Computational Linguistics II: Parsing

Formal Languages: Context Free Languages II

Frank Richter \& Jan-Philipp Söhn

fr@sfs.uni-tuebingen.de, jp.soehn@uni-tuebingen.de
November 8th, 2006

Once Again: The Big Picture

hierarchy	grammar	machine	other
type 3	reg. grammar	DFA	reg. expressions
		NFA	
det. cf.	LR(k) grammar	DPDA	
type 2	CFG	PDA	
type 1	CSG	LBA	
type 0	unrestricted	Turing	
	grammar	machine	

DFA: Deterministic finite state automaton
(D)PDA: (Deterministic) Pushdown automaton

CFG: Context-free grammar
CSG: Context-sensitive grammar
LBA: Linear bounded automaton

Defining the Pushdown-Automaton

Definition 1 (NPDA) A nondeterministic pushdown-automaton is a septuple $\left(\Sigma, Q, \Gamma, q_{0}, Z, F, \delta\right)$ where
Σ is a finite set called the input alphabet,
Q is a finite set of states,
Γ is a finite set called the stack alphabet, $q_{0} \in Q$ is the initial state,
$Z \in \Gamma$ is the start symbol on the stack,
$F \subseteq Q$ the set of final states, and
δ is the transition function from $Q \times(\Sigma \cup\{\epsilon\}) \times \Gamma$ to $\operatorname{Pow}_{e}\left(Q \times \Gamma^{*}\right)$.

Formal Basics I

Definition (State)
 Given an NPDA $M=\left(\Sigma, Q, \Gamma, q_{0}, Z, F, \delta\right)$, each $k \in Z \times \Sigma^{*} \times \Gamma^{*}$ is a state of M.

Formal Basics II

Definition (directly derives)
Given an NPDA $M=\left(\Sigma, Q, \Gamma, q_{0}, Z, F, \delta\right)$,
a state $k_{1}=\left(z, a_{1} \ldots a_{n}, A_{1} \ldots A_{m}\right) \in Z \times \Sigma^{*} \times \Gamma^{*}$ directly derives state k_{2} iff
(1) $k_{2}=\left(z^{\prime}, a_{2} \ldots a_{n}, B_{1} \ldots B_{i} A_{2} \ldots A_{m}\right)$ and

$$
\delta\left(z, a_{1}, A_{1}\right) \ni\left(z^{\prime}, B_{1} \ldots B_{i}\right) \text {, or }
$$

(2) $k_{2}=\left(z^{\prime}, a_{1} a_{2} \ldots a_{n}, B_{1} \ldots B_{i} A_{2} \ldots A_{m}\right)$ and

$$
\delta\left(z, \epsilon, A_{1}\right) \ni\left(z^{\prime}, B_{1} \ldots B_{i}\right) .
$$

We write $\mathrm{k}_{1} \vdash \mathrm{k}_{2}$.

Definition (derives)

Given an NPDA $M=\left(\Sigma, Q, \Gamma, q_{0}, Z, F, \delta\right)$,
a state k_{1} derives state k_{n} iff there is a sequence $\mathrm{k}_{1} \vdash \mathrm{k}_{2} \ldots \mathrm{k}_{n}$.
We write $\mathrm{k}_{1} \vdash^{*} \mathrm{k}_{n}$.
$\left(\vdash^{*}\right.$ is the reflexive transitive closure of \vdash.)

Formal Basics III

Definition (Acceptance)

Given an NPDA $M=\left(\Sigma, Q, \Gamma, q_{0}, Z, F, \delta\right)$ and a string $x \in \Sigma^{*}$,
M accepts \times iff
there is a $q \in F$ such that $\left(q_{0}, x, Z\right) \vdash^{*}(q, \epsilon, \epsilon)$.

Definition (Language accepted by M)
Given an NPDA $M=\left(\Sigma, Q, \Gamma, q_{0}, Z, F, \delta\right)$, the language $\mathrm{L}(\mathrm{M})$ accepted by M is the set of strings accepted by M , $\mathrm{L}(\mathrm{M})=\left\{x \in \Sigma^{*} \mid\left(q_{0}, x, Z\right) \vdash^{*}(q, \epsilon, \epsilon)\right.$ for some $\left.q \in F\right\}$.

Example of a CFG

The grammar we saw last time:

$$
\begin{aligned}
\mathrm{S} & \rightarrow \mathrm{AB} \\
\mathrm{~A} & \rightarrow \mathrm{aAb} \\
\mathrm{~A} & \rightarrow \mathrm{ab} \\
\mathrm{~B} & \rightarrow \mathrm{cB} \\
\mathrm{~B} & \rightarrow \mathrm{c}
\end{aligned}
$$

Bad example: left recursion

$$
\begin{aligned}
& \mathrm{B} \rightarrow \mathrm{Bc} \\
& \mathrm{~B} \rightarrow \mathrm{c}
\end{aligned}
$$

Example of a CFG II - Bracketing

$$
\begin{aligned}
& \text { Proc } \rightarrow \text { WhProc | IfProc } \\
& \text { WhProc } \rightarrow \text { while Cond do Proc } \\
& \text { IfProc } \rightarrow \text { if Cond then Proc } \\
& \text { Cond } \rightarrow \ldots \\
& \mathrm{S} \rightarrow[\mathrm{NP} \text { VP }] \\
& \mathrm{VP} \rightarrow[\mathrm{vb}(\mathrm{NP})] \\
& \mathrm{NP} \rightarrow[\operatorname{det} \mathrm{AP} \mathrm{n}] \\
& \mathrm{AP} \rightarrow[\operatorname{adj} \mid \operatorname{adj} \mathrm{AP}] \\
& {[[\operatorname{det} \operatorname{adj} \mathrm{n}][\mathrm{vb}[\operatorname{det} \operatorname{adj} \mathrm{n}]]]}
\end{aligned}
$$

Closure Properties I

Union

- Type 3 languages are closed $(\alpha \mid \beta)$
- Det. cf. languages are not closed $\left(L_{1} \cap L_{2}=\overline{L_{1}} \cup \overline{L_{2}}\right)$
- Type 2 languages are closed

Concatenation

- Type 3 languages are closed $(\alpha \beta)$
- Det. cf. languages are not closed $\left\{a^{n} \$ b^{n}+b^{m} \$ c^{m}\right\}$
- Type 2 languages are closed

Complementation

- Type 3 languages are closed (FSA: final states \leftrightarrow non-final states)
- Det. cf. languages are closed
- Type 2 languages are not closed

Closure Properties II

Kleene star

- Type 3 languages are closed $\left(\alpha^{*}\right)$
- Det.cf. languages are not closed $\left\{a^{n} \$ a^{n}+a^{n} \$ a^{n}\right\}$
- Type 2 languages are closed

Intersection

- Type 3 languages are closed $\left(L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}\right)$
- Det.cf. languages are not closed

$$
\left\{a^{n} b^{n} c^{m}\right\} \cap\left\{a^{n} b^{m} c^{m}\right\}=\left\{a^{n} b^{n} c^{n}\right\}
$$

- Type 2 languages are not closed
- The intersection of a det. cf. language with a regular language is also det. cf.

Decision Properties I

Word problem

- Type 3 languages: decidable (FSA: final state reached?)
- Type 2 languages: decidable (CYK algorithm)

Emptiness problem

- Type 3 languages: decidable (FSA: path from initial to final state?)
- Type 2 languages: decidable (marking of symbols in grammar)

Finiteness problem

- Type 3 languages: decidable (FSA: path from initial state to cycle?)
- Type 2 languages: decidable (cycles in grammar-graph)

Decision Properties II

Equivalence problem

- Type 3 languages: decidable (compare minimized DFAs of $L\left(\mathrm{G}_{1}\right)$ and $\left.\mathrm{L}\left(\mathrm{G}_{2}\right)\right)$
- Det. cf. languages: decidable (proved 1997)
- Type 2 languages: not decidable

Intersection problem

- Type 3 languages: decidable (Emptiness of $\mathrm{L}(\mathrm{G})=\mathrm{L}\left(\mathrm{G}_{1}\right) \cap \mathrm{L}\left(\mathrm{G}_{2}\right)$?)
- Det. cf. languages: not decidable (not closed unter intersection)
- Type 2 languages: not decidable (not closed unter intersection)

Again: Pumping Lemma for Regular Languages

uvw theorem:

For each regular language L there is an integer n such that for each $x \in L$ with $|x| \geq n$ there are u, v, w with $x=u v w$ such that
(1) $|v| \geq 1$,
(2) $|u v| \leq n$,
(3) for all $i \in \mathbb{N}_{0}: u v^{i} w \in L$.

Pumping Lemma for Context Free Languages

$u v x y z$ theorem:
For each context free language L there is an integer n such that for each $a \in L$ with $|a| \geq n$ there are u, v, x, y, z with $a=u v x y z$ such that
(1) $|v y| \geq 1$,
(2) $|v x y| \leq n$,
(3) for all $i \in \mathbb{N}_{0}: u v^{i} x y^{i} z \in L$.

