Computational Linguistics Il: Parsing
LR-Parsing

Frank Richter & Jan-Philipp Sohn

fr@sfs.uni-tuebingen.de, jp.soehn®@uni-tuebingen.de

January 29th, 2007

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 1/21



Overview

Overview

© Properties of det. cf. languages

Computational Linguistics Il: Parsing January 29th, 2007 2/21



Overview

Overview

© Properties of det. cf. languages
© Non-Deterministic = Det. FSA

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing

January 29th, 2007

2/21



Overview

Overview

© Properties of det. cf. languages
© Non-Deterministic = Det. FSA
© LR(1) and € rule

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing

January 29th, 2007

2/21



Overview

Overview

© Properties of det. cf. languages
© Non-Deterministic = Det. FSA
© LR(1) and € rule
© LALR(1) Parsing

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 2/21



Overview

Overview

© Properties of det. cf. languages
© Non-Deterministic = Det. FSA
© LR(1) and € rule

© LALR(1) Parsing

© SLR(1) Parsing with JFLAP

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 2/21



Once Again: The Big Picture

hierarchy grammar machine other
type 3 reg. grammar DFA reg. expressions
NFA
det. cf. LR(k) grammar | DPDA
type 2 CFG PDA
type 1 CSG LBA
type 0 unrestricted Turing
grammar machine

DFA: Deterministic finite state automaton
(D)PDA: (Deterministic) Pushdown automaton
CFG: Context-free grammar

CSG: Context-sensitive grammar

LBA: Linear bounded automaton

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 3/21



Closure Properties

Union

@ det. cf. languages are not closed
Concatenation

@ det. cf. languages are not closed
Complementation

@ det. cf. languages are closed
Kleene star

@ det. cf. languages are not closed
Intersection

@ det. cf. languages are not closed

@ the intersection of a det. cf. language with a regular language is also
det. cf.

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing

January 29th, 2007

4 /21



Properties of det. cf. languages Decision Properties

Decision Properties

Word problem

@ all type 2 languages: decidable (CYK algorithm)
@ det. cf. languages: linear complexity
Emptiness problem

@ all type 2 languages: decidable (marking of symbols in grammar)
Finiteness problem

@ all type 2 languages: decidable (cycles in grammar-graph)
Equivalence problem

@ det. cf. languages: decidable (proved 1997)
Intersection problem

@ det. cf. languages: not decidable (not closed unter intersection)

Richter/Séhn (WS 2006/07)

Computational Linguistics Il: Parsing January 29th, 2007 5/21



"What are LR(k) grammars?”

@ large subclass of type 2 grammars

Computational Linguistics Il: Parsing January 29th, 2007 6 /21



"What are LR(k) grammars?”

@ large subclass of type 2 grammars

@ LR grammars are not ambiguous

Computational Linguistics Il: Parsing January 29th, 2007 6 /21



"What are LR(k) grammars?”

@ large subclass of type 2 grammars

@ LR grammars are not ambiguous

@ matter of definition: a grammar is LR if it can be parsed by an LR
parser...

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing

January 29th, 2007

6 /21



"What are LR(k) grammars?”

@ large subclass of type 2 grammars
@ LR grammars are not ambiguous

@ matter of definition: a grammar is LR if it can be parsed by an LR
parser...

@ for a grammar to be LR: recognize a RHS of a production with k
input symbols of look-ahead

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 6 /21



"What are LR(k) grammars?”

@ large subclass of type 2 grammars

@ LR grammars are not ambiguous

@ matter of definition: a grammar is LR if it can be parsed by an LR
parser...

@ for a grammar to be LR: recognize a RHS of a production with k
input symbols of look-ahead

@ for a grammar to be LL: recognize the use of a production seeing only
the first k symbols of its RHS.

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 6 /21



"What are LR(k) grammars?”

@ large subclass of type 2 grammars
@ LR grammars are not ambiguous

@ matter of definition: a grammar is LR if it can be parsed by an LR
parser...

@ for a grammar to be LR: recognize a RHS of a production with k
input symbols of look-ahead

@ for a grammar to be LL: recognize the use of a production seeing only
the first k symbols of its RHS.

@ thus, LR grammars can describe more languages

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 6 /21



Prerequisite: Non-Deterministic = Det. FSA

@ recognition with a non-deterministic FSA is very inefficient: involves
extensive search

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 7/21



Prerequisite: Non-Deterministic = Det. FSA

@ recognition with a non-deterministic FSA is very inefficient: involves
extensive search

@ at every point when different transitions are possible, try both
alternatives

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 7/21




Prerequisite: Non-Deterministic = Det. FSA

@ recognition with a non-deterministic FSA is very inefficient: involves
extensive search

@ at every point when different transitions are possible, try both
alternatives

@ solution: convert non-deterministic FSA into deterministic FSA

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 7/21




Prerequisite: Non-Deterministic = Det. FSA

@ recognition with a non-deterministic FSA is very inefficient: involves
extensive search

@ at every point when different transitions are possible, try both
alternatives

@ solution: convert non-deterministic FSA into deterministic FSA

@ recognized language must remain the same!

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 7/21



Prerequisite: Non-Deterministic = Det. FSA

@ recognition with a non-deterministic FSA is very inefficient: involves
extensive search

@ at every point when different transitions are possible, try both
alternatives

@ solution: convert non-deterministic FSA into deterministic FSA

@ recognized language must remain the same!

@ two steps:

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 7/21



Prerequisite: Non-Deterministic = Det. FSA

@ recognition with a non-deterministic FSA is very inefficient: involves
extensive search

@ at every point when different transitions are possible, try both
alternatives

@ solution: convert non-deterministic FSA into deterministic FSA

@ recognized language must remain the same!

@ two steps:
@ subset construction

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 7/21



Prerequisite: Non-Deterministic = Det. FSA

@ recognition with a non-deterministic FSA is very inefficient: involves
extensive search

@ at every point when different transitions are possible, try both
alternatives

@ solution: convert non-deterministic FSA into deterministic FSA

@ recognized language must remain the same!

@ two steps:

@ subset construction
@ reconnecting states

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 7/21



Prerequisite: Non-Deterministic = Det. FSA

@ recognition with a non-deterministic FSA is very inefficient: involves
extensive search

@ at every point when different transitions are possible, try both
alternatives

@ solution: convert non-deterministic FSA into deterministic FSA

@ recognized language must remain the same!

@ two steps:

@ subset construction
@ reconnecting states

@ deterministic algorithms generally have more states, ca. 10xn

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 7/21



Subset Construction

@ old start state = new start state

Computational Linguistics Il: Parsing January 29th, 2007 8/21



Subset Construction

@ old start state = new start state

@ constructing a state tree:
for each new state s in the new automaton:
for each element e in the lexicon:
create a new state x which is the subset of all states that can be
reached from s via e
create a transition from s to x with label e

newly created states which already exist receive a mark but are not
pursued further

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 8/21



Subset Construction

@ old start state = new start state

@ constructing a state tree:
for each new state s in the new automaton:
for each element e in the lexicon:

create a new state x which is the subset of all states that can be
reached from s via e
create a transition from s to x with label e

newly created states which already exist receive a mark but are not

pursued further

@ result: a deterministic state tree

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 8/21



Prerequisite to LR Parsing

Example

Computational Linguistics Il: Parsing January 29th, 2007 9/21



Example

Computational Linguistics Il: Parsing January 29th, 2007 10 / 21



Prerequisite to LR Parsing

Example
a

=2
C

Computational Linguistics Il: Parsing January 29th, 2007 11 /21



Example

a
b

Computational Linguistics Il: Parsing

January 29th, 2007

12 /21



Prerequisite to LR Parsing

Example
a a
b b
a
o= : e

Computational Linguistics Il: Parsing January 29th, 2007 13 /21



Prerequisite to LR Parsing

Example

Computational Linguistics Il: Parsing January 29th, 2007 14 /21



Reconnecting the Automaton

@ delete transitions which lead to
error states

©

@ combine marked states with their
first occurrence

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 15 / 21



Reconnecting the Automaton

@ delete transitions which lead to
error states

@ combine marked states with their
first occurrence

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 16 / 21



Prerequisite to LR Parsing

Reconnecting the Automaton

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing

January 29th, 2007

17 / 21



LR(1) and € rules

@ we know that € rules are difficult for bottom-up parsers: can be
inserted anywhere between words, any number of times

Computational Linguistics Il: Parsing January 29th, 2007 18 / 21



LR(1) and € rules

@ we know that € rules are difficult for bottom-up parsers: can be
inserted anywhere between words, any number of times

@ in non-deterministic automaton: no problem, just like any other rule

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 18 / 21



LR Parsing

LR(1) and € rules

@ we know that € rules are difficult for bottom-up parsers: can be
inserted anywhere between words, any number of times

@ in non-deterministic automaton: no problem, just like any other rule

@ in deterministic automaton: only works when look-ahead is different
from any other rule in the same state

Richter/Séhn (WS 2006/07)

Computational Linguistics Il: Parsing January 29th, 2007 18 / 21



LR Parsing

LR(1) and € rules

@ we know that € rules are difficult for bottom-up parsers: can be
inserted anywhere between words, any number of times

@ in non-deterministic automaton: no problem, just like any other rule

@ in deterministic automaton: only works when look-ahead is different
from any other rule in the same state

@ otherwise, a shift/reduce or a reduce/reduce conflict results

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 18 / 21



LR(1) and € rules

@ we know that € rules are difficult for bottom-up parsers: can be
inserted anywhere between words, any number of times

@ in non-deterministic automaton: no problem, just like any other rule

@ in deterministic automaton: only works when look-ahead is different
from any other rule in the same state

@ otherwise, a shift/reduce or a reduce/reduce conflict results

@ one needs to be careful when constructing look-ahead sets: category
that dominates € is “transparent”

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 18 / 21



LR(1) and € rules

@ we know that € rules are difficult for bottom-up parsers: can be
inserted anywhere between words, any number of times

@ in non-deterministic automaton: no problem, just like any other rule

@ in deterministic automaton: only works when look-ahead is different
from any other rule in the same state

@ otherwise, a shift/reduce or a reduce/reduce conflict results

@ one needs to be careful when constructing look-ahead sets: category
that dominates € is “transparent”

S —>ABCA—a,B—e|bC—c
FOLLOW(A)= {b, c}

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 18 / 21



LR(1) and € rules

@ we know that € rules are difficult for bottom-up parsers: can be
inserted anywhere between words, any number of times

@ in non-deterministic automaton: no problem, just like any other rule

@ in deterministic automaton: only works when look-ahead is different
from any other rule in the same state

@ otherwise, a shift/reduce or a reduce/reduce conflict results

@ one needs to be careful when constructing look-ahead sets: category
that dominates € is “transparent”

oS —>ABCA—a;B—e|bC—c
FOLLOW(A)= {b, c}

@ the presence of € rules in a grammar reduces the likelihood of the
grammar to be LR(1)

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 18 / 21



FIRST and FOLLOW

The FIRST set
Q FIRST(e) =€

The FOLLOW set

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing

January 29th, 2007

19 /21



FIRST and FOLLOW
The FIRST set

Q FIRST(e) =€
Q FIRST(a)=a

The FOLLOW set

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing

January 29th, 2007

19 /21



FIRST and FOLLOW

The FIRST set
Q FIRST(e) =€
Q FIRST(a)=a
© FIRST(A) is the union of FIRST(w) for all RHS w of A.

The FOLLOW set

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 19 /21



FIRST and FOLLOW

The FIRST set
Q FIRST(e) =€
Q FIRST(a)=a
© FIRST(A) is the union of FIRST(w) for all RHS w of A.
o

Let every X; be either a terminal or a variable:
FIRST(X1X2X3...Xn) = FIRST(X) if X1 does not derive ¢
FIRST(X1X2X3..Xn) = FIRST(X;) — e U FIRST(X2X3..Xy) if
X1 derives ¢

The FOLLOW set

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 19 /21



FIRST and FOLLOW

The FIRST set
Q FIRST(e) =€
Q FIRST(a)=a
© FIRST(A) is the union of FIRST(w) for all RHS w of A.

© Let every X; be either a terminal or a variable:
FIRST(X1X2X3...Xy) = FIRST(X;) if X; does not derive €
FIRST(X1X2X3..Xn) = FIRST(X;) — e U FIRST(X2X3..Xy) if
X1 derives €
The FOLLOW set

© # isin FOLLOW(S)

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 19 /21



FIRST and FOLLOW

The FIRST set
Q FIRST(e) =€
Q FIRST(a)=a
© FIRST(A) is the union of FIRST(w) for all RHS w of A.

© Let every X; be either a terminal or a variable:
FIRST(X1X2X3...Xy) = FIRST(X;) if X; does not derive €
FIRST(X1X2X3..Xn) = FIRST(X;) — e U FIRST(X2X3..Xy) if
X1 derives €
The FOLLOW set
© # is in FOLLOW(S)
Q for A—vB, FOLLOW(A) is in FOLLOW(B).

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 19 /21



FIRST and FOLLOW

The FIRST set
Q FIRST(e) =€
Q FIRST(a)=a
© FIRST(A) is the union of FIRST(w) for all RHS w of A.

© Let every X; be either a terminal or a variable:
FIRST(X1X2X3...Xy) = FIRST(X;) if X; does not derive €
FIRST(X1X2X3..Xn) = FIRST(X;1) — e U FIRST(X2X3..Xy) if
X1 derives €
The FOLLOW set
© # is in FOLLOW(S)
Q for A—vB, FOLLOW(A) is in FOLLOW(B).

© for A—vBw:
FIRST(w) — € is in FOLLOW(B)
if e € FIRST(w), then FOLLOW(A) is in FOLLOW(B)

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 19 /21




LALR(1) Parsing

@ problem with LR(1) parsing: huge tables

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 20 /21



LALR(1) Parsing

@ problem with LR(1) parsing: huge tables

@ idea: go back to LR(0) table: LR(1) states can be collapsed to LR(0)
states without changing transitions

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 20 /21



LALR(1) Parsing

@ problem with LR(1) parsing: huge tables

@ idea: go back to LR(0) table: LR(1) states can be collapsed to LR(0)
states without changing transitions

@ only missing information: look-aheads!
Can be copied from LR(1) states.

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 20 /21




LALR(1) Parsing

@ problem with LR(1) parsing: huge tables

@ idea: go back to LR(0) table: LR(1) states can be collapsed to LR(0)
states without changing transitions

@ only missing information: look-aheads!
Can be copied from LR(1) states.

@ result: Look Ahead LR(0) with 1 look-ahead: LALR(1)

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 20 /21



LALR(1) Parsing

@ problem with LR(1) parsing: huge tables

@ idea: go back to LR(0) table: LR(1) states can be collapsed to LR(0)
states without changing transitions

@ only missing information: look-aheads!
Can be copied from LR(1) states.

@ result: Look Ahead LR(0) with 1 look-ahead: LALR(1)
@ BUT: need to construct huge LR(1) automaton first!

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 20 /21



LALR(1) Parsing

@ problem with LR(1) parsing: huge tables

@ idea: go back to LR(0) table: LR(1) states can be collapsed to LR(0)
states without changing transitions

@ only missing information: look-aheads!
Can be copied from LR(1) states.

@ result: Look Ahead LR(0) with 1 look-ahead: LALR(1)
@ BUT: need to construct huge LR(1) automaton first!

@ needed: technique to insert look-ahead information without LR(1)
automaton

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 20 /21



Channel Algorithm

@ see Sandra’s slides

Computational Linguistics Il: Parsing January 29th, 2007 21 /21



SLR(1)

A simpler way:
@ Extract the FOLLOW sets from the grammar

Computational Linguistics Il: Parsing January 29th, 2007 22 /21



SLR(1)

A simpler way:
@ Extract the FOLLOW sets from the grammar

@ construct LR(0) automaton

Computational Linguistics Il: Parsing

January 29th, 2007

22 /21



SLR(1)

A simpler way:
@ Extract the FOLLOW sets from the grammar
@ construct LR(0) automaton
@ add look-aheads for each item A—... according to FOLLOW(A)

Richter/Séhn (WS 2006/07) Computational Linguistics Il: Parsing January 29th, 2007 22 /21



	Where we are
	Properties of det.cf.languages
	Closure Properties
	Decision Properties

	Prerequisite to LR Parsing
	LR Parsing

