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Reminder: The Big Picture
hierarchy grammar machine other
type 3 reg. grammar DFA reg. expressions

NFA
det. cf. LR(k) grammar DPDA
type 2 CFG PDA
type 1 CSG LBA
type 0 unrestricted Turing

grammar machine

DFA: Deterministic finite state automaton

(D)PDA: (Deterministic) Pushdown automaton

CFG: Context-free grammar

CSG: Context-sensitive grammar
LBA: Linear bounded automaton
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Form of Grammars of Type 0–3
For i ∈ {0, 1, 2, 3}, a grammar 〈N,T, P, S〉 of Type i, with N

the set of non-terminal symbols, T the set of terminal
symbols (N and T disjoint, Σ = N ∪ T ), P the set of
productions, and S the start symbol (S ∈ N ), obeys the
following restrictions:

T3: Every production in P is of the form A → aB or A → ǫ,
with B,A ∈ N , a ∈ T .

T2: Every production in P is of the form A → x, with A ∈ N

and x ∈ Σ∗.

T1: Every production in P is of the form x1Ax2 → x1yx2, with
x1, x2 ∈ Σ∗, y ∈ Σ+, A ∈ N and the possible exception of
C → ǫ in case C does not occur on the righthand side of
a rule in P .

T0: No restrictions.
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Regular Languages

Regular grammars,

deterministic finite state automata,

nondeterministic finite state automata, and

regular expressions

characterize the same class of languages, viz. Type 3
languages.

Computational Linguistics II: Parsing – p.4



Reminder: DFA

Definition 1 (DFA) A deterministic FSA (DFA) is a
quintuple (Σ, Q, i, F, δ) where

Σ is a finite set called the alphabet,

Q is a finite set of states,

i ∈ Q is the initial state,

F ⊆ Q the set of final states, and

δ is the transition function from Q × Σ to Q.
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Reminder: Acceptance

Definition 3 (Acceptance)

Given a DFA M = (Σ, Q, i, F, δ), the language L(M)
accepted by M is

L(M) = {x ∈ Σ∗|δ̂(i, x) ∈ F}.
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Nondeterministic Finite-state Automata

Definition 4 (NFA) A nondeterministic finite-state
automaton is a quintuple (Σ, Q, S, F, δ) where

Σ is a finite set called the alphabet,

Q is a finite set of states,

S ⊆ Q is the set of initial states,

F ⊆ Q the set of final states, and

δ is the transition function from Q × Σ to Pow(Q).
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Theorem (Rabin/Scott)

For every language accepted by an NFA there is a DFA
which accepts the same language.
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Regular Expressions

Given an alphabet Σ of symbols the following are all and
only the regular expressions over the alphabet
Σ ∪ {Ø, 0, |, ∗, [, ]}:

Ø empty set

0 the empty string (ǫ, [])

σ for all σ ∈ Σ

[α | β] union (for α, β reg.ex.) (α ∪ β, α + β)

[α β] concatenation (for α, β reg.ex.)

[α*] Kleene star (for α reg.ex.)
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Meaning of Regular Expressions

L(Ø) = ∅ the empty language

L(0) = {0} the empty-string language

L(σ) = {σ}

L([α | β]) = L(α) ∪ L(β)

L([α β]) = L(α) ◦ L(β)

L([α∗]) = (L(α))*

Σ∗ is called the universal language. Note that the universal
language is given relative to a particular alphabet.
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Theorem (Kleene)

The set of languages which can be described by regular
expressions is the set of regular languages.
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Pumping Lemma for Regular Languages

uvw theorem:

For each regular language L there is an integer n such that
for each x ∈ L with |x| ≥ n there are u, v, w with x = uvw

such that

1. |v| ≥ 1,

2. |uv| ≤ n,

3. for all i ∈ IN0: uviw ∈ L.
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A Non-regular Language

Corollary
Let Σ be {a,b}.
L = {anbn | n ∈ IN} is not regular.

Proof
Assume k ∈ IN. For each akbk = uvw with v 6= ǫ

1. v = al, 0< l ≤ k, or

2. v = al1bl2, 0< l1, l2 ≤ k, or

3. v = bl, 0< l ≤ k, or

In each case we have uv2w 6∈ L. The result follows with the
Pumping Lemma.
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Natural and Regular Languages

Corollary German is not a regular language.

Proof Consider
L1={Ein Spion (der einen Spion)k observiertl wird meist

selbst observiert}
L1 is regular.

L1 ∩ Deutsch =
{Ein Spion (der einen Spion)k observiertk wird meist selbst
observiert}

is not regular.
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Theorem (Myhill/Nerode)

The following three statements are equivalent:

1. The set L ⊆ Σ∗ is accepted by some DFA.

2. L is the union of some of the equivalence classes of a
right invariant equivalence relation of finite index.

3. Let equivalence relation RL be defined by: xRLy iff for
all z ∈ Σ∗, xz ∈ L iff yz ∈ L. Then RL is of finite index.
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Minimization

For every nondeterministic finite-state automaton there
exists an equivalent deterministic automaton with a minimal
number of states.
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Closure Properties of Regular Languages

Regular languages are closed under

union

intersection

complement

product

Kleene star
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Closure Properties of Regular Languages

Regular languages are closed under

union (regular expression)

intersection (e.g. constructive)
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Decidable Problems for Reg. Languages

1. Word problem
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Decidable Problems for Reg. Languages

1. Word problem

2. Emptiness

3. Finiteness

4. Intersection

5. Equivalence
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