
Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Top Down Parsing

Johannes Dellert Aleksandar Dimitrov

Seminar für Sprachwissenschaft, Universität Tübingen

December 2006

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Outline

Introduction
Intuitive example
Features and Operations
Parsing Schema

Motivation
Why Top-Down?
Why Not?

Implementation
PDA + GNF
Breadth-first
Depth-first
Left recursion
Recursive Descent

Summary

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Top-Down Parsing

I CYK and Unger parser are non-directional methods

I They need the whole input sentence before beginning to
parse

I Today we introduce a directional top-down parsing
method

I This is what the term ’Top-down Parsing’ usually refers
to

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Top-Down Parsing

I CYK and Unger parser are non-directional methods

I They need the whole input sentence before beginning to
parse

I Today we introduce a directional top-down parsing
method

I This is what the term ’Top-down Parsing’ usually refers
to

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Top-Down Parsing

I CYK and Unger parser are non-directional methods

I They need the whole input sentence before beginning to
parse

I Today we introduce a directional top-down parsing
method

I This is what the term ’Top-down Parsing’ usually refers
to

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Top-Down Parsing

I CYK and Unger parser are non-directional methods

I They need the whole input sentence before beginning to
parse

I Today we introduce a directional top-down parsing
method

I This is what the term ’Top-down Parsing’ usually refers
to

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

General approach

I Rederive the word starting at the input symbol

I Build the tree from the top

I Collect ’ideas’ on how the tree might be continued

I If the tree is ’full’ and all the input is in the tree,
parsing was successful

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

General approach

I Rederive the word starting at the input symbol

I Build the tree from the top

I Collect ’ideas’ on how the tree might be continued

I If the tree is ’full’ and all the input is in the tree,
parsing was successful

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

General approach

I Rederive the word starting at the input symbol

I Build the tree from the top

I Collect ’ideas’ on how the tree might be continued

I If the tree is ’full’ and all the input is in the tree,
parsing was successful

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

General approach

I Rederive the word starting at the input symbol

I Build the tree from the top

I Collect ’ideas’ on how the tree might be continued

I If the tree is ’full’ and all the input is in the tree,
parsing was successful

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I Assume the following grammar:

S → NP VP
NP → D N
VP → VT NP | VI PP
PP → P NP
D → der | die
N → Mond | Wiese
VI → scheint
VT → bescheint
P → auf

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I Now let us parse the sentence ’der Mond scheint auf die
Wiese’

I First ’tree idea’:

S

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I Now let us parse the sentence ’der Mond scheint auf die
Wiese’

I First ’tree idea’:

S

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I ’Tree idea’ is expanded via leftmost derivations:
S

NP VP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I ’Tree idea’ is expanded via leftmost derivations:
S

NP

D N

VP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I ’Tree idea’ is expanded via leftmost derivations:
S

NP

D

der

N

VP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I Tree begins to match input and is expanded:
S

NP

D

der

N

VP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I Tree begins to match input and is expanded:
S

NP

D

der

N

Mond

VP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I Tree begins to match input and is expanded:
S

NP

D

der

N

Mond

VP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I Nondeterminism: Two different possible trees.
S

NP

D

der

N

Mond

VP

VT NP

S

NP

D

der

N

Mond

VP

VI PP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I Nondeterminism: Expanding both trees.
S

NP

D

der

N

Mond

VP

VT

bescheint

NP

S

NP

D

der

N

Mond

VP

VI

scheint

PP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I No scan possible for first tree; remaining tree gets expanded
S

NP

D

der

N

Mond

VP

VI

scheint

PP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I Expanding the predicted tree
S

NP

D

der

N

Mond

VP

VI

scheint

PP

P NP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I Expanding the predicted tree
S

NP

D

der

N

Mond

VP

VI

scheint

PP

P

auf

NP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I Expanding the predicted tree
S

NP

D

der

N

Mond

VP

VI

scheint

PP

P

auf

NP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I Expanding the predicted tree
S

NP

D

der

N

Mond

VP

VI

scheint

PP

P

auf

NP

D N

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I Expanding the predicted tree
S

NP

D

der

N

Mond

VP

VI

scheint

PP

P

auf

NP

D

die

N

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I Expanding the predicted tree
S

NP

D

der

N

Mond

VP

VI

scheint

PP

P

auf

NP

D

die

N

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I Expanding the predicted tree
S

NP

D

der

N

Mond

VP

VI

scheint

PP

P

auf

NP

D

die

N

Wiese

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Intuitive example

I Tree completed
S

NP

D

der

N

Mond

VP

VI

scheint

PP

P

auf

NP

D

die

N

Wiese

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

General features of the top down method

I The parser makes predictions about the input.

I The left-most prediction is usually processed first.

I Terminals in the prediction are matched against the
input.

I Non-Terminals are replaced by one of the right hand
sides.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

General features of the top down method

I The parser makes predictions about the input.

I The left-most prediction is usually processed first.

I Terminals in the prediction are matched against the
input.

I Non-Terminals are replaced by one of the right hand
sides.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

General features of the top down method

I The parser makes predictions about the input.

I The left-most prediction is usually processed first.

I Terminals in the prediction are matched against the
input.

I Non-Terminals are replaced by one of the right hand
sides.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

General features of the top down method

I The parser makes predictions about the input.

I The left-most prediction is usually processed first.

I Terminals in the prediction are matched against the
input.

I Non-Terminals are replaced by one of the right hand
sides.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Operations

I For Bottom-Up-Parsing, we got to know SHIFT and
REDUCE

I The corresponding operations for Top-Down-Parsing are
called PREDICT and SCAN

I PREDICT replaces a non-terminal in the sentential form
with the right hand side of a corresponding rule:

I e.g. der Mond VP → der Mond V PP for a rule VP →
V PP

I SCAN matches a terminal in the sentential form with a
symbol on the input string

I e.g. der N VP → N VP, ’der’ matched in the input
string

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Operations

I For Bottom-Up-Parsing, we got to know SHIFT and
REDUCE

I The corresponding operations for Top-Down-Parsing are
called PREDICT and SCAN

I PREDICT replaces a non-terminal in the sentential form
with the right hand side of a corresponding rule:

I e.g. der Mond VP → der Mond V PP for a rule VP →
V PP

I SCAN matches a terminal in the sentential form with a
symbol on the input string

I e.g. der N VP → N VP, ’der’ matched in the input
string

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Operations

I For Bottom-Up-Parsing, we got to know SHIFT and
REDUCE

I The corresponding operations for Top-Down-Parsing are
called PREDICT and SCAN

I PREDICT replaces a non-terminal in the sentential form
with the right hand side of a corresponding rule:

I e.g. der Mond VP → der Mond V PP for a rule VP →
V PP

I SCAN matches a terminal in the sentential form with a
symbol on the input string

I e.g. der N VP → N VP, ’der’ matched in the input
string

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Operations

I For Bottom-Up-Parsing, we got to know SHIFT and
REDUCE

I The corresponding operations for Top-Down-Parsing are
called PREDICT and SCAN

I PREDICT replaces a non-terminal in the sentential form
with the right hand side of a corresponding rule:

I e.g. der Mond VP → der Mond V PP for a rule VP →
V PP

I SCAN matches a terminal in the sentential form with a
symbol on the input string

I e.g. der N VP → N VP, ’der’ matched in the input
string

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Operations

I For Bottom-Up-Parsing, we got to know SHIFT and
REDUCE

I The corresponding operations for Top-Down-Parsing are
called PREDICT and SCAN

I PREDICT replaces a non-terminal in the sentential form
with the right hand side of a corresponding rule:

I e.g. der Mond VP → der Mond V PP for a rule VP →
V PP

I SCAN matches a terminal in the sentential form with a
symbol on the input string

I e.g. der N VP → N VP, ’der’ matched in the input
string

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Operations

I For Bottom-Up-Parsing, we got to know SHIFT and
REDUCE

I The corresponding operations for Top-Down-Parsing are
called PREDICT and SCAN

I PREDICT replaces a non-terminal in the sentential form
with the right hand side of a corresponding rule:

I e.g. der Mond VP → der Mond V PP for a rule VP →
V PP

I SCAN matches a terminal in the sentential form with a
symbol on the input string

I e.g. der N VP → N VP, ’der’ matched in the input
string

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Parsing Schema - Basics

I Parsing Schemata are a formal way of describing parsing
methods

I they are independent of the actual implementation

I Every recognized subtree (or tree hypothesis) is stored
as an item

I Items look like this: [•β, j]

I Meaning: β parts of the tree to be ’filled’, j current
position in input string

I We start with [•S , 0] because the whole tree has to be
built and we have not yet scanned anything from the
input string

I Our goal item will be [•, n] meaning that the tree is
complete and the whole input of length n is scanned

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Parsing Schema - Basics

I Parsing Schemata are a formal way of describing parsing
methods

I they are independent of the actual implementation

I Every recognized subtree (or tree hypothesis) is stored
as an item

I Items look like this: [•β, j]

I Meaning: β parts of the tree to be ’filled’, j current
position in input string

I We start with [•S , 0] because the whole tree has to be
built and we have not yet scanned anything from the
input string

I Our goal item will be [•, n] meaning that the tree is
complete and the whole input of length n is scanned

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Parsing Schema - Basics

I Parsing Schemata are a formal way of describing parsing
methods

I they are independent of the actual implementation

I Every recognized subtree (or tree hypothesis) is stored
as an item

I Items look like this: [•β, j]

I Meaning: β parts of the tree to be ’filled’, j current
position in input string

I We start with [•S , 0] because the whole tree has to be
built and we have not yet scanned anything from the
input string

I Our goal item will be [•, n] meaning that the tree is
complete and the whole input of length n is scanned

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Parsing Schema - Basics

I Parsing Schemata are a formal way of describing parsing
methods

I they are independent of the actual implementation

I Every recognized subtree (or tree hypothesis) is stored
as an item

I Items look like this: [•β, j]

I Meaning: β parts of the tree to be ’filled’, j current
position in input string

I We start with [•S , 0] because the whole tree has to be
built and we have not yet scanned anything from the
input string

I Our goal item will be [•, n] meaning that the tree is
complete and the whole input of length n is scanned

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Parsing Schema - Basics

I Parsing Schemata are a formal way of describing parsing
methods

I they are independent of the actual implementation

I Every recognized subtree (or tree hypothesis) is stored
as an item

I Items look like this: [•β, j]

I Meaning: β parts of the tree to be ’filled’, j current
position in input string

I We start with [•S , 0] because the whole tree has to be
built and we have not yet scanned anything from the
input string

I Our goal item will be [•, n] meaning that the tree is
complete and the whole input of length n is scanned

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Parsing Schema - Basics

I Parsing Schemata are a formal way of describing parsing
methods

I they are independent of the actual implementation

I Every recognized subtree (or tree hypothesis) is stored
as an item

I Items look like this: [•β, j]

I Meaning: β parts of the tree to be ’filled’, j current
position in input string

I We start with [•S , 0] because the whole tree has to be
built and we have not yet scanned anything from the
input string

I Our goal item will be [•, n] meaning that the tree is
complete and the whole input of length n is scanned

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Parsing Schema - Basics

I Parsing Schemata are a formal way of describing parsing
methods

I they are independent of the actual implementation

I Every recognized subtree (or tree hypothesis) is stored
as an item

I Items look like this: [•β, j]

I Meaning: β parts of the tree to be ’filled’, j current
position in input string

I We start with [•S , 0] because the whole tree has to be
built and we have not yet scanned anything from the
input string

I Our goal item will be [•, n] meaning that the tree is
complete and the whole input of length n is scanned

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Parsing Schema - Inference Rules

I How do we formalize the scanning step?

[•wj+1β, j]

[•β, j + 1]
(1)

I How do we formalize the prediction step?

[•Bβ, j]

[•γβ, j]
B → γ (2)

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Parsing Schema - Inference Rules

I How do we formalize the scanning step?

[•wj+1β, j]

[•β, j + 1]
(1)

I How do we formalize the prediction step?

[•Bβ, j]

[•γβ, j]
B → γ (2)

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Parsing Schema - Inference Rules

I How do we formalize the scanning step?

[•wj+1β, j]

[•β, j + 1]
(1)

I How do we formalize the prediction step?

[•Bβ, j]

[•γβ, j]
B → γ (2)

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

1 [•S , 0] INITIALIZE

2 [•NP VP, 0] PREDICT from 1
3 [•D N VP, 0] PREDICT from 2
4 [•der N VP, 0] PREDICT from 3
5 [•die N VP, 0] PREDICT from 3
6 [•N VP, 1] SCAN from 4
7 [•Mond VP, 1] PREDICT from 6
8 [•Wiese VP, 1] PREDICT from 6
9 [•VP, 2] SCAN from 7

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

1 [•S , 0] INITIALIZE
2 [•NP VP, 0] PREDICT from 1

3 [•D N VP, 0] PREDICT from 2
4 [•der N VP, 0] PREDICT from 3
5 [•die N VP, 0] PREDICT from 3
6 [•N VP, 1] SCAN from 4
7 [•Mond VP, 1] PREDICT from 6
8 [•Wiese VP, 1] PREDICT from 6
9 [•VP, 2] SCAN from 7

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

1 [•S , 0] INITIALIZE
2 [•NP VP, 0] PREDICT from 1
3 [•D N VP, 0] PREDICT from 2

4 [•der N VP, 0] PREDICT from 3
5 [•die N VP, 0] PREDICT from 3
6 [•N VP, 1] SCAN from 4
7 [•Mond VP, 1] PREDICT from 6
8 [•Wiese VP, 1] PREDICT from 6
9 [•VP, 2] SCAN from 7

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

1 [•S , 0] INITIALIZE
2 [•NP VP, 0] PREDICT from 1
3 [•D N VP, 0] PREDICT from 2
4 [•der N VP, 0] PREDICT from 3

5 [•die N VP, 0] PREDICT from 3
6 [•N VP, 1] SCAN from 4
7 [•Mond VP, 1] PREDICT from 6
8 [•Wiese VP, 1] PREDICT from 6
9 [•VP, 2] SCAN from 7

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

1 [•S , 0] INITIALIZE
2 [•NP VP, 0] PREDICT from 1
3 [•D N VP, 0] PREDICT from 2
4 [•der N VP, 0] PREDICT from 3
5 [•die N VP, 0] PREDICT from 3

6 [•N VP, 1] SCAN from 4
7 [•Mond VP, 1] PREDICT from 6
8 [•Wiese VP, 1] PREDICT from 6
9 [•VP, 2] SCAN from 7

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

1 [•S , 0] INITIALIZE
2 [•NP VP, 0] PREDICT from 1
3 [•D N VP, 0] PREDICT from 2
4 [•der N VP, 0] PREDICT from 3
5 [•die N VP, 0] PREDICT from 3
6 [•N VP, 1] SCAN from 4

7 [•Mond VP, 1] PREDICT from 6
8 [•Wiese VP, 1] PREDICT from 6
9 [•VP, 2] SCAN from 7

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

1 [•S , 0] INITIALIZE
2 [•NP VP, 0] PREDICT from 1
3 [•D N VP, 0] PREDICT from 2
4 [•der N VP, 0] PREDICT from 3
5 [•die N VP, 0] PREDICT from 3
6 [•N VP, 1] SCAN from 4
7 [•Mond VP, 1] PREDICT from 6

8 [•Wiese VP, 1] PREDICT from 6
9 [•VP, 2] SCAN from 7

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

1 [•S , 0] INITIALIZE
2 [•NP VP, 0] PREDICT from 1
3 [•D N VP, 0] PREDICT from 2
4 [•der N VP, 0] PREDICT from 3
5 [•die N VP, 0] PREDICT from 3
6 [•N VP, 1] SCAN from 4
7 [•Mond VP, 1] PREDICT from 6
8 [•Wiese VP, 1] PREDICT from 6

9 [•VP, 2] SCAN from 7

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

1 [•S , 0] INITIALIZE
2 [•NP VP, 0] PREDICT from 1
3 [•D N VP, 0] PREDICT from 2
4 [•der N VP, 0] PREDICT from 3
5 [•die N VP, 0] PREDICT from 3
6 [•N VP, 1] SCAN from 4
7 [•Mond VP, 1] PREDICT from 6
8 [•Wiese VP, 1] PREDICT from 6
9 [•VP, 2] SCAN from 7

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

9 [•VP, 2] SCAN from 7

10 [•VT NP, 2] PREDICT from 9
11 [•VI PP, 2] PREDICT from 9
12 [•bescheint NP, 2] PREDICT from 10
13 [•scheint PP, 2] PREDICT from 11
14 [•PP, 3] SCAN from 13
15 [•P NP, 3] PREDICT from 14
16 [•auf NP, 3] PREDICT from 15
17 [•NP, 4] SCAN from 16
18 [•D N, 4] PREDICT from 17
19 [•der N, 4] PREDICT from 18
20 [•die N, 4] PREDICT from 18
21 [•N, 5] SCAN from 20
22 [•Mond , 5] PREDICT from 21
23 [•Wiese, 5] PREDICT from 21
24 [•, 6] SCAN from 23 - GOAL

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

9 [•VP, 2] SCAN from 7
10 [•VT NP, 2] PREDICT from 9

11 [•VI PP, 2] PREDICT from 9
12 [•bescheint NP, 2] PREDICT from 10
13 [•scheint PP, 2] PREDICT from 11
14 [•PP, 3] SCAN from 13
15 [•P NP, 3] PREDICT from 14
16 [•auf NP, 3] PREDICT from 15
17 [•NP, 4] SCAN from 16
18 [•D N, 4] PREDICT from 17
19 [•der N, 4] PREDICT from 18
20 [•die N, 4] PREDICT from 18
21 [•N, 5] SCAN from 20
22 [•Mond , 5] PREDICT from 21
23 [•Wiese, 5] PREDICT from 21
24 [•, 6] SCAN from 23 - GOAL

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

9 [•VP, 2] SCAN from 7
10 [•VT NP, 2] PREDICT from 9
11 [•VI PP, 2] PREDICT from 9

12 [•bescheint NP, 2] PREDICT from 10
13 [•scheint PP, 2] PREDICT from 11
14 [•PP, 3] SCAN from 13
15 [•P NP, 3] PREDICT from 14
16 [•auf NP, 3] PREDICT from 15
17 [•NP, 4] SCAN from 16
18 [•D N, 4] PREDICT from 17
19 [•der N, 4] PREDICT from 18
20 [•die N, 4] PREDICT from 18
21 [•N, 5] SCAN from 20
22 [•Mond , 5] PREDICT from 21
23 [•Wiese, 5] PREDICT from 21
24 [•, 6] SCAN from 23 - GOAL

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

9 [•VP, 2] SCAN from 7
10 [•VT NP, 2] PREDICT from 9
11 [•VI PP, 2] PREDICT from 9
12 [•bescheint NP, 2] PREDICT from 10

13 [•scheint PP, 2] PREDICT from 11
14 [•PP, 3] SCAN from 13
15 [•P NP, 3] PREDICT from 14
16 [•auf NP, 3] PREDICT from 15
17 [•NP, 4] SCAN from 16
18 [•D N, 4] PREDICT from 17
19 [•der N, 4] PREDICT from 18
20 [•die N, 4] PREDICT from 18
21 [•N, 5] SCAN from 20
22 [•Mond , 5] PREDICT from 21
23 [•Wiese, 5] PREDICT from 21
24 [•, 6] SCAN from 23 - GOAL

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

9 [•VP, 2] SCAN from 7
10 [•VT NP, 2] PREDICT from 9
11 [•VI PP, 2] PREDICT from 9
12 [•bescheint NP, 2] PREDICT from 10
13 [•scheint PP, 2] PREDICT from 11

14 [•PP, 3] SCAN from 13
15 [•P NP, 3] PREDICT from 14
16 [•auf NP, 3] PREDICT from 15
17 [•NP, 4] SCAN from 16
18 [•D N, 4] PREDICT from 17
19 [•der N, 4] PREDICT from 18
20 [•die N, 4] PREDICT from 18
21 [•N, 5] SCAN from 20
22 [•Mond , 5] PREDICT from 21
23 [•Wiese, 5] PREDICT from 21
24 [•, 6] SCAN from 23 - GOAL

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

9 [•VP, 2] SCAN from 7
10 [•VT NP, 2] PREDICT from 9
11 [•VI PP, 2] PREDICT from 9
12 [•bescheint NP, 2] PREDICT from 10
13 [•scheint PP, 2] PREDICT from 11
14 [•PP, 3] SCAN from 13

15 [•P NP, 3] PREDICT from 14
16 [•auf NP, 3] PREDICT from 15
17 [•NP, 4] SCAN from 16
18 [•D N, 4] PREDICT from 17
19 [•der N, 4] PREDICT from 18
20 [•die N, 4] PREDICT from 18
21 [•N, 5] SCAN from 20
22 [•Mond , 5] PREDICT from 21
23 [•Wiese, 5] PREDICT from 21
24 [•, 6] SCAN from 23 - GOAL

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

9 [•VP, 2] SCAN from 7
10 [•VT NP, 2] PREDICT from 9
11 [•VI PP, 2] PREDICT from 9
12 [•bescheint NP, 2] PREDICT from 10
13 [•scheint PP, 2] PREDICT from 11
14 [•PP, 3] SCAN from 13
15 [•P NP, 3] PREDICT from 14

16 [•auf NP, 3] PREDICT from 15
17 [•NP, 4] SCAN from 16
18 [•D N, 4] PREDICT from 17
19 [•der N, 4] PREDICT from 18
20 [•die N, 4] PREDICT from 18
21 [•N, 5] SCAN from 20
22 [•Mond , 5] PREDICT from 21
23 [•Wiese, 5] PREDICT from 21
24 [•, 6] SCAN from 23 - GOAL

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

9 [•VP, 2] SCAN from 7
10 [•VT NP, 2] PREDICT from 9
11 [•VI PP, 2] PREDICT from 9
12 [•bescheint NP, 2] PREDICT from 10
13 [•scheint PP, 2] PREDICT from 11
14 [•PP, 3] SCAN from 13
15 [•P NP, 3] PREDICT from 14
16 [•auf NP, 3] PREDICT from 15

17 [•NP, 4] SCAN from 16
18 [•D N, 4] PREDICT from 17
19 [•der N, 4] PREDICT from 18
20 [•die N, 4] PREDICT from 18
21 [•N, 5] SCAN from 20
22 [•Mond , 5] PREDICT from 21
23 [•Wiese, 5] PREDICT from 21
24 [•, 6] SCAN from 23 - GOAL

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

9 [•VP, 2] SCAN from 7
10 [•VT NP, 2] PREDICT from 9
11 [•VI PP, 2] PREDICT from 9
12 [•bescheint NP, 2] PREDICT from 10
13 [•scheint PP, 2] PREDICT from 11
14 [•PP, 3] SCAN from 13
15 [•P NP, 3] PREDICT from 14
16 [•auf NP, 3] PREDICT from 15
17 [•NP, 4] SCAN from 16

18 [•D N, 4] PREDICT from 17
19 [•der N, 4] PREDICT from 18
20 [•die N, 4] PREDICT from 18
21 [•N, 5] SCAN from 20
22 [•Mond , 5] PREDICT from 21
23 [•Wiese, 5] PREDICT from 21
24 [•, 6] SCAN from 23 - GOAL

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

9 [•VP, 2] SCAN from 7
10 [•VT NP, 2] PREDICT from 9
11 [•VI PP, 2] PREDICT from 9
12 [•bescheint NP, 2] PREDICT from 10
13 [•scheint PP, 2] PREDICT from 11
14 [•PP, 3] SCAN from 13
15 [•P NP, 3] PREDICT from 14
16 [•auf NP, 3] PREDICT from 15
17 [•NP, 4] SCAN from 16
18 [•D N, 4] PREDICT from 17

19 [•der N, 4] PREDICT from 18
20 [•die N, 4] PREDICT from 18
21 [•N, 5] SCAN from 20
22 [•Mond , 5] PREDICT from 21
23 [•Wiese, 5] PREDICT from 21
24 [•, 6] SCAN from 23 - GOAL

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

9 [•VP, 2] SCAN from 7
10 [•VT NP, 2] PREDICT from 9
11 [•VI PP, 2] PREDICT from 9
12 [•bescheint NP, 2] PREDICT from 10
13 [•scheint PP, 2] PREDICT from 11
14 [•PP, 3] SCAN from 13
15 [•P NP, 3] PREDICT from 14
16 [•auf NP, 3] PREDICT from 15
17 [•NP, 4] SCAN from 16
18 [•D N, 4] PREDICT from 17
19 [•der N, 4] PREDICT from 18

20 [•die N, 4] PREDICT from 18
21 [•N, 5] SCAN from 20
22 [•Mond , 5] PREDICT from 21
23 [•Wiese, 5] PREDICT from 21
24 [•, 6] SCAN from 23 - GOAL

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

9 [•VP, 2] SCAN from 7
10 [•VT NP, 2] PREDICT from 9
11 [•VI PP, 2] PREDICT from 9
12 [•bescheint NP, 2] PREDICT from 10
13 [•scheint PP, 2] PREDICT from 11
14 [•PP, 3] SCAN from 13
15 [•P NP, 3] PREDICT from 14
16 [•auf NP, 3] PREDICT from 15
17 [•NP, 4] SCAN from 16
18 [•D N, 4] PREDICT from 17
19 [•der N, 4] PREDICT from 18
20 [•die N, 4] PREDICT from 18

21 [•N, 5] SCAN from 20
22 [•Mond , 5] PREDICT from 21
23 [•Wiese, 5] PREDICT from 21
24 [•, 6] SCAN from 23 - GOAL

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

9 [•VP, 2] SCAN from 7
10 [•VT NP, 2] PREDICT from 9
11 [•VI PP, 2] PREDICT from 9
12 [•bescheint NP, 2] PREDICT from 10
13 [•scheint PP, 2] PREDICT from 11
14 [•PP, 3] SCAN from 13
15 [•P NP, 3] PREDICT from 14
16 [•auf NP, 3] PREDICT from 15
17 [•NP, 4] SCAN from 16
18 [•D N, 4] PREDICT from 17
19 [•der N, 4] PREDICT from 18
20 [•die N, 4] PREDICT from 18
21 [•N, 5] SCAN from 20

22 [•Mond , 5] PREDICT from 21
23 [•Wiese, 5] PREDICT from 21
24 [•, 6] SCAN from 23 - GOAL

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

9 [•VP, 2] SCAN from 7
10 [•VT NP, 2] PREDICT from 9
11 [•VI PP, 2] PREDICT from 9
12 [•bescheint NP, 2] PREDICT from 10
13 [•scheint PP, 2] PREDICT from 11
14 [•PP, 3] SCAN from 13
15 [•P NP, 3] PREDICT from 14
16 [•auf NP, 3] PREDICT from 15
17 [•NP, 4] SCAN from 16
18 [•D N, 4] PREDICT from 17
19 [•der N, 4] PREDICT from 18
20 [•die N, 4] PREDICT from 18
21 [•N, 5] SCAN from 20
22 [•Mond , 5] PREDICT from 21

23 [•Wiese, 5] PREDICT from 21
24 [•, 6] SCAN from 23 - GOAL

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

9 [•VP, 2] SCAN from 7
10 [•VT NP, 2] PREDICT from 9
11 [•VI PP, 2] PREDICT from 9
12 [•bescheint NP, 2] PREDICT from 10
13 [•scheint PP, 2] PREDICT from 11
14 [•PP, 3] SCAN from 13
15 [•P NP, 3] PREDICT from 14
16 [•auf NP, 3] PREDICT from 15
17 [•NP, 4] SCAN from 16
18 [•D N, 4] PREDICT from 17
19 [•der N, 4] PREDICT from 18
20 [•die N, 4] PREDICT from 18
21 [•N, 5] SCAN from 20
22 [•Mond , 5] PREDICT from 21
23 [•Wiese, 5] PREDICT from 21

24 [•, 6] SCAN from 23 - GOAL

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Now a complete derivation - with the Schema

9 [•VP, 2] SCAN from 7
10 [•VT NP, 2] PREDICT from 9
11 [•VI PP, 2] PREDICT from 9
12 [•bescheint NP, 2] PREDICT from 10
13 [•scheint PP, 2] PREDICT from 11
14 [•PP, 3] SCAN from 13
15 [•P NP, 3] PREDICT from 14
16 [•auf NP, 3] PREDICT from 15
17 [•NP, 4] SCAN from 16
18 [•D N, 4] PREDICT from 17
19 [•der N, 4] PREDICT from 18
20 [•die N, 4] PREDICT from 18
21 [•N, 5] SCAN from 20
22 [•Mond , 5] PREDICT from 21
23 [•Wiese, 5] PREDICT from 21
24 [•, 6] SCAN from 23 - GOAL

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages

I Offers real-time processing of input

I Resembles human real-time parsing

I Relatively easy to implement using stacks

I Efficient in comparison with Unger parser

I Not less efficient than CYK

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages

I Offers real-time processing of input

I Resembles human real-time parsing

I Relatively easy to implement using stacks

I Efficient in comparison with Unger parser

I Not less efficient than CYK

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages

I Offers real-time processing of input

I Resembles human real-time parsing

I Relatively easy to implement using stacks

I Efficient in comparison with Unger parser

I Not less efficient than CYK

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages

I Offers real-time processing of input

I Resembles human real-time parsing

I Relatively easy to implement using stacks

I Efficient in comparison with Unger parser

I Not less efficient than CYK

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages

I Offers real-time processing of input

I Resembles human real-time parsing

I Relatively easy to implement using stacks

I Efficient in comparison with Unger parser

I Not less efficient than CYK

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Disadvantages

I Left Recursion really is a problem (cf.
implementation)

I might check very unlikely predictions first

I no lookahead in primitive version

I Most Parsers are Non-deterministic

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Disadvantages

I Left Recursion really is a problem (cf.
implementation)

I might check very unlikely predictions first

I no lookahead in primitive version

I Most Parsers are Non-deterministic

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Disadvantages

I Left Recursion really is a problem (cf.
implementation)

I might check very unlikely predictions first

I no lookahead in primitive version

I Most Parsers are Non-deterministic

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Disadvantages

I Left Recursion really is a problem (cf.
implementation)

I might check very unlikely predictions first

I no lookahead in primitive version

I Most Parsers are Non-deterministic

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Implementations

I Push Down Automata

I PDA, GNF and top-down are directly related
I Their approach to the problem is very similar

I Breadth first
I Allow fast parsing (even on-line)
I Use lots of memory

I Depth first
I Also called backtracking
I Are simple to write
I Have certain problems with prefixes

I Recursive descent is a technique to implement a Depth
first parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Implementations

I Push Down Automata
I PDA, GNF and top-down are directly related

I Their approach to the problem is very similar

I Breadth first
I Allow fast parsing (even on-line)
I Use lots of memory

I Depth first
I Also called backtracking
I Are simple to write
I Have certain problems with prefixes

I Recursive descent is a technique to implement a Depth
first parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Implementations

I Push Down Automata
I PDA, GNF and top-down are directly related
I Their approach to the problem is very similar

I Breadth first
I Allow fast parsing (even on-line)
I Use lots of memory

I Depth first
I Also called backtracking
I Are simple to write
I Have certain problems with prefixes

I Recursive descent is a technique to implement a Depth
first parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Implementations

I Push Down Automata
I PDA, GNF and top-down are directly related
I Their approach to the problem is very similar

I Breadth first

I Allow fast parsing (even on-line)
I Use lots of memory

I Depth first
I Also called backtracking
I Are simple to write
I Have certain problems with prefixes

I Recursive descent is a technique to implement a Depth
first parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Implementations

I Push Down Automata
I PDA, GNF and top-down are directly related
I Their approach to the problem is very similar

I Breadth first
I Allow fast parsing (even on-line)

I Use lots of memory

I Depth first
I Also called backtracking
I Are simple to write
I Have certain problems with prefixes

I Recursive descent is a technique to implement a Depth
first parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Implementations

I Push Down Automata
I PDA, GNF and top-down are directly related
I Their approach to the problem is very similar

I Breadth first
I Allow fast parsing (even on-line)
I Use lots of memory

I Depth first
I Also called backtracking
I Are simple to write
I Have certain problems with prefixes

I Recursive descent is a technique to implement a Depth
first parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Implementations

I Push Down Automata
I PDA, GNF and top-down are directly related
I Their approach to the problem is very similar

I Breadth first
I Allow fast parsing (even on-line)
I Use lots of memory

I Depth first

I Also called backtracking
I Are simple to write
I Have certain problems with prefixes

I Recursive descent is a technique to implement a Depth
first parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Implementations

I Push Down Automata
I PDA, GNF and top-down are directly related
I Their approach to the problem is very similar

I Breadth first
I Allow fast parsing (even on-line)
I Use lots of memory

I Depth first
I Also called backtracking

I Are simple to write
I Have certain problems with prefixes

I Recursive descent is a technique to implement a Depth
first parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Implementations

I Push Down Automata
I PDA, GNF and top-down are directly related
I Their approach to the problem is very similar

I Breadth first
I Allow fast parsing (even on-line)
I Use lots of memory

I Depth first
I Also called backtracking
I Are simple to write

I Have certain problems with prefixes

I Recursive descent is a technique to implement a Depth
first parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Implementations

I Push Down Automata
I PDA, GNF and top-down are directly related
I Their approach to the problem is very similar

I Breadth first
I Allow fast parsing (even on-line)
I Use lots of memory

I Depth first
I Also called backtracking
I Are simple to write
I Have certain problems with prefixes

I Recursive descent is a technique to implement a Depth
first parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Implementations

I Push Down Automata
I PDA, GNF and top-down are directly related
I Their approach to the problem is very similar

I Breadth first
I Allow fast parsing (even on-line)
I Use lots of memory

I Depth first
I Also called backtracking
I Are simple to write
I Have certain problems with prefixes

I Recursive descent is a technique to implement a Depth
first parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

PDA as an implementation model

I transitions of a pushdown automaton strongly resemble
operations of a top-down parser:

I δ(q0, ε, A) = q0, ε, BC ←→ PREDICT

I δ(q0, a, a) = q0, ε, ε←→ SCAN

I → in implementations, every tree hypothesis contains a
stack and an input position

I compare parsing schema item: [•β, j]

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

PDA as an implementation model

I transitions of a pushdown automaton strongly resemble
operations of a top-down parser:

I δ(q0, ε, A) = q0, ε, BC ←→ PREDICT

I δ(q0, a, a) = q0, ε, ε←→ SCAN

I → in implementations, every tree hypothesis contains a
stack and an input position

I compare parsing schema item: [•β, j]

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

PDA as an implementation model

I transitions of a pushdown automaton strongly resemble
operations of a top-down parser:

I δ(q0, ε, A) = q0, ε, BC ←→ PREDICT

I δ(q0, a, a) = q0, ε, ε←→ SCAN

I → in implementations, every tree hypothesis contains a
stack and an input position

I compare parsing schema item: [•β, j]

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

PDA as an implementation model

I transitions of a pushdown automaton strongly resemble
operations of a top-down parser:

I δ(q0, ε, A) = q0, ε, BC ←→ PREDICT

I δ(q0, a, a) = q0, ε, ε←→ SCAN

I → in implementations, every tree hypothesis contains a
stack and an input position

I compare parsing schema item: [•β, j]

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

PDA as an implementation model

I transitions of a pushdown automaton strongly resemble
operations of a top-down parser:

I δ(q0, ε, A) = q0, ε, BC ←→ PREDICT

I δ(q0, a, a) = q0, ε, ε←→ SCAN

I → in implementations, every tree hypothesis contains a
stack and an input position

I compare parsing schema item: [•β, j]

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Greibach Normal Form

I allows only productions of the following form:

I A −→ aB1...Bk with k ≥ 0

I invented by American mathematician Sheila A. Greibach

I incidentally, she was also first to propose
top-down-parsing

I What’s the relation? Why is GNF ideal for TD-parsing?

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Greibach Normal Form

I allows only productions of the following form:

I A −→ aB1...Bk with k ≥ 0

I invented by American mathematician Sheila A. Greibach

I incidentally, she was also first to propose
top-down-parsing

I What’s the relation? Why is GNF ideal for TD-parsing?

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Greibach Normal Form

I allows only productions of the following form:

I A −→ aB1...Bk with k ≥ 0

I invented by American mathematician Sheila A. Greibach

I incidentally, she was also first to propose
top-down-parsing

I What’s the relation? Why is GNF ideal for TD-parsing?

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Greibach Normal Form

I allows only productions of the following form:

I A −→ aB1...Bk with k ≥ 0

I invented by American mathematician Sheila A. Greibach

I incidentally, she was also first to propose
top-down-parsing

I What’s the relation? Why is GNF ideal for TD-parsing?

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Greibach Normal Form

I allows only productions of the following form:

I A −→ aB1...Bk with k ≥ 0

I invented by American mathematician Sheila A. Greibach

I incidentally, she was also first to propose
top-down-parsing

I What’s the relation? Why is GNF ideal for TD-parsing?

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

GNF and Top-Down-Parsing

I A −→ aB1...Bk with k ≥ 0

I a grammar in GNF form reduces the amount of
prediction steps needed

I each prediction will result in a possible scanning step

I a wrong prediction can be discarded already with the
next scanning step

I intelligent implementations would only make predictions
that start with the next terminal in the input

→ GNF is for TD what CNF is for BU

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

GNF and Top-Down-Parsing

I A −→ aB1...Bk with k ≥ 0

I a grammar in GNF form reduces the amount of
prediction steps needed

I each prediction will result in a possible scanning step

I a wrong prediction can be discarded already with the
next scanning step

I intelligent implementations would only make predictions
that start with the next terminal in the input

→ GNF is for TD what CNF is for BU

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

GNF and Top-Down-Parsing

I A −→ aB1...Bk with k ≥ 0

I a grammar in GNF form reduces the amount of
prediction steps needed

I each prediction will result in a possible scanning step

I a wrong prediction can be discarded already with the
next scanning step

I intelligent implementations would only make predictions
that start with the next terminal in the input

→ GNF is for TD what CNF is for BU

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

GNF and Top-Down-Parsing

I A −→ aB1...Bk with k ≥ 0

I a grammar in GNF form reduces the amount of
prediction steps needed

I each prediction will result in a possible scanning step

I a wrong prediction can be discarded already with the
next scanning step

I intelligent implementations would only make predictions
that start with the next terminal in the input

→ GNF is for TD what CNF is for BU

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

GNF and Top-Down-Parsing

I A −→ aB1...Bk with k ≥ 0

I a grammar in GNF form reduces the amount of
prediction steps needed

I each prediction will result in a possible scanning step

I a wrong prediction can be discarded already with the
next scanning step

I intelligent implementations would only make predictions
that start with the next terminal in the input

→ GNF is for TD what CNF is for BU

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

GNF and Top-Down-Parsing

I A −→ aB1...Bk with k ≥ 0

I a grammar in GNF form reduces the amount of
prediction steps needed

I each prediction will result in a possible scanning step

I a wrong prediction can be discarded already with the
next scanning step

I intelligent implementations would only make predictions
that start with the next terminal in the input

→ GNF is for TD what CNF is for BU

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Breadth-first

I First described by Greibach (1964)

I Maintains a list of possible derivations . . .

I . . . which is kept in memory.
I Increases size of the list with every prediction

operation
I For every non-terminal all possible derivations are

added.
I A ll parser predicts until every left-hand symbol is a

terminal.

I Decreases size of the list with every matching operation
I When a terminal does not match the input, the tree

(prediction stack) is discarded.

I When do we stop parsing and accept?

I We introduce the end-of-input marker #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Breadth-first

I First described by Greibach (1964)

I Maintains a list of possible derivations . . .

I . . . which is kept in memory.
I Increases size of the list with every prediction

operation
I For every non-terminal all possible derivations are

added.
I A ll parser predicts until every left-hand symbol is a

terminal.

I Decreases size of the list with every matching operation
I When a terminal does not match the input, the tree

(prediction stack) is discarded.

I When do we stop parsing and accept?

I We introduce the end-of-input marker #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Breadth-first

I First described by Greibach (1964)

I Maintains a list of possible derivations . . .

I . . . which is kept in memory.

I Increases size of the list with every prediction
operation

I For every non-terminal all possible derivations are
added.

I A ll parser predicts until every left-hand symbol is a
terminal.

I Decreases size of the list with every matching operation
I When a terminal does not match the input, the tree

(prediction stack) is discarded.

I When do we stop parsing and accept?

I We introduce the end-of-input marker #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Breadth-first

I First described by Greibach (1964)

I Maintains a list of possible derivations . . .

I . . . which is kept in memory.
I Increases size of the list with every prediction

operation

I For every non-terminal all possible derivations are
added.

I A ll parser predicts until every left-hand symbol is a
terminal.

I Decreases size of the list with every matching operation
I When a terminal does not match the input, the tree

(prediction stack) is discarded.

I When do we stop parsing and accept?

I We introduce the end-of-input marker #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Breadth-first

I First described by Greibach (1964)

I Maintains a list of possible derivations . . .

I . . . which is kept in memory.
I Increases size of the list with every prediction

operation
I For every non-terminal all possible derivations are

added.

I A ll parser predicts until every left-hand symbol is a
terminal.

I Decreases size of the list with every matching operation
I When a terminal does not match the input, the tree

(prediction stack) is discarded.

I When do we stop parsing and accept?

I We introduce the end-of-input marker #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Breadth-first

I First described by Greibach (1964)

I Maintains a list of possible derivations . . .

I . . . which is kept in memory.
I Increases size of the list with every prediction

operation
I For every non-terminal all possible derivations are

added.
I A ll parser predicts until every left-hand symbol is a

terminal.

I Decreases size of the list with every matching operation
I When a terminal does not match the input, the tree

(prediction stack) is discarded.

I When do we stop parsing and accept?

I We introduce the end-of-input marker #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Breadth-first

I First described by Greibach (1964)

I Maintains a list of possible derivations . . .

I . . . which is kept in memory.
I Increases size of the list with every prediction

operation
I For every non-terminal all possible derivations are

added.
I A ll parser predicts until every left-hand symbol is a

terminal.

I Decreases size of the list with every matching operation

I When a terminal does not match the input, the tree
(prediction stack) is discarded.

I When do we stop parsing and accept?

I We introduce the end-of-input marker #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Breadth-first

I First described by Greibach (1964)

I Maintains a list of possible derivations . . .

I . . . which is kept in memory.
I Increases size of the list with every prediction

operation
I For every non-terminal all possible derivations are

added.
I A ll parser predicts until every left-hand symbol is a

terminal.

I Decreases size of the list with every matching operation
I When a terminal does not match the input, the tree

(prediction stack) is discarded.

I When do we stop parsing and accept?

I We introduce the end-of-input marker #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Breadth-first

I First described by Greibach (1964)

I Maintains a list of possible derivations . . .

I . . . which is kept in memory.
I Increases size of the list with every prediction

operation
I For every non-terminal all possible derivations are

added.
I A ll parser predicts until every left-hand symbol is a

terminal.

I Decreases size of the list with every matching operation
I When a terminal does not match the input, the tree

(prediction stack) is discarded.

I When do we stop parsing and accept?

I We introduce the end-of-input marker #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Breadth-first

I First described by Greibach (1964)

I Maintains a list of possible derivations . . .

I . . . which is kept in memory.
I Increases size of the list with every prediction

operation
I For every non-terminal all possible derivations are

added.
I A ll parser predicts until every left-hand symbol is a

terminal.

I Decreases size of the list with every matching operation
I When a terminal does not match the input, the tree

(prediction stack) is discarded.

I When do we stop parsing and accept?

I We introduce the end-of-input marker #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Breadth-first

I First described by Greibach (1964)

I Maintains a list of possible derivations . . .

I . . . which is kept in memory.
I Increases size of the list with every prediction

operation
I For every non-terminal all possible derivations are

added.
I A ll parser predicts until every left-hand symbol is a

terminal.

I Decreases size of the list with every matching operation
I When a terminal does not match the input, the tree

(prediction stack) is discarded.

I When do we stop parsing and accept?

I We introduce the end-of-input marker #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages and Shortcomings
Shortcomings

I Can be very efficient on time resources

I Can parse in real time

I Always finds the best prediction (if written adequately)

I Memory usage increases exponentially
I This can be reduced by Dynamic Programming

techniques

I Suffers from Left Recursion

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages and Shortcomings
Shortcomings

I Can be very efficient on time resources

I Can parse in real time

I Always finds the best prediction (if written adequately)

I Memory usage increases exponentially
I This can be reduced by Dynamic Programming

techniques

I Suffers from Left Recursion

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages and Shortcomings
Shortcomings

I Can be very efficient on time resources

I Can parse in real time

I Always finds the best prediction (if written adequately)

I Memory usage increases exponentially
I This can be reduced by Dynamic Programming

techniques

I Suffers from Left Recursion

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages and Shortcomings
Shortcomings

I Can be very efficient on time resources

I Can parse in real time

I Always finds the best prediction (if written adequately)

I Memory usage increases exponentially

I This can be reduced by Dynamic Programming
techniques

I Suffers from Left Recursion

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages and Shortcomings
Shortcomings

I Can be very efficient on time resources

I Can parse in real time

I Always finds the best prediction (if written adequately)

I Memory usage increases exponentially
I This can be reduced by Dynamic Programming

techniques

I Suffers from Left Recursion

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages and Shortcomings
Shortcomings

I Can be very efficient on time resources

I Can parse in real time

I Always finds the best prediction (if written adequately)

I Memory usage increases exponentially
I This can be reduced by Dynamic Programming

techniques

I Suffers from Left Recursion

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Depth-first/Backtracking

I Predicts until it hits a terminal

I If the terminal . . .

matches: Success, go to the next higher branch and continue
!matches: pop everything from the stack to the next higher branch

I Accepts when it hits the end-of-input symbol #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Depth-first/Backtracking

I Predicts until it hits a terminal
I If the terminal . . .

matches: Success, go to the next higher branch and continue
!matches: pop everything from the stack to the next higher branch

I Accepts when it hits the end-of-input symbol #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Depth-first/Backtracking

I Predicts until it hits a terminal
I If the terminal . . .

matches: Success, go to the next higher branch and continue

!matches: pop everything from the stack to the next higher branch

I Accepts when it hits the end-of-input symbol #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Depth-first/Backtracking

I Predicts until it hits a terminal
I If the terminal . . .

matches: Success, go to the next higher branch and continue
!matches: pop everything from the stack to the next higher branch

I Accepts when it hits the end-of-input symbol #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Depth-first/Backtracking

I Predicts until it hits a terminal
I If the terminal . . .

matches: Success, go to the next higher branch and continue
!matches: pop everything from the stack to the next higher branch

I Accepts when it hits the end-of-input symbol #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Depth-first/Backtracking

I Predicts until it hits a terminal
I If the terminal . . .

matches: Success, go to the next higher branch and continue
!matches: pop everything from the stack to the next higher branch

I Accepts when it hits the end-of-input symbol #

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages and Shortcomings

I Does not use that much memory

I Is easier to handle

I Performance can be increased by using statistical
parsing methods

I Generally disallows for on-line parsing

I Is rather slow (can take up to exponential time)

I The “accept first match” policy can lead to
undergeneration

I Also suffers from left recursion

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages and Shortcomings

I Does not use that much memory

I Is easier to handle

I Performance can be increased by using statistical
parsing methods

I Generally disallows for on-line parsing

I Is rather slow (can take up to exponential time)

I The “accept first match” policy can lead to
undergeneration

I Also suffers from left recursion

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages and Shortcomings

I Does not use that much memory

I Is easier to handle

I Performance can be increased by using statistical
parsing methods

I Generally disallows for on-line parsing

I Is rather slow (can take up to exponential time)

I The “accept first match” policy can lead to
undergeneration

I Also suffers from left recursion

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages and Shortcomings

I Does not use that much memory

I Is easier to handle

I Performance can be increased by using statistical
parsing methods

I Generally disallows for on-line parsing

I Is rather slow (can take up to exponential time)

I The “accept first match” policy can lead to
undergeneration

I Also suffers from left recursion

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages and Shortcomings

I Does not use that much memory

I Is easier to handle

I Performance can be increased by using statistical
parsing methods

I Generally disallows for on-line parsing

I Is rather slow (can take up to exponential time)

I The “accept first match” policy can lead to
undergeneration

I Also suffers from left recursion

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages and Shortcomings

I Does not use that much memory

I Is easier to handle

I Performance can be increased by using statistical
parsing methods

I Generally disallows for on-line parsing

I Is rather slow (can take up to exponential time)

I The “accept first match” policy can lead to
undergeneration

I Also suffers from left recursion

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages and Shortcomings

I Does not use that much memory

I Is easier to handle

I Performance can be increased by using statistical
parsing methods

I Generally disallows for on-line parsing

I Is rather slow (can take up to exponential time)

I The “accept first match” policy can lead to
undergeneration

I Also suffers from left recursion

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Advantages and Shortcomings

I Does not use that much memory

I Is easier to handle

I Performance can be increased by using statistical
parsing methods

I Generally disallows for on-line parsing

I Is rather slow (can take up to exponential time)

I The “accept first match” policy can lead to
undergeneration

I Also suffers from left recursion

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Left recursion

I An example grammar:
S → DP VP

DP → D NP
NP → N | AP NP | NP PP
VP → V DP | V PP | VP PP
PP → P DP
AP → A
D → der | die | das | den | dem
N → Fernglas | Frau | Mann | Mond | Wiese
V → scheint | sieht
A → kleine | kleinen | grosse | grossen
P → auf | mit

I An example derivation for the sentence
“Der Mann sieht die Frau mit dem Fernglas” . . .

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Another derivation
that is quite problematic

I Just following the grammar . . .

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Another derivation
that is quite problematic

I Just following the grammar . . .
S

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Another derivation
that is quite problematic

I Just following the grammar . . .
S

DP VP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Another derivation
that is quite problematic

I Just following the grammar . . .
S

DP

D NP

VP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Another derivation
that is quite problematic

I Just following the grammar . . .
S

DP

D

der

NP

VP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Another derivation
that is quite problematic

I Just following the grammar . . .
S

DP

D

der

NP

N

VP

S

DP

D

der

NP

AP NP

VP

S

DP

D

der

NP

NP PP

VP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Another derivation
that is quite problematic

I Just following the grammar . . .
S

DP

D

der

NP

N

VP

S

DP

D

der

NP

AP NP

VP

S

DP

D

der

NP

NP PP

VP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Another derivation
that is quite problematic

I Just following the grammar . . .
S

DP

D

der

NP

NP PP

VP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Another derivation
that is quite problematic

I Just following the grammar . . .
S

DP

D

der

NP

NP

NP PP

PP

VP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Another derivation
that is quite problematic

I Just following the grammar . . .
S

DP

D

der

NP

NP

NP

NP PP

PP

PP

VP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Another derivation
that is quite problematic

I Just following the grammar . . .
S

DP

D

der

NP

NP

NP

NP

NP PP

PP

PP

PP

VP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Left Recursion ctd.

I . . . we will get a Left Recursion

I Left Recursions can generate an infinite deal of
garbage unless stopped from doing so

I There are two types of left-recursion:
I Direct left-recursion

Example: NP → NP PP

I Indirect left-recursion

Example: S → NP VP
VP → V’ AP
V’ → VP PP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Left Recursion ctd.

I . . . we will get a Left Recursion

I Left Recursions can generate an infinite deal of
garbage unless stopped from doing so

I There are two types of left-recursion:
I Direct left-recursion

Example: NP → NP PP

I Indirect left-recursion

Example: S → NP VP
VP → V’ AP
V’ → VP PP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Left Recursion ctd.

I . . . we will get a Left Recursion

I Left Recursions can generate an infinite deal of
garbage unless stopped from doing so

I There are two types of left-recursion:

I Direct left-recursion

Example: NP → NP PP

I Indirect left-recursion

Example: S → NP VP
VP → V’ AP
V’ → VP PP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Left Recursion ctd.

I . . . we will get a Left Recursion

I Left Recursions can generate an infinite deal of
garbage unless stopped from doing so

I There are two types of left-recursion:
I Direct left-recursion

Example: NP → NP PP

I Indirect left-recursion

Example: S → NP VP
VP → V’ AP
V’ → VP PP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Left Recursion ctd.

I . . . we will get a Left Recursion

I Left Recursions can generate an infinite deal of
garbage unless stopped from doing so

I There are two types of left-recursion:
I Direct left-recursion

Example: NP → NP PP

I Indirect left-recursion

Example: S → NP VP
VP → V’ AP
V’ → VP PP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Left Recursion ctd.

I . . . we will get a Left Recursion

I Left Recursions can generate an infinite deal of
garbage unless stopped from doing so

I There are two types of left-recursion:
I Direct left-recursion

Example: NP → NP PP

I Indirect left-recursion

Example: S → NP VP
VP → V’ AP
V’ → VP PP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Left Recursion ctd.

I . . . we will get a Left Recursion

I Left Recursions can generate an infinite deal of
garbage unless stopped from doing so

I There are two types of left-recursion:
I Direct left-recursion

Example: NP → NP PP

I Indirect left-recursion

Example: S → NP VP
VP → V’ AP
V’ → VP PP

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Workarounds

I Keep track of the count of processed rules

I → does not allow on-line parsing

I Rewrite the grammar
I No ε- and unit-rules
I Split the direct left-recursive rules up:

I We start with
NP → NP PP | N

I And transform into:
N′ → N

N′′ → PP
N′′′ → N′′ N′′′ | N′′

NP → N′ N′′′ | N′

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Workarounds

I Keep track of the count of processed rules
I → does not allow on-line parsing

I Rewrite the grammar
I No ε- and unit-rules
I Split the direct left-recursive rules up:

I We start with
NP → NP PP | N

I And transform into:
N′ → N

N′′ → PP
N′′′ → N′′ N′′′ | N′′

NP → N′ N′′′ | N′

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Workarounds

I Keep track of the count of processed rules
I → does not allow on-line parsing

I Rewrite the grammar
I No ε- and unit-rules

I Split the direct left-recursive rules up:
I We start with

NP → NP PP | N
I And transform into:

N′ → N
N′′ → PP
N′′′ → N′′ N′′′ | N′′

NP → N′ N′′′ | N′

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Workarounds

I Keep track of the count of processed rules
I → does not allow on-line parsing

I Rewrite the grammar
I No ε- and unit-rules
I Split the direct left-recursive rules up:

I We start with
NP → NP PP | N

I And transform into:
N′ → N

N′′ → PP
N′′′ → N′′ N′′′ | N′′

NP → N′ N′′′ | N′

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Our example revised

I Let us have a look at the previous grammar

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Our example revised

I Let us have a look at the previous grammar

S → DP VP
DP → D NP
NP → N | AP NP | NP PP
VP → V DP | V PP | VP PP
PP → P DP
AP → A
D → der | die | das | den | dem
N → Fernglas | Frau | Mann | Mond | Wiese
V → scheint | sieht
A → kleine | kleinen | grosse | grossen
P → auf | mit

I This will now be taken care of . . .

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Our example revised

I Let us have a look at the previous grammar

S → DP VP
DP → D NP
NP → N | AP NP | NP PP
VP → V DP | V PP | VP PP
PP → P DP
AP → A
D → der | die | das | den | dem
N → Fernglas | Frau | Mann | Mond | Wiese
V → scheint | sieht
A → kleine | kleinen | grosse | grossen
P → auf | mit

I This will now be taken care of . . .

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Our example revised

I Let us have a look at the previous grammar

S → DP VP
DP → D NP
NP → N | AP NP | NP PP
VP → V DP | V PP | VP PP
PP → P DP
AP → A
D → der | die | das | den | dem
N → Fernglas | Frau | Mann | Mond | Wiese
V → scheint | sieht
A → kleine | kleinen | grosse | grossen
P → auf | mit

I This will now be taken care of . . .

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Our example revised

I Let us have a look at the previous grammar

I Here are the revised rules:

I VP → V DP | V PP | VP PP
Vh → V DP | V PP

Vt → PP
Vts → Vt Vts | Vt
VP → Vh Vts | Vh

I NP → N | AP NP | NP PP
Nh → AP NP | N

Nt → PP
Nts → Nt Nts | Nt
NP → Nh Nts | Nh

I This is about three times faster than the first
workaround.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Our example revised

I Let us have a look at the previous grammar

I Here are the revised rules:
I VP → V DP | V PP | VP PP

Vh → V DP | V PP
Vt → PP
Vts → Vt Vts | Vt
VP → Vh Vts | Vh

I NP → N | AP NP | NP PP
Nh → AP NP | N

Nt → PP
Nts → Nt Nts | Nt
NP → Nh Nts | Nh

I This is about three times faster than the first
workaround.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Our example revised

I Let us have a look at the previous grammar

I Here are the revised rules:
I VP → V DP | V PP | VP PP

Vh → V DP | V PP
Vt → PP
Vts → Vt Vts | Vt
VP → Vh Vts | Vh

I NP → N | AP NP | NP PP
Nh → AP NP | N

Nt → PP
Nts → Nt Nts | Nt
NP → Nh Nts | Nh

I This is about three times faster than the first
workaround.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Our example revised

I Let us have a look at the previous grammar

I Here are the revised rules:
I VP → V DP | V PP | VP PP

Vh → V DP | V PP
Vt → PP
Vts → Vt Vts | Vt
VP → Vh Vts | Vh

I NP → N | AP NP | NP PP
Nh → AP NP | N

Nt → PP
Nts → Nt Nts | Nt
NP → Nh Nts | Nh

I This is about three times faster than the first
workaround.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent

I Grammars can be viewed as describing a program

I How to implement a grammar in our favorite
programming language?
One could . . .

Automata: . . . try to emulate an automaton that describes the
language.

I This is not very flexible.
I May be inefficient when dealing with more complicated

tasks.

Automation: . . . use a parser-generator (also: a compiler-compiler)
I May not cover our favorite programming language (or

its latest version)
I Could be less efficient

Non-auto*: . . . write a parser for every grammar at hand.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent

I Grammars can be viewed as describing a program

I How to implement a grammar in our favorite
programming language?
One could . . .

Automata: . . . try to emulate an automaton that describes the
language.

I This is not very flexible.
I May be inefficient when dealing with more complicated

tasks.

Automation: . . . use a parser-generator (also: a compiler-compiler)
I May not cover our favorite programming language (or

its latest version)
I Could be less efficient

Non-auto*: . . . write a parser for every grammar at hand.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent

I Grammars can be viewed as describing a program

I How to implement a grammar in our favorite
programming language?
One could . . .

Automata: . . . try to emulate an automaton that describes the
language.

I This is not very flexible.
I May be inefficient when dealing with more complicated

tasks.

Automation: . . . use a parser-generator (also: a compiler-compiler)
I May not cover our favorite programming language (or

its latest version)
I Could be less efficient

Non-auto*: . . . write a parser for every grammar at hand.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent

I Grammars can be viewed as describing a program

I How to implement a grammar in our favorite
programming language?
One could . . .

Automata: . . . try to emulate an automaton that describes the
language.

I This is not very flexible.

I May be inefficient when dealing with more complicated
tasks.

Automation: . . . use a parser-generator (also: a compiler-compiler)
I May not cover our favorite programming language (or

its latest version)
I Could be less efficient

Non-auto*: . . . write a parser for every grammar at hand.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent

I Grammars can be viewed as describing a program

I How to implement a grammar in our favorite
programming language?
One could . . .

Automata: . . . try to emulate an automaton that describes the
language.

I This is not very flexible.
I May be inefficient when dealing with more complicated

tasks.

Automation: . . . use a parser-generator (also: a compiler-compiler)
I May not cover our favorite programming language (or

its latest version)
I Could be less efficient

Non-auto*: . . . write a parser for every grammar at hand.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent

I Grammars can be viewed as describing a program

I How to implement a grammar in our favorite
programming language?
One could . . .

Automata: . . . try to emulate an automaton that describes the
language.

I This is not very flexible.
I May be inefficient when dealing with more complicated

tasks.

Automation: . . . use a parser-generator (also: a compiler-compiler)

I May not cover our favorite programming language (or
its latest version)

I Could be less efficient

Non-auto*: . . . write a parser for every grammar at hand.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent

I Grammars can be viewed as describing a program

I How to implement a grammar in our favorite
programming language?
One could . . .

Automata: . . . try to emulate an automaton that describes the
language.

I This is not very flexible.
I May be inefficient when dealing with more complicated

tasks.

Automation: . . . use a parser-generator (also: a compiler-compiler)
I May not cover our favorite programming language (or

its latest version)

I Could be less efficient

Non-auto*: . . . write a parser for every grammar at hand.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent

I Grammars can be viewed as describing a program

I How to implement a grammar in our favorite
programming language?
One could . . .

Automata: . . . try to emulate an automaton that describes the
language.

I This is not very flexible.
I May be inefficient when dealing with more complicated

tasks.

Automation: . . . use a parser-generator (also: a compiler-compiler)
I May not cover our favorite programming language (or

its latest version)
I Could be less efficient

Non-auto*: . . . write a parser for every grammar at hand.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent

I Grammars can be viewed as describing a program

I How to implement a grammar in our favorite
programming language?
One could . . .

Automata: . . . try to emulate an automaton that describes the
language.

I This is not very flexible.
I May be inefficient when dealing with more complicated

tasks.

Automation: . . . use a parser-generator (also: a compiler-compiler)
I May not cover our favorite programming language (or

its latest version)
I Could be less efficient

Non-auto*: . . . write a parser for every grammar at hand.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent

I Grammars can be viewed as describing a program

I How to implement a grammar in our favorite
programming language?
One could . . .

Automata: . . . try to emulate an automaton that describes the
language.

I This is not very flexible.
I May be inefficient when dealing with more complicated

tasks.

Automation: . . . use a parser-generator (also: a compiler-compiler)
I May not cover our favorite programming language (or

its latest version)
I Could be less efficient

Non-auto*: . . . write a parser for every grammar at hand.

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent: howto

I Such parsers are implicitly deapth-first

1. Make up a function for each left-hand side

I The function body represents the right hand side
I All functions have to return true for the parse to

succeed

2. Maintain the input as a global variable with a global
pointer

3. Have the methods call each other recursively

4. The base case is when a rule hits a terminal

5. Every rule must contain it’s own pointer to
the position it points to in the input sentence

6. Maintain a stack of matched predictions to tell the
derivation

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent: howto

I Such parsers are implicitly deapth-first

1. Make up a function for each left-hand side
I The function body represents the right hand side

I All functions have to return true for the parse to
succeed

2. Maintain the input as a global variable with a global
pointer

3. Have the methods call each other recursively

4. The base case is when a rule hits a terminal

5. Every rule must contain it’s own pointer to
the position it points to in the input sentence

6. Maintain a stack of matched predictions to tell the
derivation

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent: howto

I Such parsers are implicitly deapth-first

1. Make up a function for each left-hand side
I The function body represents the right hand side
I All functions have to return true for the parse to

succeed

2. Maintain the input as a global variable with a global
pointer

3. Have the methods call each other recursively

4. The base case is when a rule hits a terminal

5. Every rule must contain it’s own pointer to
the position it points to in the input sentence

6. Maintain a stack of matched predictions to tell the
derivation

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent: howto

I Such parsers are implicitly deapth-first

1. Make up a function for each left-hand side
I The function body represents the right hand side
I All functions have to return true for the parse to

succeed

2. Maintain the input as a global variable with a global
pointer

3. Have the methods call each other recursively

4. The base case is when a rule hits a terminal

5. Every rule must contain it’s own pointer to
the position it points to in the input sentence

6. Maintain a stack of matched predictions to tell the
derivation

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent: howto

I Such parsers are implicitly deapth-first

1. Make up a function for each left-hand side
I The function body represents the right hand side
I All functions have to return true for the parse to

succeed

2. Maintain the input as a global variable with a global
pointer

3. Have the methods call each other recursively

4. The base case is when a rule hits a terminal

5. Every rule must contain it’s own pointer to
the position it points to in the input sentence

6. Maintain a stack of matched predictions to tell the
derivation

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent: howto

I Such parsers are implicitly deapth-first

1. Make up a function for each left-hand side
I The function body represents the right hand side
I All functions have to return true for the parse to

succeed

2. Maintain the input as a global variable with a global
pointer

3. Have the methods call each other recursively

4. The base case is when a rule hits a terminal

5. Every rule must contain it’s own pointer to
the position it points to in the input sentence

6. Maintain a stack of matched predictions to tell the
derivation

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent: howto

I Such parsers are implicitly deapth-first

1. Make up a function for each left-hand side
I The function body represents the right hand side
I All functions have to return true for the parse to

succeed

2. Maintain the input as a global variable with a global
pointer

3. Have the methods call each other recursively

4. The base case is when a rule hits a terminal

5. Every rule must contain it’s own pointer to
the position it points to in the input sentence

6. Maintain a stack of matched predictions to tell the
derivation

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent: howto

I Such parsers are implicitly deapth-first

1. Make up a function for each left-hand side
I The function body represents the right hand side
I All functions have to return true for the parse to

succeed

2. Maintain the input as a global variable with a global
pointer

3. Have the methods call each other recursively

4. The base case is when a rule hits a terminal

5. Every rule must contain it’s own pointer to
the position it points to in the input sentence

6. Maintain a stack of matched predictions to tell the
derivation

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Recursive Descent: howto

I Such parsers are implicitly deapth-first

1. Make up a function for each left-hand side
I The function body represents the right hand side
I All functions have to return true for the parse to

succeed

2. Maintain the input as a global variable with a global
pointer

3. Have the methods call each other recursively

4. The base case is when a rule hits a terminal

5. Every rule must contain it’s own pointer to
the position it points to in the input sentence

6. Maintain a stack of matched predictions to tell the
derivation

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Certain Caveats

I Beware of left-recursion

I Danger of undergeneration
I Works only for prefix-free grammars

if
A →∗ x and A →∗ xy
this implies y = ε

I So one has to find a workaround for that either
I Be a little depth first

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Certain Caveats

I Beware of left-recursion
I Danger of undergeneration

I Works only for prefix-free grammars
if
A →∗ x and A →∗ xy
this implies y = ε

I So one has to find a workaround for that either
I Be a little depth first

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Certain Caveats

I Beware of left-recursion
I Danger of undergeneration

I Works only for prefix-free grammars

if
A →∗ x and A →∗ xy
this implies y = ε

I So one has to find a workaround for that either
I Be a little depth first

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Certain Caveats

I Beware of left-recursion
I Danger of undergeneration

I Works only for prefix-free grammars
if
A →∗ x and A →∗ xy
this implies y = ε

I So one has to find a workaround for that either

I Be a little depth first

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Certain Caveats

I Beware of left-recursion
I Danger of undergeneration

I Works only for prefix-free grammars
if
A →∗ x and A →∗ xy
this implies y = ε

I So one has to find a workaround for that either
I Be a little depth first

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Summary

I LL top-down parsers can be used for on-line parsing

I They are intuitive and generally quite fast
I But the Breadth first parser is a memory hog
I while the Depth first parser is too slow

I Greibach Normal Form allows for comfortable parsing

I GNF is for top-down what CNF is for bottom-up

I Recursive descent allows for easy implementation of a
backtracking parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Summary

I LL top-down parsers can be used for on-line parsing
I They are intuitive and generally quite fast

I But the Breadth first parser is a memory hog
I while the Depth first parser is too slow

I Greibach Normal Form allows for comfortable parsing

I GNF is for top-down what CNF is for bottom-up

I Recursive descent allows for easy implementation of a
backtracking parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Summary

I LL top-down parsers can be used for on-line parsing
I They are intuitive and generally quite fast

I But the Breadth first parser is a memory hog

I while the Depth first parser is too slow

I Greibach Normal Form allows for comfortable parsing

I GNF is for top-down what CNF is for bottom-up

I Recursive descent allows for easy implementation of a
backtracking parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Summary

I LL top-down parsers can be used for on-line parsing
I They are intuitive and generally quite fast

I But the Breadth first parser is a memory hog
I while the Depth first parser is too slow

I Greibach Normal Form allows for comfortable parsing

I GNF is for top-down what CNF is for bottom-up

I Recursive descent allows for easy implementation of a
backtracking parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Summary

I LL top-down parsers can be used for on-line parsing
I They are intuitive and generally quite fast

I But the Breadth first parser is a memory hog
I while the Depth first parser is too slow

I Greibach Normal Form allows for comfortable parsing

I GNF is for top-down what CNF is for bottom-up

I Recursive descent allows for easy implementation of a
backtracking parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Summary

I LL top-down parsers can be used for on-line parsing
I They are intuitive and generally quite fast

I But the Breadth first parser is a memory hog
I while the Depth first parser is too slow

I Greibach Normal Form allows for comfortable parsing

I GNF is for top-down what CNF is for bottom-up

I Recursive descent allows for easy implementation of a
backtracking parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Summary

I LL top-down parsers can be used for on-line parsing
I They are intuitive and generally quite fast

I But the Breadth first parser is a memory hog
I while the Depth first parser is too slow

I Greibach Normal Form allows for comfortable parsing

I GNF is for top-down what CNF is for bottom-up

I Recursive descent allows for easy implementation of a
backtracking parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Summary

I LL top-down parsers can be used for on-line parsing
I They are intuitive and generally quite fast

I But the Breadth first parser is a memory hog
I while the Depth first parser is too slow

I Greibach Normal Form allows for comfortable parsing

I GNF is for top-down what CNF is for bottom-up

I Recursive descent allows for easy implementation of a
backtracking parser

Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Thanks a lot.

	Introduction
	Intuitive example
	Features and Operations
	Parsing Schema

	Motivation
	Why Top-Down?
	Why Not?

	Implementation
	PDA + GNF
	Breadth-first
	Depth-first
	Left recursion
	Recursive Descent

	Summary

