present participle formation re-
spectively, but also incorrect auxiliary use in terms of wrong person or lemma or
else incorrect question or negation formation. Incorrect past participle forms may,
as illustrated in Example [7a] use an incorrect suffix such as d, t or en instead of
the regular ed. Incorrect present participle forms may for instance neglect to double
a trailing consonant (Example or to drop a trailing e (Example before ap-
pending the ing suffix. Simple past uses the same logic applied to past participles

since the rules for generating regular forms are identical.

(7) a. talk (past): talked *talkd *talkt *talken
b. plan (pres.): planning *planing

*

c. come (pres.): coming comeing

In order to provide the requested amount of distractors, a sub-sample needs to be
selected from the pool of generated distractors in case their number is higher than
that specified in the configuration interface. The simplest approach consists in tak-
ing a random selection of the generated forms. However, the amount of generated

ill-formed variants usually exceeds that of inappropriate forms. Since presenting

3.3. EXxercise generation 95

incorrect forms to learners should be moderated so as not to expose them to an
abundance of ill-formed language, we need to control their use as distractors. An-
other factor to consider in the selection of distractors concerns the availability of
feedback. As the logic for generating distractors may differ from the one for gen-
erating target hypotheses for feedback, not all distractors might be assigned a cor-
responding feedback. In order to provide feedback for as many forms as possible,
we prioritize distractors with associated feedback over those without in the selection

process. Distractors can therefore only be chosen after feedback has been generated.

Target constructions can only be used for exercise generation if all necessary exercise
components could be determined. Post-processing may not be successful for all
targets if, for instance, the clauses of conditional sentences cannot be identified.

This step may therefore result in a reduction of exercise targets.

3.3.4 HTML indexing

FLAIR operates on extracted plain texts, subsequently referred to as FLAIR PLAIN
TEXT, without preserving any HTML context. In order to integrate exercises in
the original HTML context, the identified constructions need to be annotated in
the plain text extracted from the HTML DOM, subsequently called HTML PLAIN
TEXT. Although it would be possible to repeat the NLP analysis on the HTML plain
text, this would entail redundant processing. Even more importantly, this approach
cannot account for parts of the document deleted by the user in the configuration

interface. It is therefore not suitable for our purposes.

Instead, we pursue an alternative approach which consists in mapping the FLAIR
plain text indices of the constructions, as well as those of the removed document
parts, to the HTML plain text. Considering that both plain texts are extracted
from the same web page and only deletions but no insertions are allowed on the
FLAIR plain text, the FLAIR plain text generally constitutes a subset of segments
of the HTML plain text, without additional segments. However, this is not an
absolute given. The reason resides in the discrepancy in plain text extraction tools
and methodologies between the two plain texts, which results in slightly different

plain texts. While the construction extraction pre-processing uses Boilerpipe for

3.3. EXxercise generation o6

performance reasons, FLAIRg qen parses the HTML DOM with the jsoupﬂ parser

in order to also keep the HTML tags instead of only extracting plain text elements.

© O @ O

O
v O © 0 0 O O
- O O © 0 0 O O
@ 00 000 0o
- O O 0 O 0O O © O
O O O 0 0 0O 0 O

» O 0 00 00 00

Figure 3.3.2: Edit graph for operations supported by the Myers algorithm

The text on the vertical axis represents the HT'ML plain text, the text on the horizontal
axis the FLAIR plain text. The Myers algorithm supports only insertions (I), denoted by
downward arrows, and deletions (D), denoted by arrows to the right. The affected letter
is given as subscript of the operation. Diagonal arrows indicate that both plain texts are
identical. Dashed arrows in gray denote alternative paths considered equally likely by the
algorithm. The graph only illustrates the basic principle for applying the supported edit
operations. Optimizations implemented by the Myers algorithm are not considered.

Since such mapping problems are also central to difference algorithms used for ex-
ample in version control systems, we examined these algorithms for applicability to
our purposes. Some algorithms such as Histogram are optimized for code compari-
son where many lines tend to be made up of certain elements like brackets (Nugroho

et al., 2019). Other algorithms such as Myers have a broader application scope.

Shttps://jsoup.org/

https://jsoup.org/

3.3. FExercise generation 57
o

This algorithm is optimized to identify differences between two texts by determin-
ing the shortest path in an edit graph (Myers, 2005). Figure illustrates how
the algorithm finds differences between two strings by applying one of its two oper-
ations Insert and Delete whenever differences are detected. Since this algorithm
has been implemented in the Apache Commons librarylﬂ, it can be easily integrated

into FLIARE gen to allow efficient indexing.

POS annotated text Matching scenarios
with in plain text Option 1 m | love languages |
from FLAIR
PRP VB NNS
| love languages Option 2
PRP VBP NNS PRP VB NNS

Figure 3.3.3: Ambiguity in plain text matching

The FLAIR plain text lacks a to-infinitive contained in the HTML plain text. The matching
allows two possible scenarios regarding the deleted part in which the token love is once at
the left-hand border (Option 1) and once on the right-hand border (Option 2) of the
removed segment. While Option 1 reflects the correct mapping, Option 2 leads to a
mapping where the ambiguous token is wrongly assigned the Peen Treebank tag VB for
base verbs instead of the present tense verb tag VBP.

While the algorithm is very effective and efficient in identifying the most likely
changes, it cannot account for ambiguities in the matching. Figure [3.3.3 illustrates
why such ambiguities can be problematic: If some sequence is deleted from the
original text that ends with a token which also makes up the rightmost element of
the sequence to the left of the deleted part, this token might be matched to either of
the two occurrences in the original text. The same holds for tokens on the left of the
deleted sequence which also occur at the left border of the part to the right of the
deleted segment. If the two occurrences have different grammatical functionalities,
only one of them might constitute an exercise target. By assigning the ambiguous
token to the wrong element in the original text, the remaining occurrence might thus
wrongly be assigned the target construction annotation of the deleted token. Since

such a scenario is highly unlikely considering that both plain texts are extracted

Shttps://commons.apache.org/

https://commons.apache.org/

3.3. EXxercise generation o8

from the same web document so that the main text containing constructions should
be included in both, we do not attempt to further avoid this kind of error. It will be
up to the instructor to revise the generated exercises and remove targets as needed

in the H5P authoring interface before presenting the exercises to learners.

Since the Myers algorithm allows deletions as well as insertions, the output may
result in a mapping of the two plain texts where not all parts of the source text,
in our case the FLAIR plain text, are matched to a part of the target text, our
HTML plain text. If such a part contains a linguistic construction, it cannot be
used for exercise generation as it cannot be located in the HTML DOM. Example
highlights that even if only part of the construction (bold) of the FLAIR plain text
given in Example [84 is missing (red) in the HTML plain text shown in Example [8b)]
the construction is unsuitable as an exercise target. The indexing may thus lead to

an additional reduction of the amount of exercise targets.

(8) a. Heis being nice.

b. He is nice.

3.3.5 Feedback Generation

We use FeedBook’s microservice to provide scaffolding feedback with our generated
exercises. While FeedBook’s offline component generates multiple pre-compiled feed-
back messages for each exercise target at generation runtime, the online component
identifies the one best suited for a learner’s input at rendering runtime. For offline
processing, the feedback generation takes the correct target answer, which can be
processed by standard NLP tools, as a starting point. The algorithm iteratively
transforms it into well-formed but task-inappropriate as well as ill-formed target
hypotheses. The iterative nature of the algorithm allows it to associate errors with
transformation rules, thus enabling the tool to provide meta-linguistic information
on the error characteristics. Each target hypothesis is associated with one of the
tool’s manually defined feedback templates. The templates are populated based on
the transformation rules that are applied to generate the variant. In order to pro-
vide the feedback that fits best to a learner’s answer, the online component enables
the matching algorithm to, for example, gloss over additional words inserted by the

learner which are not incorrect, but not foreseen in the target answer. This func-

3.3. EXxercise generation 29

tionality is provided by the search algorithm of the Lucendﬂ search library, enhanced
by FeedBook’s implementation for task-specific term weightings to take into account
the task context. The enhancement allows the algorithm to prioritize hypotheses
based on task-relevant transformations over those based on transformations not rel-
evant to the task (Ziai et al., 2018). For the exercise and the student’s answer (red)
given in Example[J] the implementation with this enhancement will rate message [9b|
as more relevant since the task description explicitly asks for present progressive.

The learner is thus directly pointed to the main issue.

(9) Give the correct present progressive form:

He go (go) to school.
a. Simple present: He, she, it the s must fit.

b. This is the simple present. You need to use the present progressive here.

Considering that the microservice development constitutes work in progress, the
current implementation supports only offline feedback generation. We therefore do
not presently integrate online feedback into FLAIRg.gen. Providing feedback for
MtW exercises is not possible without online analysis of the learner’s answer and
DD tasks are not supported by FeedBook’s algorithm. Exercise types for which
feedback generation is already supported thus encompass FiB and SC exercises for
which online processing is not essential. Integrating feedback into FLAIRggen con-
sists of assembling the exercise information required by the microservice, calling the
microservice and compiling the returned feedback into the format required by the

H5P exercises.

Feedback generation is only triggered if the according checkbox in the exercise con-
figuration interface has been activated. For exercise types which do not support
feedback generation, i.e. MtW and DD exercises, the feedback generation logic is
automatically bypassed. The microservice does not support passive transformation
exercises which provide the active sentence in brackets and expect the corresponding
passive sentence as target answer. Support for this exercise type is, however, cur-
rently being developed. We therefore enable feedback generation for such exercises.

Suitability of the generated feedback for those tasks can then be evaluated by the

"https://lucene.apache.org/

https://lucene.apache.org/

3.3. EXxercise generation 60

instructor in the authoring tool before presenting it to learners.

If the configured exercise requires feedback, a POST request is sent to the FeedBook
microservice. Since the microservice is not designed to process large requests, we
split the exercise items into multiple messages. Batch size is currently set to 20 items
per request. Each item consists of the sentence containing the target as well as the
previous sentence in order to provide sufficient context to perform NLP analyses. In
addition, the exercise target needs to be specified by giving its start and end indices
within the containing sentence. If a sentence contains multiple target constructions,
each target is processed as an individual item, treating other targets as regular plain
text elements of the text context. Although information on exercise topic and type
is not evaluated by the feedback algorithm, it is added to the request for possible

future processing and logging purposes.

The response returned by the microservice contains a dictionary of target hypotheses
with associated feedback for each item extracted from the request. The feedback
algorithm may determine multiple possible feedback messages corresponding to a
target hypothesis. However, only the most likely one according to a set of static
rules defined in the feedback algorithm is returned in the response. Since we do
not presently support online feedback, determining the most probable feedback at

generation runtime suits our current implementation.

As the feedback generation was originally developed exclusively for the FeedBook
system, some feedback messages contain elements specific to that application such as
links to system-internal HTML pages and references to pages in the accompanying
paper text book. Although we cannot filter out the latter in our system, it is possible
to identify critical links. We thus replace those with publicly available alternatives
manually specified in resource files of FLAIRggen. Other than that, no further pro-
cessing is required for FiB exercises before storing the generated target hypotheses
with the respective target. They are added to the target information, along with
the associated feedback, as incorrect answers. For SC exercises, only those target
hypotheses which correspond to generated distractors are used and their feedback
is stored with these distractors. Since the feedback generation algorithm might
not cover all distractors, we consider this in the distractor selection as illustrated
in Figure 3.3.4 The algorithm regulates the proportion of ill-formed distractors

and prefers forms with associated feedback over those without. To this purpose, it

3.3. Exercise generation 61

Distractor amount: 8 Distractor amount: 2
generated selected generated selected
distractors distractors distractors distractors
i " ‘ ‘ i
-f (D) LD
*+f *+f @ @ 2

(a) Distractor padding (b) Distractor reduction

Figure 3.3.4: Distractor selection

The circles on the left in the figures indicate groups of distractors with either ill-formed (*)
or well-formed but task-inappropriate variants and either with (+f) or without (-f) asso-
ciated feedback. The circles on the right contain the currently selected distractors at each
represented processing step la through 2c in Figure[3.3.4aland 1a through 2 in Figure
respectively. Distractors are depicted as diamond shapes. Newly added distractors in a
processing step are marked in green, distractors removed in a step are depicted in light
gray. Steps la and 1b are always executed. If the number of selected distractors after these
steps is lower than the required amount, the set of selected distractors needs to be padded
from the remaining distractor groups. If the number of distractors exceeds the required
amount, the set of selected distractors needs to be reduced.

generates a pool of possible distractors consisting of all well-formed variants with

corresponding feedback and half as many ill-formed variants as well-formed ones

3.3. EXxercise generation 62

in a first step. Only if the required overall amount of distractors is not met will
the pool be supplemented by additional forms in the second step, as demonstrated
in Figure [3.3.4al These consist of well-formed variants without feedback at first
priority, ill-formed variants with feedback at second priority and ill-formed variants
without feedback at third priority. Unless all generated forms of one group are used
as distractors, the forms are chosen randomly. The amount of distractors may fall
short of the requested number if not enough variants could be generated. If the pool
of options determined in the first step contains more distractor candidates than de-
sired, as is the case for the example in Figure the second step consists in
determining a sub-sample of the candidate pool instead of enriching it with addi-
tional forms. A random selection of as many distractors as specified in the web

interface is thus taken.

3.3.6 DOM manipulations

Once the DOM has been indexed and all exercise components have been gener-
ated, the HTML structure can be transformed into the format required by the H5P

semantics specification.

<tag>
sentence 1
<tag>
<tag res="uri" />
sentence 2
<tag res="uri" />
<tag>sentence 3</tag>
</tag>
</tag>

Figure 3.3.5: Deletion of removed sections from the DOM

The tags may refer to any HTML tag. Similarly, the res attribute may constitute any
HTML attribute referencing a resource. The plain text colored in red has been removed
by the instructor in the configuration panel. The elements within the red rectangle are
removed by FLAIRgygen. The resource marked in bold is also removed even though it is
not inside the deleted text section but at its boundary.

The parts of the plain text that were deleted by the instructor are identified and

removed along with any enclosing HTML elements without preserved plain text con-

3.3. EXxercise generation 63

tent. As illustrated in Figure [3.3.5], the removed elements might contain resources
at the plain text boundaries which the user may or may not have intended to delete.
However, removing all enclosing HT'ML elements ensures that empty HTML ele-

ments with some visible manifestation are removed along with the text.

The remaining DOM is searched for resources. If the instructor has not enabled
resource downloading in the exercise configuration, the paths are set to absolute
URIs. Otherwise, processing depends on whether the file type is supported by H5P
or not. If it is supported, the resource is downloaded into FLAIR’s working memory,
assigned a name consisting of the string tempResourceName suffixed with a unique
sequential number, and the resource path is set to that name. If the file type is
not supported, any relative URIs are replaced with absolute paths. It would also
be possible to download such resources and assign them some supported default
file extension like jpeg. However, while the MIME type, not the file extension, is
supposed to be considered in order to determine the file type, some browsers may
apply an opposing strategy (Mozillal, 2005; The MITRE Corporation), [2020)). Files
with manipulated file extensions would therefore not always be processed correctly.
FLAIREcqen also searches all style elements for resources by means of Regular Ex-

pressions. The identified items are then processed analogously.

The next step requires replacing exercise targets with the widgets for the selected
exercise type. Since the widgets themselves are defined by the H5P content types
and inserted at rendering runtime, the exercise targets are merely replaced at gener-
ation runtime with the placeholder elements expected by the H5P implementations.
As we have modified our content types to use inline target specifications with refer-
enced feedback fields, the placeholders consist of the correct answer enriched with
the reference 1D, all enclosed in asterisks. The reference ID is only given if incorrect
answers in terms of target hypotheses for FiB exercises or distractors for SC tasks
have been specified. The incorrect answers and corresponding feedback are accord-
ingly bundled into JSON objects. MtW exercises impose some additional require-
ments on target specifications. Although according to the Mark the Words type
description, only single-word items can be used as targets, the implementation uses
spaces to determine word boundaries. We therefore replace any space occurrences
within an exercise target with non-breaking spaces which have the same surface

form but a different ASCII representation. This way, Mark the Words exercises can

3.3. FExercise generation 64
o

use multi-word expressions as exercise targets without further modifications. An
additional requirement of this content type is for asterisk-enclosed target words to
be surrounded by spaces. For FiB exercises, the generated brackets also need to
be included in the DOM. They are inserted as simple text elements right after the

placeholder specification of the corresponding target word.

The last challenge in this vein consists providing the HTML string in the form
expected by our custom H5P content types. To this purpose, we replace the relevant
HTML special symbols such as angled brackets, ampersand and quotation marks
with the corresponding replacement string. All plain text elements are extracted
from the HTML string, placed inside HT'ML elements to which we assign a unique
ID and replaced in the DOM with a placeholder referencing that ID. Plain text is
thus cleanly separated from HTML elements.

sentence indices: (0,20), (20,30) sentence indices: (0,20), (20,30)
¢"" " ,”’ /,, ,"”’ 'l ,',’/',
<tag> ’,," ',:/ /, <tag> /‘,— :I/, ’,,
séntence 1 .-/ . stntence 1 ol e
’/ ’ ’ ’
<tag>sentence 1</tag> <tag>senteneé 1~ -
’ pd - /,
<tag>sentence 2</tag> ‘<tag>s‘entence 2</tag>
< >
</tag> /tag
</tag>
(a) Non-overlapping sentences (b) Overlapping sentences

Figure 3.3.6: Merging of overlapping sentences

The tags in the XML structures may refer to any HTML tag. The arrows point to the
positions in the HTML plain text corresponding to the respective indices. The boxes
enclose all HTML tags of the sentences necessary to display them as exercise instances.

For DD exercises with multiple sub-tasks, the exercise segments need to be assigned a
sentence ID so that they may be represented as sub-exercises on the target platform.
Such sub-exercises need to constitute valid, complete HTML elements. As illustrated
in Figure [3.3.6 it is therefore possible that some segments have to be merged in
order to fulfill this requirement. If the enclosing HTML elements of two sentences
do not overlap, such as the illustration in Figure [3.3.6a] they are kept as individual
exercises. If they do, however, such as is the case for the example in Figure [3.3.6D|
where the enclosing HTML elements of one sentence contain the other sentence,

they are merged into a single exercise with the scope of the enclosing sentence.

3.3. EXxercise generation

65

deleted text indices: (

’
¢

6,18)

<tag> , ’
/!

4 ’
7

’

<tag> ,/ ,
<tag>text 2</tag>
<tag>text 3</tag>

</tag>

<tag res="rel_uri"/>

4

<tag>

text with target2

</tag>

</tag>

target indices: (2l8,3'5)

(a) HTML input

"textElements":

"

text 1'[

text with *target:*2

",
"htmlElements": [

"I <tag> | <tag> s
[1],
" </tag>

<tag res="absolute_uri"/>

<tag>’ ",

’

" </tag>" | </tag>

1,
"feedback": [

{

"incorrectAnswers": [
{

"answerText":

"answerFeedback":

1,
{

"hypothesisl",
"messagel"

"hypothesis2",

"answerText":
"message2"

"answerFeedback":
}
}
1,

"feedbackId": "[£1|"

(b) JSON output

Figure 3.3.7: Conversion of HTML into JSON

The tags in the HTML DOM may refer to any HTML tag. Similarly, the res attribute may
constitute any HTML attribute referencing a resource file. The HTML elements marked
in red are identified by their indices and deleted. Exercise targets, also identified by the
corresponding construction indices, are enclosed in asterisks. Indices in colored boxes of
the HTML input map to indices of the same color in the JSON output. The arrows point
to the positions in the HTML plain text corresponding to the respective indices. Linefeeds

within JSON strings are added in this representation for better readability.

3.3. EXxercise generation 66

In order to provide a more visual representation, Figure [3.3.7] summarizes the most
relevant steps to obtain a JSON specification from the HTML document up to
this point: The text parts removed by the instructor are deleted (red), and the
remaining DOM is split into HTML tags (orange) and text elements (purple). The
text elements receive markings for targets and are embedded into span elements
with a unique ID (green). This ID is referenced in the list of HTML elements where
it serves as a placeholder for the text element. The targets are enriched with a
feedback ID (blue) which is referenced in the corresponding feedback field. Relative
URIs in resource HTML tags are replaced.

Chapter 4
Evaluation & Discussion

In order to determine the effective contribution that FLAIRg.qen provides to the
domain of automatic exercise generation, we assessed our system qualitatively as

well as quantitatively.

4.1 Methodology

In our evaluation, we compare the scope of FLAIR g gen With that of related work. In
addition, we analyze the results of a technical analysis of our system’s robustness and
performance. As large-scale evaluations including student and teacher participants
or subject matter experts are beyond the scope of this thesis, we did not evaluate

such criteria.

4.1.1 Comparison with related work

We assessed a number of quality criteria highlighted by the developers of existing
exercise generation systems as well as features considered relevant to such tools by
the authors of related work. The evaluation criteria encompass features of versatility

and coverage.

Versatility The more flexible the exercise generation tool and the generated ex-
ercises are, the more widely applicable they are to a range of learning scenarios.

The portability of the exercises determines their applicability to real-world settings.

68

1.1. Methodology 69

By making the tasks independent of a specific platform, high portability increases
the likelihood of the tool being adopted by users as the exercises may be integrated
into an established e-learning system supporting the exercise format (Schwartz et al.|
2004; Naiara Perez Miguel, |2017; Aldabe et al., 20006).

High configurability of the generated exercises allows to adjust exercise complex-
ity in order to account for the learners’ proficiency levels, strengths and weaknesses
(Naiara Perez Miguel, 2017). In order to supply learners with a range of scaffold-
ing exercises, allowing users to specify the sequence in which exercises are displayed
should also be considered (Antoniadis et al.| 2004)). As pre-generation configurations
may not always be fine-grained enough to produce the desired output, provided func-
tionalities to post-edit generated exercises also factor into this criterion (Hoshino and
Nakagaway, |2008]).

Coverage of learning scenarios In order to be accepted by a broad public, the
generated exercises need to be widely applicable.

The tasks need to support practice for a significant proportion of the requirements
established in the curriculum a learner follows. Since we focus on learners at be-
ginner and lower intermediate levels of English, we measure the coverage of the
pedagogical targets our system supports (Perez-Beltrachini et al., 2012; |Anto-
niadis et al., 2004)) against those covered by the 7th and 8th grade curriculum in
Baden-Wiirttemberg high schools.

The skill acquisition perspective determines whether the exercises aim at de-
veloping declarative or procedural knowledge. Declarative knowledge is typically
acquired first through explicit explanations to then be automated into procedu-
ral knowledge (Ortega, 2014). While exercises may in general target both types of
knowledge, instructions to acquire declarative knowledge do not need to be available
in great variety. Providing large amounts of practice material for proceduralization,
on the other hand, constitutes an important bottleneck. It should therefore consti-
tute the primary target of automatic exercise generation.

While supported languages are of little consequence to the prototypical user in-
terested in a single language, this criterion affects overall popularity of the tool and
acceptance from users working with multiple languages (Naiara Perez Miguel, [2017)).
The range of exercise types influences the targeted language use in terms of pro-

duction and comprehension (Aldabe et al., 2006). This criterion is usually considered

1.1. Methodology 70

in tandem with the support for practice of spoken and written modalities (Bodnar
and Lyster, 2021)). The 7-8th grade curriculum in Baden-Wiirttemberg requires the
entire spectrum of comprehension and production of written and spoken language
to be covered (Ministerium fiir Kultus, [2016)).

Since support for building a learner model allows to monitor the learner’s progress
and thus provide material adapted to the learner profile, this is considered a qual-

ity criterion by various authors (e.g. [Hoshino and Nakagawa, [2008} [Volodina et al.

2014).

4.1.2 Technical evaluation

The assessment of robustness and performance relies on objective measurements.
They were carried out on exercises generated for samples of representative docu-
ments. Since sampling of web pages varied slightly depending on the feature being
assessed, the methodological details are outlined separately in the following descrip-

tions of the evaluated features.

Robustness and correctness The more reliably all features of the exercises can
be generated correctly, the less manual post-processing effort is required. High re-
liability will also allow use case scenarios where this manual step is omitted, thus
opening opportunities for full automation and independent, user-adaptive learning.
The definition of grammaticality of the generated exercises differs from one
author to another depending on the focus of the assessed system. |[Perez-Beltrachini
et al. (2012) determine whether the generated sentences are syntactically and mor-
phologically correct. [Hoshino and Nakagawa| (2008) assess the discrimination value
which allows to discriminate between strong and less proficient learners based on
an exercise, as well as the difficulty level of the generated distractors. Both EWR
and Seneff (2007) and |Lee et al. (2016)) consider exercises incorrect if at least one
of the distractors generates a correct sentence. Since |Lourenco| (2015 generates
her passive transformation exercises by transforming a passive into an active sen-
tence, incorrect tasks constitute incorrectly formed active sentences. As we focus
on targets ranging from simple to more complex linguistic constructions, the most
crucial aspect of correctness for FLAIRg qen concerns the correct identification of

target constructions. While this depends to a large extent on the precision at which

4.1. Methodology 71

FLAIR identifies constructions, an additional aspect to consider consists in the per-
formance of our strategy to identify exercise targets based on multiple, overlapping
constructions extracted by FLAIR. In order to assess this criterion, we sampled up
to 10 occurrences for each type of exercise target from 100 arbitrarily selected web
pages. Identical occurrences of target constructions were not considered and only
web pages which contained at least one construction were taken into account. Recall
is not essential to exercise generation as an exercise text may well contain occur-
rences of the targeted constructions which are not turned into exercise targets but
merely part of the textual context. We therefore only determined precision values
for the identified constructions.

Another dimension of robustness concerns the identification of adequate documents.
Authentic texts need to contain a reasonable amount of target constructions in order
to be suitable for exercise generation. While |Perez-Beltrachini et al. (2012) focus
on the number of generated targets in their evaluation, it makes sense to break this
down into two components for our application: the number of identified documents
suitable for exercise generation and the ratio of successful target generation from
constructions. The assessment of document suitability comprises two aspects.
The first aspect concerns the rendering of the document’s markup on the target
platform. While we aim to preserve as much of the original HTML markup of the
web texts as possible, not all web documents are equally well displayed. However,
as long as the exercises are usable, we consider the documents suitable for our ap-
plication. The range of supported documents influences the usability of the tool
for possible use case scenarios as the user may or may not be restricted to particu-
lar documents, corpora or document formats (Knoop and Wilske], 2013; |Antoniadis
et al., 2004; Schwartz et al. 2004). Wu et al.| (2009) consider journals and news-
papers to provide the most suitable contents for language learning activities due
to the editorial process to which they are subjected so that they constitute sources
of generally correct language material. We therefore determined whether the most
popular English news sites can be used with FLAIRgxgen. To this purpose, we
evaluated articles published by the most frequently used online news sites accord-
ing to a recent report by the web analytics provider SimilarWebH (Majid, 2021)

and the most trusted news sites by users according to a report by the consumer

Thttps://www.similarweb.com /de/

https://www.similarweb.com/de/

4.1. Methodology 72

profiler GlobalWebIndexf| (Global Web Index| [2019). We considered the 5 highest-
ranked English sites from both reports and sampled three main page articles from
the day of the evaluation. We also included Wikipedia as a non-scientific document
source (Knight and Prykel [2012) as, largely due to their length, they tend to appear
among the highest-ranked documents in FLAIR’s construction-weighted search re-
sults. In addition, we assessed the applicability of FLAIR’s file upload to exercise
generation. The second aspect in the evaluation of suitable documents concerns the
occurrence of targeted grammatical constructions. For this assessment, we consid-
ered those pedagogical goals covered by the 7th and 8th grade curriculum with the
aim to determine whether our exercise generation can, in combination with FLAIR’s
document ranking, identify documents for which according exercises may be com-
piled. We examined the highest-ranked results returned for the search term Furo
2020, referring to the currently popular topic of the 2020 UEFA European Football
Championship, both without restricting the search sites and on the popular news
site Reuters.

The target generation ratio is here defined as the ratio of the number of target
constructions in the generated exercises to the number of target constructions pre-
dicted in FLAIRE.qen's exercise configuration panel. A perfect ratio of 1 indicates
that all predicted target constructions could be turned into an exercise target. If
indexing of the HTML plain text or post-processing of the constructions renders an
occurrence unusable for the exercise, the ratio decreases. In this evaluation, Furo
2020 served as search topic once more with search settings set to 50 results and
no site restrictions. Construction weighting was adjusted for each exercise topic in
order to emphasize those linguistic constructions which are targeted by the respec-
tive topic. The generation ratio was calculated for all supported exercise topic-type
combinations.

Perez-Beltrachini et al.| (2012)) argue that the variability of exercises in terms of
diversity in target constructions and in syntactic and morphosyntactic contexts is
crucial in order for learners to master a grammar topic in a flexible manner. We
focus on the variability of target constructions which can be measured objectively
by calculating the type-token ratio (TTR) of the exercise targets. We define this
measure as the number of distinct targets per overall exercise targets. A value of 1

indicates that all occurrences are distinct from each other, thus providing maximum

2https:/ /www.gwi.com/

https://www.gwi.com/

4.1. Methodology 73

variety in the targeted forms. The ratio decreases as the number of non-unique
exercise targets increases. For the evaluation, we generated exercises for all exercise
topics and the same sites that we used to assess supported web sites. All exercise
configurations were set to the default settings. The documents were selected based
on the searches for Euro 2020 with construction weights set accordingly in order
to assess documents with highest possible numbers of exercise targets. TTRs were
calculated for each generated exercise.

Robustness is also an important factor in evaluating the generated feedback (Meur-
ers et al.l 2010; Naiara Perez Miguel, 2017} [Lourencol 2015)). The ratio of exercise
types and topics supporting feedback constitutes an objective measure. In addition,
the number of items per exercise for which feedback can be generated needs to be
considered. To this purpose, we used the FiB exercises that we generated for the
Furo 2020 evaluation topic, thus covering all exercise topics. For each generated ex-
ercise, the number of targets with automatically generated feedback was compared

against the overall number of targets.

Usability Since end users of our tool comprise both instructors compiling exer-
cises and learners working on them, an assessment of user experience needs to take
into account all components of the workflow that require the active involvement of
the instructor or the learner.

In order to determine whether the performance is acceptable, measuring the aver-
age execution time to generate an exercise from configured settings for a pool of
sample exercises provides an objective quality feature (Aldabe et al., [2006). We
first examined the effect size of using different exercise types by comparing the ex-
ecution times of our four task types on the same document and exercise topics.
Since differences were in the millisecond range, measurements of execution times for
further assessments were consequently performed only on FiB exercises as they are
supported by all exercise topics. We again generated exercises for Reuters, BBC
and CNN articles on Furo 2020, yet with resource downloading as well as feedback

generation activated.

1.2. Results 74

4.2 Results

The following sections outline the results of our evaluation concerning versatility,

coverage of learning scenarios, robustness and correctness, and usability.

4.2.1 Versatility

Portability Thanks to using the popular H5P output format, the generated ex-
ercises can be integrated into any platform supporting H5P. Although integration
via LTI or a plugin is currently limited to 6 platforms, H5P content may also be
embedded into or linked to from any custom web page (Joubel, n.d.b)). If users do
not already employ a target platform, the freely accessible H5P platformf’| may be
used by instructors to edit the generated exercises as well as by students to work on
them. Building a learner model, however, will not be able in this case.

Of the existing exercise generation tools reviewed in Section only the web plu-
gins VIEW and CLozeFox, and KillerFiller and MIRTO provi