
Computational Linguistics II: Parsing

Formal Languages: Context Free Languages II

Frank Richter & Jan-Philipp Söhn

fr@sfs.uni-tuebingen.de, jp.soehn@uni-tuebingen.de

November 8th, 2006

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 8th, 2006 1 / 14

The Big Picture

Once Again: The Big Picture

hierarchy grammar machine other

type 3 reg. grammar DFA reg. expressions
NFA

det. cf. LR(k) grammar DPDA
type 2 CFG PDA
type 1 CSG LBA
type 0 unrestricted Turing

grammar machine

DFA: Deterministic finite state automaton
(D)PDA: (Deterministic) Pushdown automaton
CFG: Context-free grammar
CSG: Context-sensitive grammar

LBA: Linear bounded automaton

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 8th, 2006 2 / 14

A Model for Context-Free Languages Non-Deterministic Pushdown-Automaton

Defining the Pushdown-Automaton

Definition 1 (NPDA) A nondeterministic pushdown-automaton is a
septuple (Σ, Q, Γ, q0 , Z , F , δ) where

Σ is a finite set called the input alphabet,

Q is a finite set of states,

Γ is a finite set called the stack alphabet,

q0 ∈ Q is the initial state,

Z ∈ Γ is the start symbol on the stack,

F ⊆ Q the set of final states, and

δ is the transition function from Q × (Σ ∪ {ǫ}) × Γ to
Pow e(Q × Γ∗).

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 8th, 2006 3 / 14

A Model for Context-Free Languages Non-Deterministic Pushdown-Automaton

Formal Basics I

Definition (State)
Given an NPDA M = (Σ, Q, Γ, q0 , Z , F , δ),
each k ∈ Z × Σ∗ × Γ∗ is a state of M.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 8th, 2006 4 / 14

A Model for Context-Free Languages Non-Deterministic Pushdown-Automaton

Formal Basics II

Definition (directly derives)
Given an NPDA M = (Σ, Q, Γ, q0 , Z , F , δ),
a state k1 = (z , a1 . . . an, A1 . . .Am) ∈ Z × Σ∗ × Γ∗ directly derives state
k2 iff

1 k2 = (z ′, a2 . . . an, B1 . . .B iA2 . . .Am) and
δ(z , a1 , A1) ∋ (z ′, B1 . . .B i), or

2 k2 = (z ′, a1a2 . . . an, B1 . . .B iA2 . . .Am) and
δ(z , ǫ,A1) ∋ (z ′, B1 . . .B i).

We write k1 ⊢ k2.

Definition (derives)
Given an NPDA M = (Σ, Q, Γ, q0 , Z , F , δ),
a state k1 derives state kn iff there is a sequence k1 ⊢ k2 . . . kn.
We write k1 ⊢ ∗ kn.
(⊢ ∗ is the reflexive transitive closure of ⊢.)

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 8th, 2006 5 / 14

A Model for Context-Free Languages Non-Deterministic Pushdown-Automaton

Formal Basics III

Definition (Acceptance)
Given an NPDA M = (Σ, Q, Γ, q0 , Z , F , δ) and a string x ∈ Σ∗,
M accepts x iff
there is a q ∈ F such that (q0 , x , Z) ⊢ ∗(q, ǫ, ǫ).

Definition (Language accepted by M)
Given an NPDA M = (Σ, Q, Γ, q0 , Z , F , δ),
the language L(M) accepted by M is the set of strings accepted by M,
L(M) = {x ∈ Σ∗|(q0 , x , Z) ⊢ ∗(q, ǫ, ǫ) for some q ∈ F}.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 8th, 2006 6 / 14

Properties of Regular and Context-Free Grammars CFGs

Example of a CFG

The grammar we saw last time:

S → A B

A → aAb

A → ab

B → cB

B → c

Bad example: left recursion

B → Bc

B → c

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 8th, 2006 7 / 14

Properties of Regular and Context-Free Grammars CFGs

Example of a CFG II — Bracketing

Proc → WhProc | IfProc

WhProc → while Cond do Proc

IfProc → if Cond then Proc

Cond → ...

S → [NP VP]

VP → [vb (NP)]

NP → [det AP n]

AP → [adj | adj AP]

[[det adj n] [vb [det adj n]]]

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 8th, 2006 8 / 14

Properties of Regular and Context-Free Grammars Closure Properties

Closure Properties I

Union

Type 3 languages are closed (α|β)

Det. cf. languages are not closed (L1 ∩ L2 = L1 ∪ L2)

Type 2 languages are closed

Concatenation

Type 3 languages are closed (αβ)

Det. cf. languages are not closed {an$bn + bm$cm}

Type 2 languages are closed

Complementation

Type 3 languages are closed (FSA: final states ↔ non-final states)

Det. cf. languages are closed

Type 2 languages are not closed

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 8th, 2006 9 / 14

Properties of Regular and Context-Free Grammars Closure Properties

Closure Properties II

Kleene star

Type 3 languages are closed (α∗)

Det. cf. languages are not closed {an$an + an$an}

Type 2 languages are closed

Intersection

Type 3 languages are closed (L1 ∩ L2 = L1 ∪ L2)

Det. cf. languages are not closed
{anbncm} ∩ {anbmcm} = {anbncn}

Type 2 languages are not closed

The intersection of a det. cf. language with a regular language is also
det. cf.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 8th, 2006 10 / 14

Properties of Regular and Context-Free Grammars Decision Properties

Decision Properties I

Word problem

Type 3 languages: decidable (FSA: final state reached?)

Type 2 languages: decidable (CYK algorithm)

Emptiness problem

Type 3 languages: decidable (FSA: path from initial to final state?)

Type 2 languages: decidable (marking of symbols in grammar)

Finiteness problem

Type 3 languages: decidable (FSA: path from initial state to cycle?)

Type 2 languages: decidable (cycles in grammar-graph)

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 8th, 2006 11 / 14

Properties of Regular and Context-Free Grammars Decision Properties

Decision Properties II

Equivalence problem

Type 3 languages: decidable (compare minimized DFAs of L(G1) and
L(G2))

Det. cf. languages: decidable (proved 1997)

Type 2 languages: not decidable

Intersection problem

Type 3 languages: decidable (Emptiness of L(G)=L(G1)∩L(G2)?)

Det. cf. languages: not decidable (not closed unter intersection)

Type 2 languages: not decidable (not closed unter intersection)

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 8th, 2006 12 / 14

Properties of Regular and Context-Free Grammars Pumping Lemma

Again: Pumping Lemma for Regular Languages

uvw theorem:

For each regular language L there is an integer n such that for each x ∈ L

with |x | ≥ n there are u, v , w with x = uvw such that

1 |v | ≥ 1,

2 |uv | ≤ n,

3 for all i ∈ IN0 : uv iw ∈ L.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 8th, 2006 13 / 14

Properties of Regular and Context-Free Grammars Pumping Lemma

Pumping Lemma for Context Free Languages

uvxyz theorem:

For each context free language L there is an integer n such that for each
a ∈ L with |a| ≥ n there are u, v , x , y , z with a = uvxyz such that

1 |vy | ≥ 1,

2 |vxy | ≤ n,

3 for all i ∈ IN0 : uv ixy iz ∈ L.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 8th, 2006 14 / 14

