Computational Linguistics II: Parsing

Formal Languages: Regular Languages II

Frank Richter & Jan-Philipp Söhn

fr@sfs.uni-tuebingen.de, jp.soehn@uni-tuebingen.de

Reminder: The Big Picture

hierarchy	grammar	machine	other
type 3	reg. grammar	DFA	reg. expressions
		NFA	
det. cf.	LR(k) grammar	DPDA	
type 2	CFG	PDA	
type 1	CSG	LBA	
type 0	unrestricted	Turing	
	grammar	machine	

DFA: Deterministic finite state automaton (D)PDA: (Deterministic) Pushdown automaton CFG: Context-free grammar CSG: Context-sensitive grammar LBA: Linear bounded automaton

Form of Grammars of Type 0–3

For $i \in \{0, 1, 2, 3\}$, a grammar $\langle N, T, P, S \rangle$ of Type *i*, with *N* the set of non-terminal symbols, *T* the set of terminal symbols (*N* and *T* disjoint, $\Sigma = N \cup T$), *P* the set of productions, and *S* the start symbol ($S \in N$), obeys the following restrictions:

- T3: Every production in *P* is of the form $A \rightarrow aB$ or $A \rightarrow \epsilon$, with $B, A \in N, a \in T$.
- T2: Every production in *P* is of the form $A \rightarrow x$, with $A \in N$ and $x \in \Sigma^*$.
- T1: Every production in P is of the form $x_1Ax_2 \rightarrow x_1yx_2$, with $x_1, x_2 \in \Sigma^*$, $y \in \Sigma^+$, $A \in N$ and the possible exception of $C \rightarrow \epsilon$ in case C does not occur on the righthand side of a rule in P.
- T0: No restrictions.

Regular grammars,

- Regular grammars,
- deterministic finite state automata,

- Regular grammars,
- deterministic finite state automata,
- nondeterministic finite state automata, and

- Regular grammars,
- deterministic finite state automata,
- nondeterministic finite state automata, and
- regular expressions

- Regular grammars,
- deterministic finite state automata,
- nondeterministic finite state automata, and
- regular expressions

characterize the same class of languages, *viz.* Type 3 languages.

Reminder: DFA

Definition 1 (DFA) A deterministic FSA (DFA) is a quintuple $(\Sigma, Q, i, F, \delta)$ where

 Σ is a finite set called *the alphabet*,

Q is a finite set of *states*,

- $i \in Q$ is the *initial state*,
- $F \subseteq Q$ the set of *final states*, and

 δ is the transition function from $Q \times \Sigma$ to Q.

Reminder: Acceptance

Definition 3 (Acceptance)

Given a DFA $M = (\Sigma, Q, i, F, \delta)$, the language L(M) accepted by M is

$$L(M) = \{ x \in \Sigma^* | \hat{\delta}(i, x) \in F \}.$$

Nondeterministic Finite-state Automata

Definition 4 (NFA) A nondeterministic finite-state automaton is a quintuple $(\Sigma, Q, S, F, \delta)$ where

 Σ is a finite set called *the alphabet*,

Q is a finite set of *states*,

- $S \subseteq Q$ is the set of *initial states*,
- $F \subseteq Q$ the set of *final states*, and
- δ is the transition function from $Q \times \Sigma$ to Pow(Q).

Theorem (Rabin/Scott)

For every language accepted by an NFA there is a DFA which accepts the same language.

Regular Expressions

Given an alphabet Σ of symbols the following are all and only the regular expressions over the alphabet $\Sigma \cup \{ \mathbf{\emptyset}, 0, |, *, [,] \}$:

- Ø empty set
- 0 the empty string $(\epsilon, [])$
- $\sigma \qquad \text{ for all } \sigma \in \Sigma$
- $[\alpha \mid \beta]$ union (for α, β reg.ex.)
- ($\alpha \cup \beta$, $\alpha + \beta$)
- $[\alpha \beta]$ concatenation (for α, β reg.ex.)
- [α^*] Kleene star (for α reg.ex.)

Meaning of Regular Expressions

 $L(\emptyset) = \emptyset$ the empty language $L(0) = \{0\}$ the empty-string language $L(\sigma) = \{\sigma\}$ $L([\alpha \mid \beta]) = L(\alpha) \cup L(\beta)$ $L([\alpha \mid \beta]) = L(\alpha) \circ L(\beta)$ $L([\alpha^*]) = (L(\alpha))^*$

 Σ^* is called the universal language. Note that the universal language is given relative to a particular alphabet.

Theorem (Kleene)

The set of languages which can be described by regular expressions is the set of regular languages.

Pumping Lemma for Regular Languages

uvw theorem:

For each regular language *L* there is an integer *n* such that for each $x \in L$ with $|x| \ge n$ there are u, v, w with x = uvw such that

- **1.** $|v| \ge 1$,
- **2.** $|uv| \le n$,
- 3. for all $i \in \mathbb{N}_0$: $uv^i w \in L$.

A Non-regular Language

Corollary

Let Σ be {a,b}. L = {aⁿbⁿ | $n \in \mathbb{N}$ } is not regular.

Proof

Assume $k \in \mathbb{N}$. For each $a^k b^k = uvw$ with $v \neq \epsilon$

1.
$$v = a^{l}$$
, $0 < l \le k$, or
2. $v = a^{l_1}b^{l_2}$, $0 < l_1$, $l_2 \le k$, or
3. $v = b^{l}$, $0 < l \le k$, or

In each case we have $uv^2w \notin L$. The result follows with the Pumping Lemma.

Natural and Regular Languages

Corollary German is not a regular language.

Proof Consider

- L₁={Ein Spion (der einen Spion)^k observiert^l wird meist selbst observiert}
- L_1 is regular.

 $L_1 \cap \text{Deutsch} =$

{Ein Spion (der einen Spion)^k observiert^k wird meist selbst observiert}

is not regular.

Theorem (Myhill/Nerode)

The following three statements are equivalent:

- 1. The set $L \subseteq \Sigma^*$ is accepted by some DFA.
- 2. *L* is the union of some of the equivalence classes of a right invariant equivalence relation of finite index.
- 3. Let equivalence relation R_L be defined by: xR_Ly iff for all $z \in \Sigma^*$, $xz \in L$ iff $yz \in L$. Then R_L is of finite index.

Minimization

For every nondeterministic finite-state automaton there exists an equivalent deterministic automaton with a minimal number of states.

- 🥒 union
- intersection
- complement
- product
- Kleene star

- union (regular expression)
- intersection
- complement
- product (regular expression)
- Kleene star (regular expression)

- union (regular expression)
- intersection (e.g. constructive)
- complement
- product (regular expression)
- Kleene star (regular expression)

- union (regular expression)
- intersection (e.g. constructive)
- complement (DFA)
- product (regular expression)
- Kleene star (regular expression)

1. Word problem

- 1. Word problem
- 2. Emptiness

- 1. Word problem
- 2. Emptiness
- 3. Finiteness

- 1. Word problem
- 2. Emptiness
- 3. Finiteness
- 4. Intersection

- 1. Word problem
- 2. Emptiness
- 3. Finiteness
- 4. Intersection
- 5. Equivalence