Computational Linguistics II: Parsing
 Unger's Parsing Method

Frank Richter \& Jan-Philipp Söhn

fr@sfs.uni-tuebingen.de, jp.soehn@uni-tuebingen.de
November 29th, 2006

Unger's Parser

- top-down processing
- guesses how to split the input string into partitions that can be derived from a particular daughter
- all possible splits are tried
- assume: ϵ-free grammar
- example: rule: $\mathrm{S} \rightarrow \mathrm{PP}$ NP VP | NP VP | VP
sentence: In the Olympic Games, Greeks ran races, jumped, hurled the biscuits, and threw the java.

Unger's Parser - Example

- $S \rightarrow$ VP: easy
$\Rightarrow \mathrm{VP} \rightarrow$ In the Olympic Games, Greeks ran races, jumped, hurled the biscuits, and threw the java.
- $S \rightarrow$ NP VP:

NP	VP
In	the Olympic Games, Greeks...
In the	Olympic Games, Greeks ran...
In the Olympic	Games, Greeks ran races...
In the Olympic Games,	Greeks ran races, jumped...
In the Olympic...	\ldots

Unger's Parser - Example II

- $S \rightarrow$ PP NP VP:

PP	NP	VP
In	the	Olympic Games,..
In	the Olympic	Games, Greeks...
In the	Olympic	Games, Greeks ran.
In the	Olympic Games,	Greeks ran...
In the Olympic...	the	java.

- then try all rules and all partitions for $P P, N P, V P$
- each symbol needs to cover at least one word \Rightarrow the strings will always become shorter

Unger's Parser - Details

- can be executed depth-first or breadth-first
- immense number of comparisons: exponential time complexity
- possible optimization: discard splits for which terminals do not match: rule: NPK \rightarrow NP and NP
impossible split:
\{NP many poems and\}\{and verse\}\{NP and also literature\}
- more optimizations: e.g. compute minimum number of terminals that derive from a non-terminal
i.e. non-terminal: $V P$, minimal length for $V P=3$, then discard all partitions of less than 3 words

Unger Algorithm - parallel

(1) if $Z \in T$ and $Z=w_{k}$, finish
(2) select rule $\mathrm{Z} \rightarrow \mathrm{X}_{1} \ldots \mathrm{X}_{n}$
(3) split up sentence in n parts $\mathrm{w}_{1} \ldots \mathrm{w}_{n}$ in all different ways
(3) for all $k=1$ to n : if $X_{k} \in \mathrm{~T}$ and $X_{k} \neq \mathrm{w}_{k}$, discard split otherwise store split
(3) select one split, for all parts Z repeat steps 1 - 4

Towards a Real Algorithm

- What knowledge needs to be preserved during the parse?
- What data structures do we need?
- What happens if a possibility turns out to be wrong?

Unger's Parser with ϵ Rules

- allow empty string as partition: rule: $\mathrm{S} \rightarrow \mathrm{NP}$ VP:

NP	VP
In	In the Olympic Games,...
In the Olympic Games, Greeks...	
In the Olympic	Olympic Games, Greeks ran...
In the Olympic Games,	Games, Greeks ran races... Greeks ran races, jumped... \ldots
In the Olympic...	java.
In the Olympic...	

Unger's Parser with ϵ Rules II

- problem: loops
rules: $S \rightarrow N P$ VP, and VP \rightarrow V S
sentence: The Magna Carta provided that no free man should be hanged twice for the same offense.
- problematic partition:

NP	VP
	The Magna Carta provided that...

	V	S
		The Magna Carta provided...

Unger's Parser with ϵ Rules III

Solution: check in decision history whether the same situation has occurred before

$$
\begin{aligned}
& S \Rightarrow \text { The Magna ... same offense. } \\
& \mathrm{NP} \Rightarrow \epsilon ; \mathrm{VP} \Rightarrow \text { The Magna .. same offense. } \\
& \mathrm{V} \Rightarrow \epsilon ; \mathrm{S} \Rightarrow \text { The Magna .. same offense. } \\
& \text { cut off! }
\end{aligned}
$$

$$
\text { NP } \Rightarrow \text { The; VP } \Rightarrow \text { Magna . . . same offense }
$$

Example

Sentence:
shit happens on the other side of the wormhole (Trekkism, DS9)
Grammar:

S	\rightarrow NP VP	
NP	$\rightarrow \mathrm{N} \mid \mathrm{DET} \mathrm{N} \mathrm{\mid} \mathrm{DET} \mathrm{ADJ} \mathrm{N} \mathrm{\mid} \mathrm{NP} \mathrm{PP}$	
VP	$\rightarrow \mathrm{V} \mathrm{PP}$	
PP	$\rightarrow \mathrm{P} \mathrm{NP}$	
ADJ	\rightarrow other	
DET	\rightarrow the	
N	\rightarrow shit \| side	wormhole
P	\rightarrow on \| of	
V	\rightarrow happens	

