
Computational Linguistics II: Parsing

Introduction to Parsing

Frank Richter & Jan-Philipp Söhn

fr@sfs.uni-tuebingen.de, jp.soehn@uni-tuebingen.de

November 27th, 2006

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 1 / 20



Classification of Parsing Algorithms

Warm-Up

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 2 / 20



Classification of Parsing Algorithms Ambiguity

Ambiguity in Grammar

Def. ambiguity:
A sentence can be assigned more than one syntactic tree.

Two types of ambiguity:

Spurious ambiguity

All trees describe the same semantics
e.g. 2+5+4 ⇒ (2+5)+4 or 2+(5+4)

Essential ambiguity

At least two trees differ in semantics
e.g. 2-5-4 ⇒ (2-5)-4 or 2-(5-4)

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 3 / 20



Classification of Parsing Algorithms Ambiguity

Ambiguity in Grammar

Def. ambiguity:
A sentence can be assigned more than one syntactic tree.

Two types of ambiguity:

Spurious ambiguity

All trees describe the same semantics
e.g. 2+5+4 ⇒ (2+5)+4 or 2+(5+4)

Essential ambiguity

At least two trees differ in semantics
e.g. 2-5-4 ⇒ (2-5)-4 or 2-(5-4)

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 3 / 20



Classification of Parsing Algorithms Ambiguity

Ambiguity in Grammar

Def. ambiguity:
A sentence can be assigned more than one syntactic tree.

Two types of ambiguity:

Spurious ambiguity

All trees describe the same semantics
e.g. 2+5+4 ⇒ (2+5)+4 or 2+(5+4)

Essential ambiguity

At least two trees differ in semantics
e.g. 2-5-4 ⇒ (2-5)-4 or 2-(5-4)

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 3 / 20



Classification of Parsing Algorithms Ambiguity

Ambiguity in Grammar

Def. ambiguity:
A sentence can be assigned more than one syntactic tree.

Two types of ambiguity:

Spurious ambiguity

All trees describe the same semantics
e.g. 2+5+4 ⇒ (2+5)+4 or 2+(5+4)

Essential ambiguity

At least two trees differ in semantics
e.g. 2-5-4 ⇒ (2-5)-4 or 2-(5-4)

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 3 / 20



Classification of Parsing Algorithms Ambiguity

Ambiguity in Grammar

Def. ambiguity:
A sentence can be assigned more than one syntactic tree.

Two types of ambiguity:

Spurious ambiguity

All trees describe the same semantics
e.g. 2+5+4 ⇒ (2+5)+4 or 2+(5+4)

Essential ambiguity

At least two trees differ in semantics
e.g. 2-5-4 ⇒ (2-5)-4 or 2-(5-4)

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 3 / 20



Classification of Parsing Algorithms Ambiguity

Ambiguity in Grammar

Def. ambiguity:
A sentence can be assigned more than one syntactic tree.

Two types of ambiguity:

Spurious ambiguity

All trees describe the same semantics
e.g. 2+5+4 ⇒ (2+5)+4 or 2+(5+4)

Essential ambiguity

At least two trees differ in semantics
e.g. 2-5-4 ⇒ (2-5)-4 or 2-(5-4)

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 3 / 20



Classification of Parsing Algorithms Ambiguity

Ambiguity in Grammar

Does the following sentence have 1 or 2 semantic interpretations?

da bin ich auf einer Konferenz in Berlin

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 4 / 20



Classification of Parsing Algorithms Ambiguity

Ambiguity in Grammar

SIMPX

ADVX

ADV

da

VXFIN

VVFIN

bin

NX

N

ich

PX

P

auf

NX

Det

einer

N

Konferenz

PX

P

in

NX

N

Berlin

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 5 / 20



Classification of Parsing Algorithms Ambiguity

Ambiguity in Grammar

SIMPX

ADVX

ADV

da

VXFIN

VVFIN

bin

NX

N

ich

PX

P

auf

NX

NX

Det

einer

N

Konferenz

PX

P

in

NX

N

Berlin

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 6 / 20



Classification of Parsing Algorithms Linearization of parse trees

Linearization of parse trees

The only information necessary for reconstructing a tree is the sequence of
rules and the notation:

Prefix notation (i.e. leftmost derivation): each node is listed by listing
its number followed by prefix listings of its daughters.

Postfix notation (i.e. rightmost derivation): each node is listed by
listing all daughters in postfix notation followed by node’s number.

infix notation (i.e. left-corner derivation): each node is surrounded by
lists of its left and right daughters. The number of daughters which
belong to the left list is determined in advance.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 7 / 20



Classification of Parsing Algorithms Linearization of parse trees

Linearization of parse trees

The only information necessary for reconstructing a tree is the sequence of
rules and the notation:

Prefix notation (i.e. leftmost derivation): each node is listed by listing
its number followed by prefix listings of its daughters.

Postfix notation (i.e. rightmost derivation): each node is listed by
listing all daughters in postfix notation followed by node’s number.

infix notation (i.e. left-corner derivation): each node is surrounded by
lists of its left and right daughters. The number of daughters which
belong to the left list is determined in advance.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 7 / 20



Classification of Parsing Algorithms Linearization of parse trees

Linearization of parse trees

The only information necessary for reconstructing a tree is the sequence of
rules and the notation:

Prefix notation (i.e. leftmost derivation): each node is listed by listing
its number followed by prefix listings of its daughters.

Postfix notation (i.e. rightmost derivation): each node is listed by
listing all daughters in postfix notation followed by node’s number.

infix notation (i.e. left-corner derivation): each node is surrounded by
lists of its left and right daughters. The number of daughters which
belong to the left list is determined in advance.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 7 / 20



Classification of Parsing Algorithms Linearization of parse trees

An Example

1: SIMPX → ADVX VXFIN
2: ADVX → ADV
3: VXFIN → VVFIN NX PX PX
4: NX → DET N
5: NX → N | PPER
6: PX → P NX

SIMPX

ADVX

ADV

VXFIN

VVFIN NX

PPER

PX

P NX

DET N

PX

P NX

N

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 8 / 20



Classification of Parsing Algorithms

Classification of Parsing Algorithms

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 9 / 20



Classification of Parsing Algorithms Direction of Processing

Direction of Processing the Input

Unidirectional

left – right
right – left

Bidirectional

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 10 / 20



Classification of Parsing Algorithms Direction of Processing

Direction of Processing the Input

Unidirectional

left – right
right – left

Bidirectional

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 10 / 20



Classification of Parsing Algorithms Direction of Processing

Direction of Processing the Input

Unidirectional

left – right
right – left

Bidirectional

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 10 / 20



Classification of Parsing Algorithms Direction of Processing

Direction of Processing the Input

Unidirectional

left – right
right – left

Bidirectional

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 10 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Rule Invocation Strategy

Unidirectional
Top-down

starts from start symbol, expands non-terminals
describes “production” side

Bottom-up

starts from the terminals, replaces righthand side of rules by
mothernodes
describes “recognition / perception” side

Bidirectional

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 11 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Rule Invocation Strategy

Unidirectional
Top-down

starts from start symbol, expands non-terminals
describes “production” side

Bottom-up

starts from the terminals, replaces righthand side of rules by
mothernodes
describes “recognition / perception” side

Bidirectional

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 11 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Rule Invocation Strategy

Unidirectional
Top-down

starts from start symbol, expands non-terminals
describes “production” side

Bottom-up

starts from the terminals, replaces righthand side of rules by
mothernodes
describes “recognition / perception” side

Bidirectional

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 11 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Rule Invocation Strategy

Unidirectional
Top-down

starts from start symbol, expands non-terminals
describes “production” side

Bottom-up

starts from the terminals, replaces righthand side of rules by
mothernodes
describes “recognition / perception” side

Bidirectional

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 11 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Rule Invocation Strategy

Unidirectional
Top-down

starts from start symbol, expands non-terminals
describes “production” side

Bottom-up

starts from the terminals, replaces righthand side of rules by
mothernodes
describes “recognition / perception” side

Bidirectional

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 11 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Rule Invocation Strategy

Unidirectional
Top-down

starts from start symbol, expands non-terminals
describes “production” side

Bottom-up

starts from the terminals, replaces righthand side of rules by
mothernodes
describes “recognition / perception” side

Bidirectional

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 11 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Rule Invocation Strategy

Unidirectional
Top-down

starts from start symbol, expands non-terminals
describes “production” side

Bottom-up

starts from the terminals, replaces righthand side of rules by
mothernodes
describes “recognition / perception” side

Bidirectional

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 11 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Rule Invocation Strategy

Unidirectional
Top-down

starts from start symbol, expands non-terminals
describes “production” side

Bottom-up

starts from the terminals, replaces righthand side of rules by
mothernodes
describes “recognition / perception” side

Bidirectional

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 11 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Top-Down Parsing

start state: start symbol

internal administration: stores sentential form
e.g. the man with the green hat bought NP PP

two actions: predict and match

predict: select a non-terminal symbol in sentential form and replace it
by a righthand side of a rule
e.g. the man with the green hat bought NP PP ⇒ the man with

the green hat bought DET N PP

match: compare a terminal symbol with the next word in the input
string
e.g. DET N PP VP + the man with the green hat bought a

book

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 12 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Top-Down Parsing

start state: start symbol

internal administration: stores sentential form
e.g. the man with the green hat bought NP PP

two actions: predict and match

predict: select a non-terminal symbol in sentential form and replace it
by a righthand side of a rule
e.g. the man with the green hat bought NP PP ⇒ the man with

the green hat bought DET N PP

match: compare a terminal symbol with the next word in the input
string
e.g. DET N PP VP + the man with the green hat bought a

book

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 12 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Top-Down Parsing

start state: start symbol

internal administration: stores sentential form
e.g. the man with the green hat bought NP PP

two actions: predict and match

predict: select a non-terminal symbol in sentential form and replace it
by a righthand side of a rule
e.g. the man with the green hat bought NP PP ⇒ the man with

the green hat bought DET N PP

match: compare a terminal symbol with the next word in the input
string
e.g. DET N PP VP + the man with the green hat bought a

book

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 12 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Top-Down Parsing

start state: start symbol

internal administration: stores sentential form
e.g. the man with the green hat bought NP PP

two actions: predict and match

predict: select a non-terminal symbol in sentential form and replace it
by a righthand side of a rule
e.g. the man with the green hat bought NP PP ⇒ the man with

the green hat bought DET N PP

match: compare a terminal symbol with the next word in the input
string
e.g. DET N PP VP + the man with the green hat bought a

book

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 12 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Top-Down Parsing

start state: start symbol

internal administration: stores sentential form
e.g. the man with the green hat bought NP PP

two actions: predict and match

predict: select a non-terminal symbol in sentential form and replace it
by a righthand side of a rule
e.g. the man with the green hat bought NP PP ⇒ the man with

the green hat bought DET N PP

match: compare a terminal symbol with the next word in the input
string
e.g. DET N PP VP + the man with the green hat bought a

book

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 12 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Bottom-Up Parsing

start state: input string

internal administration: stores sentential form already processed
e.g. admin: NP P DET N input: bought a book

two actions: shift and reduce

shift: move the next word from the input string to the internal
administration
e.g. NP P DET N ⇒ NP P DET N bought

reduce: replace the (rightmost) sequence of symbols in the internal
administration by a lefthand side symbol of a rule
e.g. NP P NP ⇒ NP PP

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 13 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Bottom-Up Parsing

start state: input string

internal administration: stores sentential form already processed
e.g. admin: NP P DET N input: bought a book

two actions: shift and reduce

shift: move the next word from the input string to the internal
administration
e.g. NP P DET N ⇒ NP P DET N bought

reduce: replace the (rightmost) sequence of symbols in the internal
administration by a lefthand side symbol of a rule
e.g. NP P NP ⇒ NP PP

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 13 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Bottom-Up Parsing

start state: input string

internal administration: stores sentential form already processed
e.g. admin: NP P DET N input: bought a book

two actions: shift and reduce

shift: move the next word from the input string to the internal
administration
e.g. NP P DET N ⇒ NP P DET N bought

reduce: replace the (rightmost) sequence of symbols in the internal
administration by a lefthand side symbol of a rule
e.g. NP P NP ⇒ NP PP

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 13 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Bottom-Up Parsing

start state: input string

internal administration: stores sentential form already processed
e.g. admin: NP P DET N input: bought a book

two actions: shift and reduce

shift: move the next word from the input string to the internal
administration
e.g. NP P DET N ⇒ NP P DET N bought

reduce: replace the (rightmost) sequence of symbols in the internal
administration by a lefthand side symbol of a rule
e.g. NP P NP ⇒ NP PP

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 13 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Bottom-Up Parsing

start state: input string

internal administration: stores sentential form already processed
e.g. admin: NP P DET N input: bought a book

two actions: shift and reduce

shift: move the next word from the input string to the internal
administration
e.g. NP P DET N ⇒ NP P DET N bought

reduce: replace the (rightmost) sequence of symbols in the internal
administration by a lefthand side symbol of a rule
e.g. NP P NP ⇒ NP PP

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 13 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Bottom-Up Parsing II

Bottom-up process can be regarded as production with a “reversed”
grammar:
ADVX VXFIN → SIMPX
ADV → ADVX
VVFIN NX PX PX → VXFIN
DET N → NX
N | PPER → NX
P NX → PX

we need a new terminal symbol: SIMPX → !

and a new start symbol:
Start → da habe ich eine Konferenz in Berlin

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 14 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Non-Deterministic Automata

both parsing methods have two components: one makes the
substitutions and stores the parse tree, the other decides which rule to
use next

the substituting component can be defined as a non-deterministic

automaton (NDA)

it is non-deterministic because in some states, it has more than one
possible rule to choose from, e.g. NX → DET N or NX → PPER

the decision which rule is chosen is made by the control component

control strategies vary and can be very complex

one more component: book keeping component for the parse tree

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 15 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Non-Deterministic Automata

both parsing methods have two components: one makes the
substitutions and stores the parse tree, the other decides which rule to
use next

the substituting component can be defined as a non-deterministic

automaton (NDA)

it is non-deterministic because in some states, it has more than one
possible rule to choose from, e.g. NX → DET N or NX → PPER

the decision which rule is chosen is made by the control component

control strategies vary and can be very complex

one more component: book keeping component for the parse tree

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 15 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Non-Deterministic Automata

both parsing methods have two components: one makes the
substitutions and stores the parse tree, the other decides which rule to
use next

the substituting component can be defined as a non-deterministic

automaton (NDA)

it is non-deterministic because in some states, it has more than one
possible rule to choose from, e.g. NX → DET N or NX → PPER

the decision which rule is chosen is made by the control component

control strategies vary and can be very complex

one more component: book keeping component for the parse tree

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 15 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Non-Deterministic Automata

both parsing methods have two components: one makes the
substitutions and stores the parse tree, the other decides which rule to
use next

the substituting component can be defined as a non-deterministic

automaton (NDA)

it is non-deterministic because in some states, it has more than one
possible rule to choose from, e.g. NX → DET N or NX → PPER

the decision which rule is chosen is made by the control component

control strategies vary and can be very complex

one more component: book keeping component for the parse tree

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 15 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Non-Deterministic Automata

both parsing methods have two components: one makes the
substitutions and stores the parse tree, the other decides which rule to
use next

the substituting component can be defined as a non-deterministic

automaton (NDA)

it is non-deterministic because in some states, it has more than one
possible rule to choose from, e.g. NX → DET N or NX → PPER

the decision which rule is chosen is made by the control component

control strategies vary and can be very complex

one more component: book keeping component for the parse tree

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 15 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Non-Deterministic Automata

both parsing methods have two components: one makes the
substitutions and stores the parse tree, the other decides which rule to
use next

the substituting component can be defined as a non-deterministic

automaton (NDA)

it is non-deterministic because in some states, it has more than one
possible rule to choose from, e.g. NX → DET N or NX → PPER

the decision which rule is chosen is made by the control component

control strategies vary and can be very complex

one more component: book keeping component for the parse tree

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 15 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Non-Deterministic Automata II

output tree

control

NDA input

internal administration

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 16 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Non-Deterministic Automata III

the NDA is derived from the grammar

for top-down parsing, the moves are given by the rules, the
administration at the beginning contains the start symbol

there are many control mechanisms, some are independent of the
grammar (e.g. undo the last step), some use tables extracted in
advance from the grammar (if I choose NX → NX1 KON NX1 and my
next word is the, is there a way that NX1 produces a string that
begins with the?)

parser generator: program that constructs the control mechanism
and the NDA for a specific parsing algorithm

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 17 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Non-Deterministic Automata III

the NDA is derived from the grammar

for top-down parsing, the moves are given by the rules, the
administration at the beginning contains the start symbol

there are many control mechanisms, some are independent of the
grammar (e.g. undo the last step), some use tables extracted in
advance from the grammar (if I choose NX → NX1 KON NX1 and my
next word is the, is there a way that NX1 produces a string that
begins with the?)

parser generator: program that constructs the control mechanism
and the NDA for a specific parsing algorithm

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 17 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Non-Deterministic Automata III

the NDA is derived from the grammar

for top-down parsing, the moves are given by the rules, the
administration at the beginning contains the start symbol

there are many control mechanisms, some are independent of the
grammar (e.g. undo the last step), some use tables extracted in
advance from the grammar (if I choose NX → NX1 KON NX1 and my
next word is the, is there a way that NX1 produces a string that
begins with the?)

parser generator: program that constructs the control mechanism
and the NDA for a specific parsing algorithm

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 17 / 20



Classification of Parsing Algorithms Rule Invocation Strategy

Non-Deterministic Automata III

the NDA is derived from the grammar

for top-down parsing, the moves are given by the rules, the
administration at the beginning contains the start symbol

there are many control mechanisms, some are independent of the
grammar (e.g. undo the last step), some use tables extracted in
advance from the grammar (if I choose NX → NX1 KON NX1 and my
next word is the, is there a way that NX1 produces a string that
begins with the?)

parser generator: program that constructs the control mechanism
and the NDA for a specific parsing algorithm

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 17 / 20



Classification of Parsing Algorithms Searching Strategy

Searching Strategy

Parsing can be regarded as search: parsing as a graph from start state to
end state ⇒ look for the shortest / best path

How does the control mechanism decide on the next move?

depth-first (backtracking) or breadth-first?

Deterministic or non-deterministic

...

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 18 / 20



Classification of Parsing Algorithms Searching Strategy

Searching Strategy

Parsing can be regarded as search: parsing as a graph from start state to
end state ⇒ look for the shortest / best path

How does the control mechanism decide on the next move?

depth-first (backtracking) or breadth-first?

Deterministic or non-deterministic

...

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 18 / 20



Classification of Parsing Algorithms Searching Strategy

Searching Strategy

Parsing can be regarded as search: parsing as a graph from start state to
end state ⇒ look for the shortest / best path

How does the control mechanism decide on the next move?

depth-first (backtracking) or breadth-first?

Deterministic or non-deterministic

...

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 18 / 20



Classification of Parsing Algorithms The Notion of a Parser

Parsers and Parser Generators

Parser Parser Generator

abstract machine abstract machine
1st order 2nd order

Data syntax parsing
lexicon algorithm

Processing parsing generating
algorithm algorithm

Input sentence syntax
lexicon

Output structure parser
or FALSE

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 19 / 20



Putting all together

Putting all together

Top-down Bottom-up

Non-directional Unger parser CYK parser
methods

Directional methods predict/match shift/reduce
Depth-first (backtrack) Depth-first (backtrack)
Breadth-first, DCGs Breadth-first (Earley)

Left-corner

Linear LR(k)
directional methods SLR(1)

Efficient general Tomita
directional methods

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 27th, 2006 20 / 20


