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Top-Down Parsing

I CYK and Unger parser are non-directional methods

I They need the whole input sentence before beginning to
parse

I Today we introduce a directional top-down parsing
method

I This is what the term ’Top-down Parsing’ usually refers
to



Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Top-Down Parsing

I CYK and Unger parser are non-directional methods

I They need the whole input sentence before beginning to
parse

I Today we introduce a directional top-down parsing
method

I This is what the term ’Top-down Parsing’ usually refers
to



Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Top-Down Parsing

I CYK and Unger parser are non-directional methods

I They need the whole input sentence before beginning to
parse

I Today we introduce a directional top-down parsing
method

I This is what the term ’Top-down Parsing’ usually refers
to



Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

Top-Down Parsing

I CYK and Unger parser are non-directional methods

I They need the whole input sentence before beginning to
parse

I Today we introduce a directional top-down parsing
method

I This is what the term ’Top-down Parsing’ usually refers
to



Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

General approach

I Rederive the word starting at the input symbol

I Build the tree from the top

I Collect ’ideas’ on how the tree might be continued

I If the tree is ’full’ and all the input is in the tree,
parsing was successful
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Intuitive example

I Assume the following grammar:

S → NP VP
NP → D N
VP → VT NP | VI PP
PP → P NP
D → der | die
N → Mond | Wiese
VI → scheint
VT → bescheint
P → auf
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Intuitive example

I Now let us parse the sentence ’der Mond scheint auf die
Wiese’

I First ’tree idea’:

S
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Intuitive example

I ’Tree idea’ is expanded via leftmost derivations:
S

NP VP
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Intuitive example

I Tree begins to match input and is expanded:
S

NP

D

der

N

VP
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Intuitive example

I Nondeterminism: Two different possible trees.
S

NP

D

der

N

Mond

VP

VT NP

S

NP

D

der

N

Mond

VP

VI PP
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Intuitive example

I Nondeterminism: Expanding both trees.
S
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Intuitive example

I No scan possible for first tree; remaining tree gets expanded
S

NP

D

der

N

Mond

VP

VI

scheint

PP
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Intuitive example

I Expanding the predicted tree
S
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D
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N
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I Tree completed
S

NP

D

der

N

Mond

VP

VI

scheint

PP

P

auf

NP

D

die

N

Wiese



Top Down Parsing

Johannes Dellert,
Aleksandar
Dimitrov

Introduction

Intuitive example

Features and
Operations

Parsing Schema

Motivation

Why Top-Down?

Why Not?

Implementation

PDA + GNF

Breadth-first

Depth-first

Left recursion

Recursive Descent

Summary

General features of the top down method

I The parser makes predictions about the input.

I The left-most prediction is usually processed first.

I Terminals in the prediction are matched against the
input.

I Non-Terminals are replaced by one of the right hand
sides.
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Operations

I For Bottom-Up-Parsing, we got to know SHIFT and
REDUCE

I The corresponding operations for Top-Down-Parsing are
called PREDICT and SCAN

I PREDICT replaces a non-terminal in the sentential form
with the right hand side of a corresponding rule:

I e.g. der Mond VP → der Mond V PP for a rule VP →
V PP

I SCAN matches a terminal in the sentential form with a
symbol on the input string

I e.g. der N VP → N VP, ’der’ matched in the input
string
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Parsing Schema - Basics

I Parsing Schemata are a formal way of describing parsing
methods

I they are independent of the actual implementation

I Every recognized subtree (or tree hypothesis) is stored
as an item

I Items look like this: [•β, j ]

I Meaning: β parts of the tree to be ’filled’, j current
position in input string

I We start with [•S , 0] because the whole tree has to be
built and we have not yet scanned anything from the
input string

I Our goal item will be [•, n] meaning that the tree is
complete and the whole input of length n is scanned
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I Meaning: β parts of the tree to be ’filled’, j current
position in input string

I We start with [•S , 0] because the whole tree has to be
built and we have not yet scanned anything from the
input string

I Our goal item will be [•, n] meaning that the tree is
complete and the whole input of length n is scanned
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(1)

I How do we formalize the prediction step?

[•Bβ, j ]

[•γβ, j ]
B → γ (2)
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Now a complete derivation - with the Schema

1 [•S , 0] INITIALIZE

2 [•NP VP, 0] PREDICT from 1
3 [•D N VP, 0] PREDICT from 2
4 [•der N VP, 0] PREDICT from 3
5 [•die N VP, 0] PREDICT from 3
6 [•N VP, 1] SCAN from 4
7 [•Mond VP, 1] PREDICT from 6
8 [•Wiese VP, 1] PREDICT from 6
9 [•VP, 2] SCAN from 7
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PDA as an implementation model

I transitions of a pushdown automaton strongly resemble
operations of a top-down parser:

I δ(q0, ε, A) = q0, ε, BC ←→ PREDICT

I δ(q0, a, a) = q0, ε, ε←→ SCAN

I → in implementations, every tree hypothesis contains a
stack and an input position

I compare parsing schema item: [•β, j ]
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Greibach Normal Form

I allows only productions of the following form:

I A −→ aB1...Bk with k ≥ 0

I invented by American mathematician Sheila A. Greibach

I incidentally, she was also first to propose
top-down-parsing

I What’s the relation? Why is GNF ideal for TD-parsing?
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GNF and Top-Down-Parsing

I A −→ aB1...Bk with k ≥ 0

I a grammar in GNF form reduces the amount of
prediction steps needed

I each prediction will result in a possible scanning step

I a wrong prediction can be discarded already with the
next scanning step

I intelligent implementations would only make predictions
that start with the next terminal in the input

→ GNF is for TD what CNF is for BU
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Breadth-first

I First described by Greibach (1964)

I Maintains a list of possible derivations . . .

I . . . which is kept in memory.
I Increases size of the list with every prediction

operation
I For every non-terminal all possible derivations are

added.
I A ll parser predicts until every left-hand symbol is a

terminal.

I Decreases size of the list with every matching operation
I When a terminal does not match the input, the tree

(prediction stack) is discarded.

I When do we stop parsing and accept?

I We introduce the end-of-input marker #
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Left recursion

I An example grammar:
S → DP VP

DP → D NP
NP → N | AP NP | NP PP
VP → V DP | V PP | VP PP
PP → P DP
AP → A
D → der | die | das | den | dem
N → Fernglas | Frau | Mann | Mond | Wiese
V → scheint | sieht
A → kleine | kleinen | grosse | grossen
P → auf | mit

I An example derivation for the sentence
“Der Mann sieht die Frau mit dem Fernglas” . . .
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I There are two types of left-recursion:
I Direct left-recursion

Example: NP → NP PP

I Indirect left-recursion

Example: S → NP VP
VP → V’ AP
V’ → VP PP
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I Let us have a look at the previous grammar

S → DP VP
DP → D NP
NP → N | AP NP | NP PP
VP → V DP | V PP | VP PP
PP → P DP
AP → A
D → der | die | das | den | dem
N → Fernglas | Frau | Mann | Mond | Wiese
V → scheint | sieht
A → kleine | kleinen | grosse | grossen
P → auf | mit

I This will now be taken care of . . .
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I VP → V DP | V PP | VP PP
Vh → V DP | V PP

Vt → PP
Vts → Vt Vts | Vt
VP → Vh Vts | Vh

I NP → N | AP NP | NP PP
Nh → AP NP | N

Nt → PP
Nts → Nt Nts | Nt
NP → Nh Nts | Nh

I This is about three times faster than the first
workaround.
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Recursive Descent

I Grammars can be viewed as describing a program

I How to implement a grammar in our favorite
programming language?
One could . . .

Automata: . . . try to emulate an automaton that describes the
language.

I This is not very flexible.
I May be inefficient when dealing with more complicated

tasks.

Automation: . . . use a parser-generator (also: a compiler-compiler)
I May not cover our favorite programming language (or

its latest version)
I Could be less efficient

Non-auto*: . . . write a parser for every grammar at hand.
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Recursive Descent: howto

I Such parsers are implicitly deapth-first

1. Make up a function for each left-hand side

I The function body represents the right hand side
I All functions have to return true for the parse to

succeed

2. Maintain the input as a global variable with a global
pointer

3. Have the methods call each other recursively

4. The base case is when a rule hits a terminal

5. Every rule must contain it’s own pointer to
the position it points to in the input sentence

6. Maintain a stack of matched predictions to tell the
derivation
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I LL top-down parsers can be used for on-line parsing

I They are intuitive and generally quite fast
I But the Breadth first parser is a memory hog
I while the Depth first parser is too slow

I Greibach Normal Form allows for comfortable parsing

I GNF is for top-down what CNF is for bottom-up

I Recursive descent allows for easy implementation of a
backtracking parser
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Thanks a lot.
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