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Where we are

Once Again: The Big Picture

hierarchy grammar machine other

type 3 reg. grammar DFA reg. expressions
NFA

det. cf. LR(k) grammar DPDA
type 2 CFG PDA
type 1 CSG LBA
type 0 unrestricted Turing

grammar machine

DFA: Deterministic finite state automaton
(D)PDA: (Deterministic) Pushdown automaton
CFG: Context-free grammar
CSG: Context-sensitive grammar

LBA: Linear bounded automaton
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Properties of det. cf. languages Closure Properties

Closure Properties

Union

det. cf. languages are not closed

Concatenation

det. cf. languages are not closed

Complementation

det. cf. languages are closed

Kleene star

det. cf. languages are not closed

Intersection

det. cf. languages are not closed

the intersection of a det. cf. language with a regular language is also
det. cf.
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Properties of det. cf. languages Decision Properties

Decision Properties

Word problem

all type 2 languages: decidable (CYK algorithm)

det. cf. languages: linear complexity

Emptiness problem

all type 2 languages: decidable (marking of symbols in grammar)

Finiteness problem

all type 2 languages: decidable (cycles in grammar-graph)

Equivalence problem

det. cf. languages: decidable (proved 1997)

Intersection problem

det. cf. languages: not decidable (not closed unter intersection)
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Properties of det. cf. languages Decision Properties

”What are LR(k) grammars?”

large subclass of type 2 grammars

LR grammars are not ambiguous

matter of definition: a grammar is LR if it can be parsed by an LR
parser...

for a grammar to be LR: recognize a RHS of a production with k
input symbols of look-ahead

for a grammar to be LL: recognize the use of a production seeing only
the first k symbols of its RHS.

thus, LR grammars can describe more languages
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Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 29th, 2007 6 / 21



Prerequisite to LR Parsing

Prerequisite: Non-Deterministic ⇒ Det. FSA

recognition with a non-deterministic FSA is very inefficient: involves
extensive search

at every point when different transitions are possible, try both
alternatives

solution: convert non-deterministic FSA into deterministic FSA

recognized language must remain the same!

two steps:
1 subset construction
2 reconnecting states

deterministic algorithms generally have more states, ca. 10×n
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Prerequisite to LR Parsing

Subset Construction

old start state = new start state

constructing a state tree:
for each new state s in the new automaton:

for each element e in the lexicon:
create a new state x which is the subset of all states that can be
reached from s via e

create a transition from s to x with label e

newly created states which already exist receive a mark but are not
pursued further

result: a deterministic state tree
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Prerequisite to LR Parsing

Example

S

A

B

C D

a

a

b

c

a
c b
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Prerequisite to LR Parsing

Reconnecting the Automaton

delete transitions which lead to
error states

combine marked states with their
first occurrence

S

ABa

a
BC

b

Da

b

AC
c

AC

c
D

a

BC
b

c

b

c
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Prerequisite to LR Parsing

Reconnecting the Automaton

delete transitions which lead to
error states

combine marked states with their
first occurrence

S AB
a

BC
b

Da

ACc

AC
c

Da

BC

b

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing January 29th, 2007 16 / 21



Prerequisite to LR Parsing

Reconnecting the Automaton

S AB

BC

AC

D
a

b

c

a

a

cb
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LR Parsing

LR(1) and ǫ rules

we know that ǫ rules are difficult for bottom-up parsers: can be
inserted anywhere between words, any number of times

in non-deterministic automaton: no problem, just like any other rule

in deterministic automaton: only works when look-ahead is different
from any other rule in the same state

otherwise, a shift/reduce or a reduce/reduce conflict results

one needs to be careful when constructing look-ahead sets: category
that dominates ǫ is “transparent”

S → ABC; A → a; B → ǫ | b; C → c
FOLLOW(A)= {b, c}

the presence of ǫ rules in a grammar reduces the likelihood of the
grammar to be LR(1)
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LR Parsing

FIRST and FOLLOW

The FIRST set

1 FIRST(ǫ) = ǫ

2 FIRST(a) = a

3 FIRST(A) is the union of FIRST(w) for all RHS w of A.

4 Let every X i be either a terminal or a variable:
FIRST(X 1X 2X 3 ...XN) = FIRST(X 1 ) if X1 does not derive ǫ

FIRST(X 1X 2X 3 ...XN) = FIRST(X 1 ) − ǫ ∪ FIRST(X 2X 3 ...XN) if
X 1 derives ǫ

The FOLLOW set

1 # is in FOLLOW(S)

2 for A→vB, FOLLOW(A) is in FOLLOW(B).

3 for A→vBw:
FIRST(w) − ǫ is in FOLLOW(B)
if ǫ ∈ FIRST(w), then FOLLOW(A) is in FOLLOW(B)
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LR Parsing

LALR(1) Parsing

problem with LR(1) parsing: huge tables

idea: go back to LR(0) table: LR(1) states can be collapsed to LR(0)
states without changing transitions

only missing information: look-aheads!
Can be copied from LR(1) states.

result: Look Ahead LR(0) with 1 look-ahead: LALR(1)

BUT: need to construct huge LR(1) automaton first!

needed: technique to insert look-ahead information without LR(1)
automaton
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needed: technique to insert look-ahead information without LR(1)
automaton
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LR Parsing

Channel Algorithm

see Sandra’s slides
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LR Parsing

SLR(1)

A simpler way:

Extract the FOLLOW sets from the grammar

construct LR(0) automaton

add look-aheads for each item A→... according to FOLLOW(A)
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