
Computational Linguistics II: Parsing
Left-corner-Parsing

Frank Richter & Jan-Philipp Söhn

fr@sfs.uni-tuebingen.de, jp.soehn@uni-tuebingen.de

January 15th, 2007

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 1 / 22

Overview (Modified!)

Top-down Bottom-up

Non-directional Unger parser CYK parser
methods

Directional methods predict/match shift/reduce
Depth-first (backtrack) Depth-first (backtrack)
Breadth-first, DCGs Breadth-first (Earley)

Left-corner

Linear LR(k)
directional methods SLR(1)

Efficient general Tomita
directional methods

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 2 / 22

Left-corner-Parsing The Idea

The idea behind left-corner-parsing

Left corner: the leftmost symbol on the right of a rule:
k0 → k1 k2 ... kn

Normal bottom-up: all k1 to kn must be recognized for applying the
rule

Left-corner: it suffices that k1 is recognized

k2 to kn and the dominating nodes of k1 are predicted in a top-down
fashion

Left-corner combines bottom-up and top-down strategies.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 3 / 22

Left-corner-Parsing The Idea

The order of nodes

If a node n immediately dominates the nodes n1 , ..., nm,
then all nodes below n1 precede n

n precedes all other nodes dominated by n

all nodes dominated by ni precede all nodes dominated by ni+1

Infix notation!!

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 4 / 22

Left-corner-Parsing Example

An example

Assume the following grammar:
1: S → AS 2: S → BB 3: A → bAA
4: A → a 5: B → b 6: B → c

Sentence: bbaaacc

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 5 / 22

Left-corner-Parsing Demarcation to other strategies

Differences between left-corner and Earley

Both algorithms combine TD and BU. However, left-corner parsing
starts with a BU step and continues TD, Earley proceeds the other
way round.

Left-corner parsing is originally stack-based, Earley parsing is
chart-based.

Both algorithms use a way to store categories which are to be
completed. Left-corner uses an additional stack, Earley uses active
arcs in the chart.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 6 / 22

Left-corner-Parsing Demarcation to other strategies

Differences between left-corner and Earley

Both algorithms combine TD and BU. However, left-corner parsing
starts with a BU step and continues TD, Earley proceeds the other
way round.

Left-corner parsing is originally stack-based, Earley parsing is
chart-based.

Both algorithms use a way to store categories which are to be
completed. Left-corner uses an additional stack, Earley uses active
arcs in the chart.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 6 / 22

Left-corner-Parsing Demarcation to other strategies

Differences between left-corner and Earley

Both algorithms combine TD and BU. However, left-corner parsing
starts with a BU step and continues TD, Earley proceeds the other
way round.

Left-corner parsing is originally stack-based, Earley parsing is
chart-based.

Both algorithms use a way to store categories which are to be
completed. Left-corner uses an additional stack, Earley uses active
arcs in the chart.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 6 / 22

Parsing Strategies

Parsing strategies summarized

Assume the following grammar:
1: S → NP VP 2: NP → n 3: NP → d n 4: VP → v NP

5: n → John
6: n → apple
7: d → an
8: v → eats

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 7 / 22

Parsing Strategies Top-down

Parsing strategies: Top-down parsing

input derivation pos. action rule

John eats an apple S 1
John eats an apple NP VP 1 predict 1
John eats an apple n VP 1 predict 2
John eats an apple n VP 2 match 5

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 8 / 22

Parsing Strategies Top-down

Parsing strategies: Top-down parsing

input derivation pos. action rule

John eats an apple S 1
John eats an apple NP VP 1 predict 1
John eats an apple n VP 1 predict 2
John eats an apple n VP 2 match 5

eats an apple v NP 2 predict 4
eats an apple v NP 3 match 8

an apple n 3 predict 2
an apple n 3 ERROR
an apple NP 3 backtrack
an apple d n 3 predict 3
an apple d n 4 match 7

apple n 5 match 6

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 9 / 22

Parsing Strategies Bottom-up

Parsing strategies: Bottom-up parsing

input derivation-stack pos. action rule

John eats an apple – 1
eats an apple John 2 shift
eats an apple n 2 reduce 5
eats an apple NP 2 reduce 2

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 10 / 22

Parsing Strategies Bottom-up

Parsing strategies: Bottom-up parsing

input derivation-stack pos. action rule

John eats an apple – 1
eats an apple John 2 shift
eats an apple n 2 reduce 5
eats an apple NP 2 reduce 2

an apple NP eats 3 shift
an apple NP v 3 reduce 8

apple NP v an 4 shift
apple NP v d 4 reduce 7

– NP v d apple 5 shift
– NP v d n 5 reduce 6
– NP v NP 5 reduce 3
– NP VP 5 reduce 4
– S 5 reduce 1

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 11 / 22

Parsing Strategies Left-corner

Parsing strategies: Left-corner parsing

input categories constituents action rule

John eats an apple S –
eats an apple S t n reduce 5

n eats an apple S – move
n eats an apple S t NP reduce 2

NP eats an apple S – move
eats an apple S t VP S reduce 1

an apple S t VP t S v reduce 8
v an apple S t VP S move

an apple S t VP t NP S VP reduce 4
apple S t VP t NP t S VP d reduce 7

d apple S t VP t NP S VP move

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 12 / 22

Parsing Strategies Left-corner

Parsing strategies: Left-corner parsing

input categories constituents action rule

John eats an apple S –
eats an apple S t n reduce 5

n eats an apple S – move
n eats an apple S t NP reduce 2

NP eats an apple S – move
eats an apple S t VP S reduce 1

an apple S t VP t S v reduce 8
v an apple S t VP S move

an apple S t VP t NP S VP reduce 4
apple S t VP t NP t S VP d reduce 7

d apple S t VP t NP S VP move
apple S t VP t NP t n S VP NP reduce 3

– S t VP t NP t n t S VP NP n reduce 6
n S t VP t NP t n S VP NP move
– S t VP t NP t S VP NP remove

NP S t VP t NP S VP move
– S t VP t S VP remove

VP S t VP S move
– S t S remove
S S – move
– – – remove

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 13 / 22

Problems of left-corner parsing

Problems of left-corner parsing

Ambiguity (identical left corners in several rules) → look-ahead!

Left recursion

ǫ-rules

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 14 / 22

Problems of left-corner parsing

Problems of left-corner parsing

Ambiguity (identical left corners in several rules) → look-ahead!

Left recursion

ǫ-rules

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 14 / 22

Problems of left-corner parsing

Problems of left-corner parsing

Ambiguity (identical left corners in several rules) → look-ahead!

Left recursion

ǫ-rules

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 14 / 22

Problems of left-corner parsing Left recursion

Left recursion

⇒ No problem for left-corner parser with look-ahead

Example 1 (direct recursion):
1: S → S b 2: S → a

yield: a b*

Example 2 (indirect recursion):
1: S → A d 2: A → B C 3: A → a
4: B → A 5: B → b 6: C → c

yield: (a|b) c* d

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 15 / 22

Problems of left-corner parsing Left recursion

Direct left recursion

input categories constituents action rule

a b b b S –
b b b S t S reduce 2

S b b b S – move
b b b S t b S reduce 1

b b S t S remove
S b b S – move

b b S t b S reduce 1
b S t S remove

S b S – move
b S t b S reduce 1
– S t S remove
S S – move
– – – remove
– S t b S reduce 1

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 16 / 22

Problems of left-corner parsing Left recursion

Indirect left recursion

input categories constituents action rule

b c c c d S –
c c c d S t B reduce 5

B c c c d S – move
c c c d S t C A reduce 2

c c d S t C t A C reduce 6
C c c d S t C A move

c c d S t A remove
A c c d S – move

c c d S t B reduce 4
B c c d S – move

c c d S t C A reduce 2
c d S t C t A C reduce 6

C c d S t C A move
c d S t A remove

A c d S – move
c d S t B reduce 4

B c d S – move
c d S t C A reduce 2

d S t C t A reduce 6
C d S t C A move

d S t A remove
A d S – move

d S t d S reduce 1
– S t S remove
S S – move
– – – remove

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 17 / 22

Problems of left-corner parsing ǫ-rules

ǫ-rules

Two different kinds of ǫ-rules:

1 VP → V Adv Adv → ǫ A man sleeps (quietly).

2 NP → Det N Det → ǫ (The) men sleep.

Left corner of the NP rule might be empty. Problem: Left corners are
parsed bottom-up.
Empty productions at other places are parsed top-down, therefore there is
no problem.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 18 / 22

Problems of left-corner parsing ǫ-rules

ǫ-rules

Two different kinds of ǫ-rules:

1 VP → V Adv Adv → ǫ A man sleeps (quietly).

2 NP → Det N Det → ǫ (The) men sleep.

Left corner of the NP rule might be empty. Problem: Left corners are
parsed bottom-up.
Empty productions at other places are parsed top-down, therefore there is
no problem.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 18 / 22

Problems of left-corner parsing ǫ-rules

ǫ-rules II

Idea: predefine left corners in a relation link:

link(np, s)

link(det, np)

link(det, s) (transitivity)
link(v, vp)

...

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 19 / 22

Problems of left-corner parsing ǫ-rules

ǫ-rules III

This prevents an erroneous application of an ǫ-rule.

lcp(C, [Word|Rest]-RestDiff) :- #Left-corner parse (symbol, input)
word(Word, LC), #Take a word from input and get its category LC
complete(LC, C, Rest-RestDiff). #Complete LC to a constituent
using the rest of the input (we won’t define complete here)

lcp(C, S-Rest) :- #Left-corner parse (symbol, input) with ǫ-rules
rule(LHS, []), #a rule LHS → ǫ

link(LHS, C), #LHS and C must be in a link relation
complete(LHS, C, S-Rest). #complete LHS to a constituent using the
rest of the input

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 20 / 22

Problems of left-corner parsing ǫ-rules

ǫ-rules IV

Problem solved? Yes and No!

Rules of type 2 are handled with link.
lcp(np, [det,n]) :-

rule(det, []),

link(det, np),

complete...

Rules of type 1 are not! Why? C and LHS are identical.
lcp(adv, S-Rest) :-

rule(adv, []),

link(adv, adv),

complete...

Therefore, link must be reflexive.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 21 / 22

Problems of left-corner parsing ǫ-rules

ǫ-rules IV

Problem solved? Yes and No!

Rules of type 2 are handled with link.
lcp(np, [det,n]) :-

rule(det, []),

link(det, np),

complete...

Rules of type 1 are not! Why? C and LHS are identical.
lcp(adv, S-Rest) :-

rule(adv, []),

link(adv, adv),

complete...

Therefore, link must be reflexive.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 21 / 22

Problems of left-corner parsing ǫ-rules

Summary and open questions

Summary:
With the correct definition of link (transitive and reflexive closure)
ǫ-rules are not a problem any more.

Open questions:
What about similar rules? (VP → V NP PP VP → V NP NP)
Use a chart to store intermediate results!

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 22 / 22

Problems of left-corner parsing ǫ-rules

Summary and open questions

Summary:
With the correct definition of link (transitive and reflexive closure)
ǫ-rules are not a problem any more.

Open questions:
What about similar rules? (VP → V NP PP VP → V NP NP)
Use a chart to store intermediate results!

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 15th, 2007 22 / 22

	Left-corner-Parsing
	The Idea
	Example
	Demarcation to other strategies

	Parsing Strategies
	Top-down
	Bottom-up
	Left-corner

	Problems of left-corner parsing
	Left recursion
	-rules

