
Computational Linguistics II: Parsing

Unger’s Parsing Method

Frank Richter & Jan-Philipp Söhn

fr@sfs.uni-tuebingen.de, jp.soehn@uni-tuebingen.de

November 29th, 2006

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 29th, 2006 1 / 11

Unger’s Parser

top-down processing

guesses how to split the input string into partitions that can be

derived from a particular daughter

all possible splits are tried

assume: ǫ-free grammar

example: rule: S → PP NP VP | NP VP | VP

sentence: In the Olympic Games, Greeks ran races, jumped,

hurled the biscuits, and threw the java.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 29th, 2006 2 / 11

Unger’s Parser – Example

S → VP: easy

⇒ VP → In the Olympic Games, Greeks ran races, jumped,

hurled the biscuits, and threw the java.

S → NP VP:

NP VP
In the Olympic Games, Greeks...

In the Olympic Games, Greeks ran...

In the Olympic Games, Greeks ran races...

In the Olympic Games, Greeks ran races, jumped...

. . .
In the Olympic... java.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 29th, 2006 3 / 11

Unger’s Parser – Example II

S → PP NP VP:

PP NP VP
In the Olympic Games,...

In the Olympic Games, Greeks...

. . .
In the Olympic Games, Greeks ran...

In the Olympic Games, Greeks ran...

. . .
In the Olympic... the java.

then try all rules and all partitions for PP, NP, VP

each symbol needs to cover at least one word ⇒ the strings will

always become shorter

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 29th, 2006 4 / 11

Unger’s Parser – Details

can be executed depth-first or breadth-first

immense number of comparisons: exponential time complexity

possible optimization: discard splits for which terminals do not match:

rule: NPK → NP and NP

impossible split:

{NP many poems and}{and verse}{NP and also literature}

more optimizations: e.g. compute minimum number of terminals that

derive from a non-terminal

i.e. non-terminal: VP, minimal length for VP = 3, then discard all

partitions of less than 3 words

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 29th, 2006 5 / 11

Unger Algorithm – parallel

1 if Z ∈ T and Z = wk , finish

2 select rule Z → X1 . . . Xn

3 split up sentence in n parts w1 . . . wn in all different ways

4 for all k = 1 to n: if Xk ∈ T and Xk 6= wk , discard split otherwise

store split

5 select one split, for all parts Z repeat steps 1 – 4

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 29th, 2006 6 / 11

Towards a Real Algorithm

What knowledge needs to be preserved during the parse?

What data structures do we need?

What happens if a possibility turns out to be wrong?

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 29th, 2006 7 / 11

Unger’s Parser with ǫ Rules

allow empty string as partition:

rule: S → NP VP:

NP VP
In the Olympic Games,...

In the Olympic Games, Greeks...

In the Olympic Games, Greeks ran...

In the Olympic Games, Greeks ran races...

In the Olympic Games, Greeks ran races, jumped...

.

In the Olympic... java.

In the Olympic...

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 29th, 2006 8 / 11

Unger’s Parser with ǫ Rules II

problem: loops

rules: S → NP VP, and VP → V S

sentence: The Magna Carta provided that no free man

should be hanged twice for the same offense.

problematic partition:

NP VP

The Magna Carta provided that...

V S

The Magna Carta provided...

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 29th, 2006 9 / 11

Unger’s Parser with ǫ Rules III

Solution: check in decision history whether the same situation has

occurred before

S ⇒ The Magna ... same offense.

NP ⇒ ǫ; VP ⇒ The Magna ... same offense.

V ⇒ ǫ; S ⇒ The Magna ... same offense.

cut off!

. . .

NP ⇒ The; VP ⇒ Magna ... same offense

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 29th, 2006 10 / 11

Example

Sentence:

shit happens on the other side of the wormhole (Trekkism, DS9)

Grammar:
S → NP VP

NP → N | DET N | DET ADJ N | NP PP

VP → V PP

PP → P NP

ADJ → other

DET → the

N → shit | side | wormhole

P → on | of

V → happens

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 29th, 2006 11 / 11

