

Adaptive systems for real-life education need explicit domain and activity models

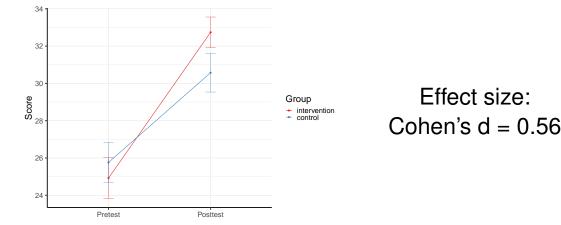
and ways to generate them automatically

Detmar Meurers, Björn Rudzewitz, Martí Quixal University of Tübingen

GEBF 2022 - Bamberg - March 9, 2022

Motivation: Addressing real-life education needs

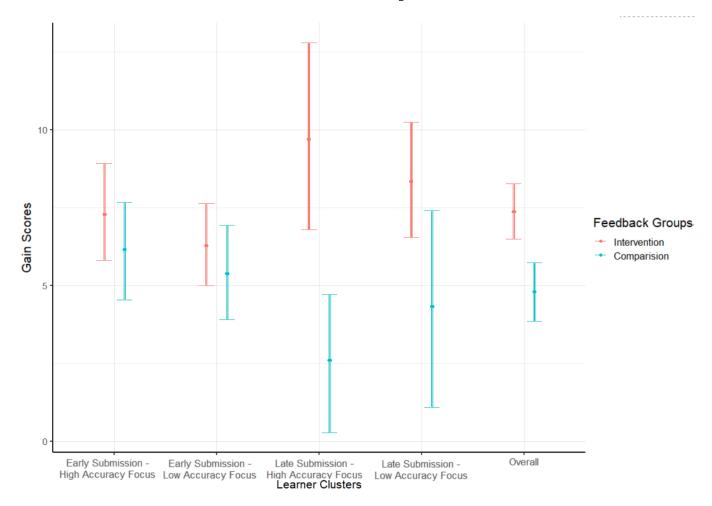
- Learners differ substantially in:
 - subject domain knowledge
 - cognitive and motivational characteristics
 - academic language competencies
 - social support
 - ...
- ⇒ Materials, learning tasks, support and time should be adapted to the individual learner's abilities and needs.


Adaptivity of two types

- Learning is optimal when it is scaffolded in the individual
 Zone of Proximal Development (Vygotsky 1986)
 - → supportive feedback while working on a task: **micro-adaptivity**
 - \rightarrow adaptive selection of learning materials and tasks: macro-adaptivity
- Currently, such adaptivity cannot realistically be provided by teachers (lack of time, diagnostics, adaptive materials).
- Digital tools can support teachers by
 - providing micro- and macro-adaptivity to individual learners
 - informing teachers with individual/aggregated student information

Is micro-adaptivity effective?

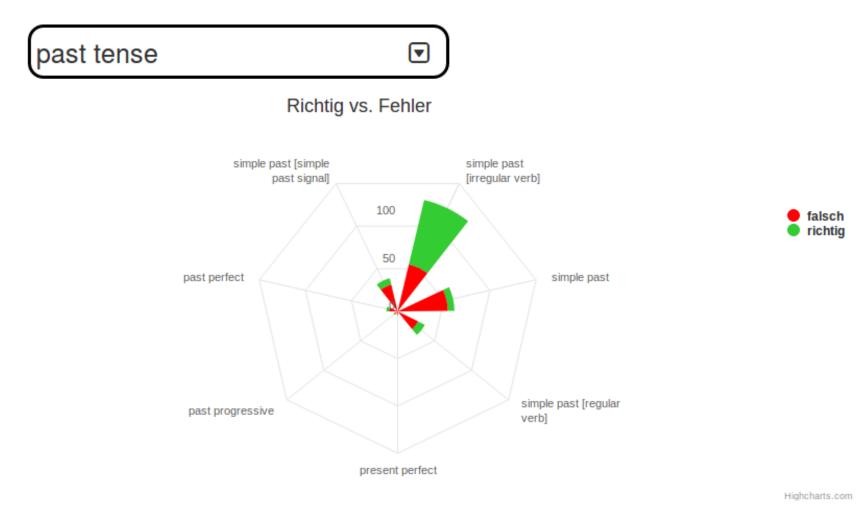
- Feedback in general known to be effective (Hattie and Timperley 2007)
- How about specific, scaffolded feedback?
 - field study with 12 classes for entire school year (Meurers et al. 2019)
 - regular 7th grade English classes, but using Intelligent Tutoring System FeedBook instead of traditional, printed work book
 - specific vs. true/false feedback for different grammar topics
 - \Rightarrow 63% higher learning gains for specific, scaffolded feedback:


For whom is micro-adaptivity effective?

- How are learning gains and interaction patterns linked? \rightarrow Learning analytics (Hui, Rudzewitz, and Meurers in press)
- Four groups of students, based on:

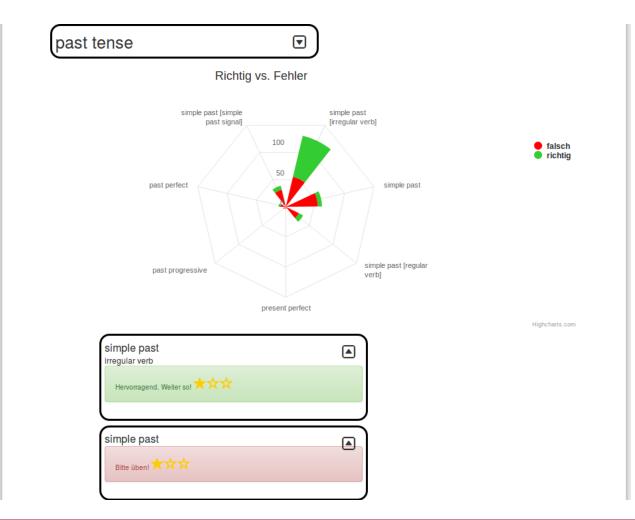
- +/- accuracy focus of student How many of the items were filled out correctly, not left empty, answered correctly at first try?
- +/- submission time of student relative to peers
- ⇒ Scaffolded feedback has the biggest effect for students who
 - systematically attempt to solve the exercises correctly
 - submit later than their peers

Who benefits most from the specific feedback?


Macro-adaptivity: components required for sequencing

- rich learner model: reflecting learner differences
 - exposure to constructs, in relation to **domain model**
 - accuracy of construct usage

- cognitive characteristics
- rich set of **activities** and **activity models**:
 - learning opportunities offered by exercise
 - prerequisites for tackling exercise



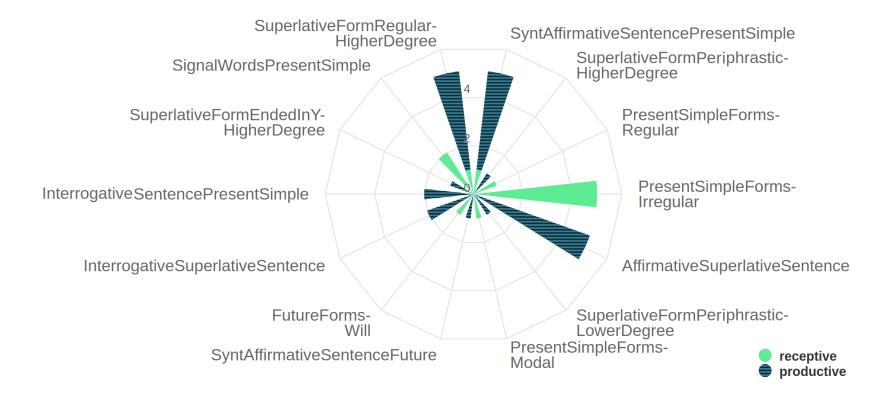
Learner model: What do I know so far?

Learner model: What should I practice next?

Adapting learning paths for individual learners

- Macro-adaptivity in the DiDi-FeedBook takes into account:
 - learner model: what has been learned so far
 - current executive functions ability, through fully integrated short game
- Activities differ in terms of:

- complexity of language means to be practiced
- complexity of language co-material in activity
- activity type: memory, multiple-choice (2, 4), fill-in-blank (word, sentence)
- scaffolding provided in activity (e.g., lemmas shown, adjacent or globally)
- Obtaining all these activities and activity models for such a rich space only feasible when generated automatically, e.g.
 - relative clauses: 19 exercises from single specification
 - conditional sentences: 48 exercises per specification


Generating activity models using NLP

(Quixal, Rudzewitz, Bear, and Meurers 2021)

- Activity specification:
 - Targeted language means (according to curriculum)
 - Activity type, language Input, instruction given to student
- Natural Language Processing then can be used to automatically:
 - determine specific subtypes of targeted language means (e.g., subject relative clauses with *who*)
 - non-target language means used in language material
 - skill: receptive or productive
 - supports adaptivity and facilitates alignment with standards (e.g., Cambridge English Grammar Profile)

Activity model derived for example activities

Adaptive sequencing

- Goal: link activity & learner models
- For language topic selected by learner as target, the system
 - 1. determines learner's mastery of target learning goals and prerequisites
 - sufficient practice opportunities & accuracy
 - 2. rank exercises by linguistic affinity score
 - compute fit between current learning goals and exercise
 - 3. rank exercises by pedagogical criteria
 - three learning phases: from closed to more open activities
- Working memory measure compared to median of all learners
 - easier exercise variants if below median, otherwise harder variant

 \rightarrow Field study comparing adaptive sequencing to default sequence

Motivation

Summing up

- Teachers need support for heterogeneous student groups.
- Adaptive digital tools can facilitate individualized practice in a student's Zone of Proximal Development.
 - micro-adaptive: scaffold a learning step
 - macro-adaptive: individual learning paths
- Adaptivity requires explicit learner, domain and activity models.
 - should take different dimensions of individual differences into account:
 - reducing adaptivity to speed (e.g., skipping steps) does not do justice to multidimensional nature of student heterogeneity and learning tasks
- To adaptively support learning, richly parameterized sets of learning tasks corresponding to learner heterogeneity are needed.
 - can be facilitated by automatic activity and activity model generation

References

- John Hattie and Helen Timperley. The power of feedback. *Review of Educational Research*, 77(1):81–112, 2007. doi: 10.3102/003465430298487.
- Bronson Hui, Björn Rudzewitz, and Detmar Meurers. Learning processes in interactive call systems: Linking automatic feedback, system logs, and learning outcomes. *Language Learning and Technology*, in press. Preprint available at https://doi.org/10.31219/osf.io/gzs9r.
- Detmar Meurers, Kordula De Kuthy, Florian Nuxoll, Björn Rudzewitz, and Ramon Ziai. Scaling up intervention studies to investigate real-life foreign language learning in school. *Annual Review of Applied Linguistics*, 39: 161–188, 2019. URL https://doi.org/10.1017/S0267190519000126.
- Martí Quixal, Björn Rudzewitz, Elizabeth Bear, and Detmar Meurers. Automatic annotation of curricular language targets to enrich activity models and support both pedagogy and adaptive systems. In *Proceedings of the 10th Workshop on NLP for Computer Assisted Language Learning*, pages 15–27, 2021. URL https://aclanthology.org/2021.nlp4call-1.2.pdf.
- Björn Rudzewitz. *Learning Analytics in Intelligent Computer-Assisted Language Learning*. PhD thesis, Eberhard-Karls Universität Tübingen, 2021. URL http://hdl.handle.net/10900/117358.
- Lev Semenovich Vygotsky. Thought and Language. MIT Press, Cambridge, MA, 1986.