Computational Linguistics II: Parsing Formal Languages: Context Free Languages I

Frank Richter & Jan-Philipp Söhn

fr@sfs.uni-tuebingen.de, jp.soehn@uni-tuebingen.de

November 6th, 2006

Once Again: The Big Picture

hierarchy	grammar	machine	other
type 3	reg. grammar	DFA	reg. expressions
		NFA	
det. cf.	LR(k) grammar	DPDA	
type 2	CFG	PDA	
type 1	CSG	LBA	
type 0	unrestricted	Turing	
	grammar	machine	

DFA: Deterministic finite state automaton (D)PDA: (Deterministic) Pushdown automaton CFG: Context-free grammar CSG: Context-sensitive grammar

LBA: Linear bounded automaton

Once Again: The Big Picture

hierarchy	grammar	machine	other
type 3	reg. grammar	DFA	reg. expressions
		NFA	
det. cf.	LR(k) grammar	DPDA	
type 2	CFG	PDA	
type 1	CSG	LBA	
type 0	unrestricted	Turing	
	grammar	machine	

DFA: Deterministic finite state automaton (D)PDA: (Deterministic) Pushdown automaton CFG: Context-free grammar CSG: Context-sensitive grammar

LBA: Linear bounded automaton

Form of Grammars of Type 0–3

For $i \in \{0, 1, 2, 3\}$, a grammar $\langle N, T, P, S \rangle$ of Type *i*, with *N* the set of non-terminal symbols, *T* the set of terminal symbols (*N* and *T* disjoint, $\Sigma = N \cup T$), *P* the set of productions, and *S* the start symbol ($S \in N$), obeys the following restrictions:

- T3: Every production in P is of the form $A \rightarrow aB$ or $A \rightarrow \epsilon$, with $B, A \in N, a \in T$.
- T2: Every production in P is of the form $A \rightarrow x$, with $A \in N$ and $x \in \Sigma^*$.
- T1: Every production in *P* is of the form $x_1Ax_2 \rightarrow x_1yx_2$, with $x_1, x_2 \in \Sigma^*$, $y \in \Sigma^+$, $A \in N$ and the possible exception of $C \rightarrow \epsilon$ in case *C* does not occur on the righthand side of a rule in *P*.

T0: No restrictions.

\bullet The language $L_1 = \{a^cb^c \mid c{=}3\}$ is regular.

- Draw an FSA for it!
- The language $L_2=\{a^nb^n\mid n{\geq}1\}$ is not regular.
- Why not? What is required?

- The language $L_1 = \{a^cb^c \mid c{=}3\}$ is regular.
- Draw an FSA for it!
- \bullet The language $L_2 = \{a^n b^n \mid n{\geq}1\}$ is not regular.
- Why not? What is required?

- The language $L_1 = \{a^cb^c \mid c{=}3\}$ is regular.
- Draw an FSA for it!
- \bullet The language $L_2 = \{a^n b^n \mid n{\geq}1\}$ is not regular.
- Why not? What is required?

- The language $L_1 = \{a^cb^c \mid c{=}3\}$ is regular.
- Draw an FSA for it!
- The language $L_2 = \{a^n b^n \mid n{\geq}1\}$ is not regular.
- Why not? What is required?

• Enhancement of an FSA

- Stack can store a string of any length. Functions PUSH and POP are only allowed at the top of the stack.
- By definition nondeterministic
- Acceptance by final state or by empty stack (equivalence!)
- A language that is recognized by an NPDA is context-free.

- Enhancement of an FSA
- Stack can store a string of any length. Functions PUSH and POP are only allowed at the top of the stack.
- By definition nondeterministic
- Acceptance by final state or by empty stack (equivalence!)
- A language that is recognized by an NPDA is context-free.

- Enhancement of an FSA
- Stack can store a string of any length. Functions PUSH and POP are only allowed at the top of the stack.
- By definition nondeterministic
- Acceptance by final state or by empty stack (equivalence!)
- A language that is recognized by an NPDA is context-free.

- Enhancement of an FSA
- Stack can store a string of any length. Functions PUSH and POP are only allowed at the top of the stack.
- By definition nondeterministic
- Acceptance by final state or by empty stack (equivalence!)
- A language that is recognized by an NPDA is context-free.

- Enhancement of an FSA
- Stack can store a string of any length. Functions PUSH and POP are only allowed at the top of the stack.
- By definition nondeterministic
- Acceptance by final state or by empty stack (equivalence!)
- A language that is recognized by an NPDA is context-free.

Defining the Pushdown-Automaton

Definition 1 (NPDA) A nondeterministic pushdown-automaton is a septuple $(\Sigma, Q, \Gamma, q_0, Z, F, \delta)$ where

 Σ is a finite set called *the input alphabet*,

Q is a finite set of *states*,

 Γ is a finite set called *the stack alphabet*,

 $q_0 \in Q$ is the *initial state*,

 $Z \in \Gamma$ is the *start symbol* on the stack,

 $F \subseteq Q$ the set of *final states*, and

 δ is the transition function from $Q \times (\Sigma \cup {\epsilon}) \times \Gamma$ to $Pow_e(Q \times \Gamma^*)$.

States of an NPDA

Example of δ : $\delta(q, a, A) \ni (q', B_1...B_n)$

A possible state: $(q_0, abbaa, AZ)$

 $\Rightarrow \text{ Example of an NPDA for} \\ \mathsf{L}_3 = \{a_1 a_2 \dots a_n a_n \dots a_2 a_1 | a_i \in \{a, b\}\}$

From a CFG to an NPDA

• Write a grammar for $L_3 = \{a^n b^n c^m | n, m \ge 1\}$

• Together, we build an NPDA...

From a CFG to an NPDA

- Write a grammar for $L_3 = \{a^n b^n c^m | n, m \ge 1\}$
- Together, we build an NPDA...

Defining the DPDA

Definition 2 (DPDA) A deterministic pushdown-automaton is a septuple $(\Sigma, Q, \Gamma, q_0, Z, F, \delta)$ as the NPDI where

for all $q \in Q$, $a \in \Sigma$ and $A \in \Gamma$ holds: $|\delta(q, a, A)| + |\delta(q, \epsilon, A)| \le 1$

i.e. for a given state, input symbol and topmost element of a stack the DPDA never has a choice of move.

- DPDAs accept per final state and not per empty stack.
- A language that is recognized by an DPDA is deterministically context-free (i.e. all context-free languages with unambiguous grammars).
- DPDA languages lie strictly between regular and context-free languages

Richter/Söhn (WS 2006/07)

States of a DPDA

$$\Rightarrow \text{ Example of a DPDA for} \\ L_4 = \{a_1 a_2 ... a_n a_n a_n ... a_2 a_1 | a_i \in \{a, b\}\}$$