

 The Unger Parser

brought to you today by: Anne Brock

Outline

● Unger - the man
● Unger - the parser
● Unger's method, simple version
● some improvements
● Unger's method, including ε - rules

1. Unger: The man
Stephen H. Unger

- Politechnic Institute of Brooklyn
- doctorate at MIT
- Bell Telephone Labs

-research in digital systems
-head of development group (first electronic
 telephone switching system)

- since 1961: Prof. of Computer Science and Elec-
 trical Engeneering at Columbia University
-1968: the Parser.
-since: published several books.

2. The Parser

● non-directional
● top-down
● Type 2 grammars (CFG)

3. Unger's method, simplified

Input: CFG and a String/sentence, for example:

grammar: S > ABC | DE | F

'sentence': pqrs

 Does S derive...

 ABC | DE | F ?

This is a search problem.

Search: depth-first or breadth-first?

A more detailed example

Grammar:

E -> E + T | T
T -> T x F | F
F -> (E) | i

Input:

 (i + i) x i

E = Expression
T = Term
F = Factor
+, x = operators
i = operand

E -> E + T | T

E ->* (i ?

E -> E + T | T
T -> T x F | F
F -> (E) | i fails!

 to derive: (i + i) x i

E -> E + T | T

(E -> E + T | T)
T -> T x F | F
T -> T x F | F
F -> (E) | i
F -> (E) | i

- success!

- fails!

E -> E + T | T
T -> T x F | F
F -> (E) | i

4. Room for improvement...

- consider the actual terminal symbols

- consider the length of your input

5. Unger's method with ε-rules

S -> ABC
B -> SD

try and derive:
B -> pqr

S -> ABC
B -> SD
...

What to do about it?

-> Keep a list of currently considered questions!

An example.

How does this grammar derive d ? dd ?

d ?

dd ?

S ->* d ?

S -> LSD -> SD -> LSDD -> SDD -> DD -> dD -> dd.

Summary

The Unger parser:

 - is a non-directional, top-down parser;
 - will consider each possible (and impossible) solution;
 - requires at least polynomial, if not exponential time;
 - is slightly improved by
 -matching input with possible derived terminals
 -calculating possible length, special case ε
 -remembering answers.

?

Sources

Grune, Dick and Jacobs, Ceriel 1990. Parsing Techniques. A Practical Guide.
New York: Ellis Horwood Limited.

Lukasz Kwiatowski. Reconciling Unger's parser as a top-down parser for CF
grammars for experimental purposes. http://www.cs.vu.nl/~steven/

pictures from:

 www.cs.columbia.edu/async/images/unger.jpg

 http://pinker.wjh.harvard.edu/photos/cambridge_boston/pages/trees%20in
%20Cambridge%20Common.htm

