Computational Linguistics II: Parsing Unger's Parsing Method

Frank Richter & Jan-Philipp Söhn

fr@sfs.uni-tuebingen.de, jp.soehn@uni-tuebingen.de

November 29th, 2006

- top-down processing
- guesses how to split the input string into partitions that can be derived from a particular daughter
- all possible splits are tried
- assume: ε-free grammar
- example: rule: S \rightarrow PP NP VP | NP VP | VP sentence: In the Olympic Games, Greeks ran races, jumped, hurled the biscuits, and threw the java.

Unger's Parser – Example

$\bullet \ S \to VP : \ easy$

 \Rightarrow VP \rightarrow In the Olympic Games, Greeks ran races, jumped, hurled the biscuits, and threw the java.

•
$$S \rightarrow NP VP$$
:

NP	VP		
In	the Olympic Games, Greeks		
In the	Olympic Games, Greeks ran		
In the Olympic	Games, Greeks ran races		
In the Olympic Games,	Greeks ran races, jumped		
	· · · ·		
In the Olympic	java.		

Unger's Parser – Example II

• $S \rightarrow PP NP VP$:

PP	NP	VP		
In	the	Olympic Games,		
In	the Olympic	Games, Greeks		
		•		
In the	Olympic	Games, Greeks ran		
In the	Olympic Games,	Greeks ran		
· · · ·				
In the Olympic	the	java.		

- then try all rules and all partitions for PP, NP, VP
- each symbol needs to cover at least one word ⇒ the strings will always become shorter

- can be executed depth-first or breadth-first
- immense number of comparisons: exponential time complexity
- possible optimization: discard splits for which terminals do not match: rule: NPK → NP and NP impossible split: {NP many poems and}{and verse}{NP and also literature}
- more optimizations: e.g. compute minimum number of terminals that derive from a non-terminal i.e. non-terminal: VP, minimal length for VP = 3, then discard all partitions of less than 3 words

- if $Z \in T$ and $Z = w_k$, finish
- $\textcircled{2} \text{ select rule } Z \to X_1 \dots X_n$
- split up sentence in n parts w₁ ... w_n in all different ways
- If or all k = 1 to n: if X_k ∈ T and X_k ≠ w_k, discard split otherwise store split
- Select one split, for all parts Z repeat steps 1 4

Towards a Real Algorithm

- What knowledge needs to be preserved during the parse?
- What data structures do we need?
- What happens if a possibility turns out to be wrong?

Unger's Parser with ϵ Rules

 allow empty string as partition: rule: S → NP VP:

NP	VP
	In the Olympic Games,
In	the Olympic Games, Greeks
In the	Olympic Games, Greeks ran
In the Olympic	Games, Greeks ran races
In the Olympic Games,	Greeks ran races, jumped
In the Olympic	java.
In the Olympic	

Unger's Parser with ϵ Rules II

• problem: loops rules: S \rightarrow NP VP, and VP \rightarrow V S sentence: The Magna Carta provided that no free man should be hanged twice for the same offense.

problematic partition:

NP	VP
	The Magna Carta provided that

V	S
	The Magna Carta provided

Solution: check in decision history whether the same situation has occurred before

$$\begin{split} \mathsf{S} \Rightarrow \mathsf{The} \ \mathsf{Magna} \ \dots \ \mathsf{same} \ \mathsf{offense}. \\ \mathsf{NP} \Rightarrow \epsilon; \ \mathsf{VP} \Rightarrow \mathsf{The} \ \mathsf{Magna} \ \dots \ \mathsf{same} \ \mathsf{offense}. \\ \mathsf{V} \Rightarrow \epsilon; \ \mathsf{S} \Rightarrow \mathsf{The} \ \mathsf{Magna} \ \dots \ \mathsf{same} \ \mathsf{offense}. \\ \mathbf{cut} \ \mathsf{off!} \end{split}$$

 $\mathsf{NP} \Rightarrow \mathsf{The}; \, \mathsf{VP} \Rightarrow \mathtt{Magna} \ \ldots \ \mathtt{same} \ \mathtt{offense}$

. . .

Example

Sentence:

shit happens on the other side of the wormhole (Trekkism, DS9)

Grammar:

- $\mathsf{S} \quad \rightarrow \quad \mathsf{NP} \; \mathsf{VP}$
- $\mathsf{NP} \quad \rightarrow \quad \mathsf{N} \mid \mathsf{DET} \ \mathsf{N} \mid \mathsf{DET} \ \mathsf{ADJ} \ \mathsf{N} \mid \mathsf{NP} \ \mathsf{PP}$
- $VP \quad \rightarrow \quad V \; PP$
- $PP \rightarrow P NP$
- $\mathsf{ADJ} \quad \to \quad \mathsf{other}$
- $\mathsf{DET} \ \to \ \mathsf{the}$
- $\mathsf{N} \qquad \rightarrow \quad \mathtt{shit} \ | \ \mathsf{side} \ | \ \mathsf{wormhole}$
- $\mathsf{P} \qquad \rightarrow \quad \mathsf{on} \mid \mathsf{of}$
- $V \quad \ \ \rightarrow \quad happens$