Computational Linguistics Il: Parsing

Introduction to Parsing

Frank Richter & Jan-Philipp Sohn

fr@sfs.uni-tuebingen.de, jp.soehn@uni-tuebingen.de

November 27th, 2006

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 1/20

Classification of Parsing Algorithms

Warm-Up

Computational Linguistics Il: Parsing November 27th, 2006 2 /20

Ambiguity in Grammar

Def. ambiguity:
A sentence can be assigned more than one syntactic tree.

Two types of ambiguity:

@ Spurious ambiguity

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 3 /20

Ambiguity in Grammar

Def. ambiguity:
A sentence can be assigned more than one syntactic tree.
Two types of ambiguity:

@ Spurious ambiguity

o All trees describe the same semantics

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 3 /20

Ambiguity in Grammar

Def. ambiguity:
A sentence can be assigned more than one syntactic tree.

Two types of ambiguity:

@ Spurious ambiguity

o All trees describe the same semantics
e e.g. 245+4 = (245)+4 or 2+(5+4)

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 3 /20

Ambiguity in Grammar

Def. ambiguity:
A sentence can be assigned more than one syntactic tree.

Two types of ambiguity:

@ Spurious ambiguity

o All trees describe the same semantics
e e.g. 245+4 = (245)+4 or 2+(5+4)

@ Essential ambiguity

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 3 /20

Ambiguity in Grammar

Def. ambiguity:
A sentence can be assigned more than one syntactic tree.

Two types of ambiguity:

@ Spurious ambiguity

o All trees describe the same semantics
e e.g. 245+4 = (245)+4 or 2+(5+4)

@ Essential ambiguity
@ At least two trees differ in semantics

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 3 /20

Ambiguity in Grammar

Def. ambiguity:
A sentence can be assigned more than one syntactic tree.

Two types of ambiguity:

@ Spurious ambiguity
o All trees describe the same semantics
e e.g. 245+4 = (245)+4 or 2+(5+4)

@ Essential ambiguity

@ At least two trees differ in semantics
9 e.g. 2-5-4 = (2-5)-4 or 2-(5-4)

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 3 /20

Ambiguity in Grammar

Does the following sentence have 1 or 2 semantic interpretations?

da bin ich auf einer Konferenz in Berlin

Computational Linguistics Il: Parsing November 27th, 2006 4 /20

Ambiguity in Grammar

SIMPX
ADVX VXFIN

i e

|
A[|)V VVFIN N|X / PX\ /PX\
da bin N P NX P NX
| | RN | |
ich auf D|et ITI in ITI
einer Konferenz Berlin

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 5 /20

Ambiguity in Grammar

SIMPX
ADVX VXFIN
A[|)V VVFIN NX/ \ PX
da bin Ill P / \ NX
i<|:h a1|1f NX/ \ PX
Det/ \ N P/ \NX
eir|1er Konf(|arenz iln Ill
Ber|1 in

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 6 /20

Linearization of parse trees

The only information necessary for reconstructing a tree is the sequence of
rules and the notation:
@ Prefix notation (i.e. leftmost derivation): each node is listed by listing
its number followed by prefix listings of its daughters.

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 7 /20

Linearization of parse trees

The only information necessary for reconstructing a tree is the sequence of
rules and the notation:

@ Prefix notation (i.e. leftmost derivation): each node is listed by listing
its number followed by prefix listings of its daughters.

@ Postfix notation (i.e. rightmost derivation): each node is listed by
listing all daughters in postfix notation followed by node’'s number.

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 7 /20

Linearization of parse trees

The only information necessary for reconstructing a tree is the sequence of
rules and the notation:
@ Prefix notation (i.e. leftmost derivation): each node is listed by listing
its number followed by prefix listings of its daughters.
@ Postfix notation (i.e. rightmost derivation): each node is listed by
listing all daughters in postfix notation followed by node’s number.
@ infix notation (i.e. left-corner derivation): each node is surrounded by
lists of its left and right daughters. The number of daughters which
belong to the left list is determined in advance.

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 7 /20

Classification of Parsing Algorithms Linearization of parse trees
An Example

1. SIMPX — ADVX VXFIN
2: ADVX — ADV
3: VXFIN — VVFIN NX PX PX
4 NX — DET N
5. NX — N | PPER
6: PX — P NX
SIMPX
ADVX VXFIN
ADV VVFIN«/ :PX\\/PX\
PPER P7 NX_ PT NX

N
DET N N

Richter/Séhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 8 /20

Classification of Parsing Algorithms

Classification of Parsing Algorithms

Richter/Séhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 9 /20

Direction of Processing the Input

@ Unidirectional

Computational Linguistics Il: Parsing November 27th, 2006 10 / 20

Direction of Processing the Input

@ Unidirectional
o left — right

Computational Linguistics Il: Parsing November 27th, 2006 10 / 20

Direction of Processing the Input

@ Unidirectional

o left — right
@ right — left

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 10 / 20

Direction of Processing the Input

@ Unidirectional

o left — right
@ right — left

@ Bidirectional

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 10 / 20

Rule Invocation Strategy

@ Unidirectional

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 11 /20

Rule Invocation Strategy

@ Unidirectional
@ Top-down

Computational Linguistics Il: Parsing November 27th, 2006 11 /20

Rule Invocation Strategy

@ Unidirectional
o Top-down

@ starts from start symbol, expands non-terminals

Computational Linguistics Il: Parsing November 27th, 2006 11 /20

Rule Invocation Strategy

@ Unidirectional
o Top-down

@ starts from start symbol, expands non-terminals
@ describes “production” side

Computational Linguistics Il: Parsing November 27th, 2006 11 /20

Rule Invocation Strategy

@ Unidirectional
o Top-down

@ starts from start symbol, expands non-terminals
@ describes “production” side

e Bottom-up

Computational Linguistics Il: Parsing November 27th, 2006 11 /20

Rule Invocation Strategy

@ Unidirectional
o Top-down

@ starts from start symbol, expands non-terminals
@ describes “production” side

e Bottom-up

@ starts from the terminals, replaces righthand side of rules by
mothernodes

Computational Linguistics Il: Parsing November 27th, 2006 11 /20

Rule Invocation Strategy

@ Unidirectional

o Top-down
@ starts from start symbol, expands non-terminals
@ describes “production” side

e Bottom-up
@ starts from the terminals, replaces righthand side of rules by

mothernodes

@ describes “recognition / perception” side

Computational Linguistics Il: Parsing November 27th, 2006 11 /20

Rule Invocation Strategy

@ Unidirectional

o Top-down
@ starts from start symbol, expands non-terminals
@ describes “production” side

e Bottom-up
@ starts from the terminals, replaces righthand side of rules by

mothernodes

@ describes “recognition / perception” side

@ Bidirectional

Computational Linguistics Il: Parsing November 27th, 2006 11 /20

Top-Down Parsing

@ start state: start symbol

Computational Linguistics Il: Parsing November 27th, 2006 12 /20

Top-Down Parsing

@ start state: start symbol

@ internal administration: stores sentential form
e.g. the man with the green hat bought NP PP

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 12 /20

Top-Down Parsing

@ start state: start symbol

@ internal administration: stores sentential form
e.g. the man with the green hat bought NP PP

@ two actions: predict and match

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 12 /20

Top-Down Parsing

@ start state: start symbol

@ internal administration: stores sentential form
e.g. the man with the green hat bought NP PP

@ two actions: predict and match

@ predict: select a non-terminal symbol in sentential form and replace it
by a righthand side of a rule
e.g. the man with the green hat bought NP PP = the man with
the green hat bought DET N PP

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 12 /20

Top-Down Parsing

@ start state: start symbol

@ internal administration: stores sentential form
e.g. the man with the green hat bought NP PP

@ two actions: predict and match

@ predict: select a non-terminal symbol in sentential form and replace it
by a righthand side of a rule
e.g. the man with the green hat bought NP PP = the man with
the green hat bought DET N PP

@ match: compare a terminal symbol with the next word in the input
string
e.g. DET N PP VP + the man with the green hat bought a
book

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 12 /20

Bottom-Up Parsing

@ start state: input string

Computational Linguistics Il: Parsing November 27th, 2006 13 /20

Bottom-Up Parsing

@ start state: input string

@ internal administration: stores sentential form already processed
e.g. admin: NP P DET N input: bought a book

Computational Linguistics Il: Parsing November 27th, 2006 13 /20

Bottom-Up Parsing

@ start state: input string

@ internal administration: stores sentential form already processed
e.g. admin: NP P DET N input: bought a book

@ two actions: shift and reduce

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 13 /20

Bottom-Up Parsing

@ start state: input string

@ internal administration: stores sentential form already processed
e.g. admin: NP P DET N input: bought a book

@ two actions: shift and reduce

@ shift: move the next word from the input string to the internal

administration
e.g. NP PDET N = NP P DET N bought

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 13 /20

Bottom-Up Parsing

@ start state: input string

@ internal administration: stores sentential form already processed
e.g. admin: NP P DET N input: bought a book

@ two actions: shift and reduce

@ shift: move the next word from the input string to the internal

administration
e.g. NP P DET N = NP P DET N bought

@ reduce: replace the (rightmost) sequence of symbols in the internal
administration by a lefthand side symbol of a rule
e.g. NP P NP = NP PP

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 13 /20

Classification of Parsing Algorithms Rule Invocation Strategy

Bottom-Up Parsing I

Bottom-up process can be regarded as production with a “reversed”
grammar:

ADVX VXFIN — SIMPX
ADV — ADVX
VVFIN NX PX PX — VXFIN
DET N ~ NX
N | PPER ~ NX
P NX ~ PX

@ we need a new terminal symbol: SIMPX — |

@ and a new start symbol:
Start — da habe ich eine Konferenz in Berlin

Richter/Séhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 14 /20

Non-Deterministic Automata

@ both parsing methods have two components: one makes the
substitutions and stores the parse tree, the other decides which rule to
use next

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 15 / 20

Non-Deterministic Automata

@ both parsing methods have two components: one makes the
substitutions and stores the parse tree, the other decides which rule to

use next

@ the substituting component can be defined as a non-deterministic
automaton (NDA)

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 15 / 20

Non-Deterministic Automata

@ both parsing methods have two components: one makes the
substitutions and stores the parse tree, the other decides which rule to
use next

@ the substituting component can be defined as a non-deterministic
automaton (NDA)

@ it is non-deterministic because in some states, it has more than one
possible rule to choose from, e.g. NX — DET N or NX — PPER

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 15 / 20

Non-Deterministic Automata

@ both parsing methods have two components: one makes the
substitutions and stores the parse tree, the other decides which rule to
use next

@ the substituting component can be defined as a non-deterministic
automaton (NDA)

@ it is non-deterministic because in some states, it has more than one
possible rule to choose from, e.g. NX — DET N or NX — PPER

@ the decision which rule is chosen is made by the control component

Richter/Séhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 15 / 20

Non-Deterministic Automata

@ both parsing methods have two components: one makes the
substitutions and stores the parse tree, the other decides which rule to
use next

@ the substituting component can be defined as a non-deterministic
automaton (NDA)

@ it is non-deterministic because in some states, it has more than one
possible rule to choose from, e.g. NX — DET N or NX — PPER

9 the decision which rule is chosen is made by the control component

@ control strategies vary and can be very complex

Richter/Séhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 15 / 20

Non-Deterministic Automata

@ both parsing methods have two components: one makes the
substitutions and stores the parse tree, the other decides which rule to
use next

@ the substituting component can be defined as a non-deterministic
automaton (NDA)

@ it is non-deterministic because in some states, it has more than one
possible rule to choose from, e.g. NX — DET N or NX — PPER

9 the decision which rule is chosen is made by the control component
@ control strategies vary and can be very complex

@ one more component: book keeping component for the parse tree

Richter/Séhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 15 / 20

Non-Deterministic Automata I

output tree

oA ——

| internal administration |

Computational Linguistics Il: Parsing November 27th, 2006 16 / 20

Non-Deterministic Automata Il

@ the NDA is derived from the grammar

Computational Linguistics Il: Parsing November 27th, 2006 17 /20

Non-Deterministic Automata Il

@ the NDA is derived from the grammar

@ for top-down parsing, the moves are given by the rules, the
administration at the beginning contains the start symbol

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 17 /20

Non-Deterministic Automata Il

@ the NDA is derived from the grammar

o for top-down parsing, the moves are given by the rules, the
administration at the beginning contains the start symbol

@ there are many control mechanisms, some are independent of the
grammar (e.g. undo the last step), some use tables extracted in
advance from the grammar (if | choose NX — NX1 KON NX1 and my
next word is the, is there a way that NX1 produces a string that
begins with the?)

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 17 /20

Non-Deterministic Automata Il

@ the NDA is derived from the grammar

o for top-down parsing, the moves are given by the rules, the
administration at the beginning contains the start symbol

@ there are many control mechanisms, some are independent of the
grammar (e.g. undo the last step), some use tables extracted in
advance from the grammar (if | choose NX — NX1 KON NX1 and my
next word is the, is there a way that NX1 produces a string that
begins with the?)

@ parser generator: program that constructs the control mechanism
and the NDA for a specific parsing algorithm

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 17 /20

Searching Strategy

Parsing can be regarded as search: parsing as a graph from start state to
end state = look for the shortest / best path

How does the control mechanism decide on the next move?
@ depth-first (backtracking) or breadth-first?

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 18 / 20

Searching Strategy

Parsing can be regarded as search: parsing as a graph from start state to
end state = look for the shortest / best path

How does the control mechanism decide on the next move?
@ depth-first (backtracking) or breadth-first?

@ Deterministic or non-deterministic

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing November 27th, 2006 18 / 20

Searching Strategy

Parsing can be regarded as search: parsing as a graph from start state to
end state = look for the shortest / best path

How does the control mechanism decide on the next move?
@ depth-first (backtracking) or breadth-first?

@ Deterministic or non-deterministic

o ...

Richter/Séhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 18 / 20

[GEESTTN NI M TSNl The Notion of a Parser

Parsers and Parser Generators

Parser Parser Generator
abstract machine | abstract machine
1st order 2nd order
Data syntax parsing
lexicon algorithm
Processing parsing generating
algorithm algorithm
Input sentence syntax
lexicon
Output structure parser
or FALSE
Computational Linguistics 11

: Parsing November 27th, 2006 19 /20

Putting all together

Top-down

Bottom-up

Non-directional
methods

Unger parser

CYK parser

Directional methods

predict/match
Depth-first (backtrack)
Breadth-first, DCGs

Left-corner

shift/reduce
Depth-first (backtrack)
Breadth-first (Earley)

directional methods

Linear LR(k)
directional methods SLR(1)
Efficient general Tomita

Richter/Shn (WS 2006/07)

Computational Linguistics Il: Parsing

November 27th, 2006 20 / 20

