Adaptive systems for real-life education need explicit domain and activity models and ways to generate them automatically.

Detmar Meurers, Björn Rudzewitz, Martí Quixal
University of Tübingen
Motivation: Addressing real-life education needs

- Learners differ substantially in:
 - subject domain knowledge
 - cognitive and motivational characteristics
 - academic language competencies
 - social support
 - ...

⇒ Materials, learning tasks, support and time should be adapted to the individual learner’s abilities and needs.
Adaptivity of two types

- Learning is optimal when it is **scaffolded** in the individual **Zone of Proximal Development** (Vygotsky 1986)
 - supportive feedback while working on a task: **micro-adaptivity**
 - adaptive selection of learning materials and tasks: **macro-adaptivity**

- Currently, such adaptivity cannot realistically be provided by teachers (lack of time, diagnostics, adaptive materials).

- Digital tools can support teachers by
 - providing micro- and macro-adaptivity to individual learners
 - informing teachers with individual/aggregated student information
Is micro-adaptivity effective?

- Feedback in general known to be effective (Hattie and Timperley 2007)
- How about specific, scaffolded feedback?
 - field study with 12 classes for entire school year (Meurers et al. 2019)
 - regular 7th grade English classes, but using Intelligent Tutoring System FeedBook instead of traditional, printed work book
 - specific vs. true/false feedback for different grammar topics
 ⇒ 63% higher learning gains for specific, scaffolded feedback:

<table>
<thead>
<tr>
<th>Test</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretest</td>
<td>intervention</td>
</tr>
<tr>
<td>Posttest</td>
<td></td>
</tr>
</tbody>
</table>

Effect size: Cohen’s $d = 0.56$
For whom is micro-adaptivity effective?

- How are learning gains and interaction patterns linked?
 → Learning analytics (Hui, Rudzewitz, and Meurers in press)

- Four groups of students, based on:
 +/− accuracy focus of student
 How many of the items were filled out correctly, not left empty, answered correctly at first try?
 +/− submission time of student relative to peers

⇒ Scaffolded feedback has the biggest effect for students who
 - systematically attempt to solve the exercises correctly
 - submit later than their peers
Who benefits most from the specific feedback?
Macro-adaptivity: components required for sequencing

- rich learner model: reflecting learner differences
 - exposure to constructs, in relation to domain model
 - accuracy of construct usage
 - cognitive characteristics

- rich set of activities and activity models:
 - learning opportunities offered by exercise
 - prerequisites for tackling exercise
Learner model: What do I know so far?

past tense

Richtig vs. Fehler

simple past [simple past signal]

simple past [irregular verb]

double past

simple past

past perfect

past progressive

present perfect

simple past [regular verb]
Learner model: What should I practice next?

- simple past
 - irregular verb
 - *Hervorragend. Welter sel* ★★★
 - *Bitte üben* ★★★
Adapting learning paths for individual learners

• Macro-adaptivity in the DiDi-FeedBook takes into account:
 - learner model: what has been learned so far
 - current executive functions ability, through fully integrated short game

• Activities differ in terms of:
 - complexity of language means to be practiced
 - complexity of language co-material in activity
 - activity type: memory, multiple-choice (2, 4), fill-in-blank (word, sentence)
 - scaffolding provided in activity (e.g., lemmas shown, adjacent or globally)

• Obtaining all these activities and activity models for such a rich space only feasible when generated automatically, e.g.
 - relative clauses: 19 exercises from single specification
 - conditional sentences: 48 exercises per specification
Generating activity models using NLP
(Quixal, Rudzewitz, Bear, and Meurers 2021)

- Activity specification:
 - Targeted language means (according to curriculum)
 - Activity type, language Input, instruction given to student

- Natural Language Processing then can be used to automatically:
 - determine specific subtypes of targeted language means
 (e.g., subject relative clauses with who)
 - non-target language means used in language material
 - skill: receptive or productive
 - supports adaptivity and facilitates alignment with standards (e.g., Cambridge English Grammar Profile)
Activity model derived for example activities
Adaptive sequencing

- Goal: link activity & learner models

- For language topic selected by learner as target, the system
 1. determines learner’s mastery of target learning goals and prerequisites
 - sufficient practice opportunities & accuracy
 2. rank exercises by linguistic affinity score
 - compute fit between current learning goals and exercise
 3. rank exercises by pedagogical criteria
 - three learning phases: from closed to more open activities

- Working memory measure compared to median of all learners
 - easier exercise variants if below median, otherwise harder variant

→ Field study comparing adaptive sequencing to default sequence
Summing up

- Teachers need support for heterogeneous student groups.
- Adaptive digital tools can facilitate individualized practice in a student's Zone of Proximal Development.
 - micro-adaptive: scaffold a learning step
 - macro-adaptive: individual learning paths
- Adaptivity requires explicit learner, domain and activity models.
 - should take different dimensions of individual differences into account:
 - reducing adaptivity to speed (e.g., skipping steps) does not do justice to multidimensional nature of student heterogeneity and learning tasks
- To adaptively support learning, richly parameterized sets of learning tasks corresponding to learner heterogeneity are needed.
 - can be facilitated by automatic activity and activity model generation
References

