Computational Linguistics II: Parsing Formal Languages: Context Free Languages II

Frank Richter & Jan-Philipp Söhn

fr@sfs.uni-tuebingen.de, jp.soehn@uni-tuebingen.de

November 8th, 2006

Once Again: The Big Picture

hierarchy	grammar	machine	other
type 3	reg. grammar	DFA	reg. expressions
		NFA	
det. cf.	LR(k) grammar	DPDA	
type 2	CFG	PDA	
type 1	CSG	LBA	
type 0	unrestricted	Turing	
	grammar	machine	

DFA: Deterministic finite state automaton (D)PDA: (Deterministic) Pushdown automaton CFG: Context-free grammar CSG: Context-sensitive grammar

LBA: Linear bounded automaton

Defining the Pushdown-Automaton

Definition 1 (NPDA) A nondeterministic pushdown-automaton is a septuple $(\Sigma, Q, \Gamma, q_0, Z, F, \delta)$ where

 Σ is a finite set called *the input alphabet*,

Q is a finite set of *states*,

 Γ is a finite set called *the stack alphabet*,

 $q_0 \in Q$ is the *initial state*,

 $Z \in \Gamma$ is the *start symbol* on the stack,

 $F \subseteq Q$ the set of *final states*, and

 δ is the transition function from $Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma$ to $Pow_e(Q \times \Gamma^*)$.

Formal Basics I

Definition (State) Given an NPDA $M = (\Sigma, Q, \Gamma, q_0, Z, F, \delta)$, each $k \in Z \times \Sigma^* \times \Gamma^*$ is a state of M.

Formal Basics II

Definition (directly derives) Given an NPDA $M = (\Sigma, Q, \Gamma, q_0, Z, F, \delta)$, a state $k_1 = (z, a_1 \dots a_n, A_1 \dots A_m) \in Z \times \Sigma^* \times \Gamma^*$ directly derives state k_2 iff

•
$$k_2 = (z', a_2 \dots a_n, B_1 \dots B_i A_2 \dots A_m)$$
 and
 $\delta(z, a_1, A_1) \ni (z', B_1 \dots B_i)$, or
• $k_2 = (z', a_1 a_2 \dots a_n, B_1 \dots B_i A_2 \dots A_m)$ and
 $\delta(z, \epsilon, A_1) \ni (z', B_1 \dots B_i)$.
We write $k_1 \vdash k_2$.

Definition (derives) Given an NPDA $M = (\Sigma, Q, \Gamma, q_0, Z, F, \delta)$, a state k_1 derives state k_n iff there is a sequence $k_1 \vdash k_2 \ldots k_n$. We write $k_1 \vdash k_n$. ($\vdash *$ is the reflexive transitive closure of \vdash .)

Formal Basics III

Definition (Acceptance)

Given an NPDA $M = (\Sigma, Q, \Gamma, q_0, Z, F, \delta)$ and a string $x \in \Sigma^*$, M accepts x iff there is a $q \in F$ such that $(q_0, x, Z) \vdash {}^*(q, \epsilon, \epsilon)$.

Definition (Language accepted by M)

Given an NPDA $M = (\Sigma, Q, \Gamma, q_0, Z, F, \delta)$, the language L(M) accepted by M is the set of strings accepted by M, L(M) = $\{x \in \Sigma^* | (q_0, x, Z) \vdash *(q, \epsilon, \epsilon) \text{ for some } q \in F\}.$

Example of a CFG

The grammar we saw last time:

$$\begin{split} \mathsf{S} &\to \mathsf{A} \; \mathsf{B} \\ \mathsf{A} &\to \mathsf{a} \mathsf{A} \mathsf{b} \\ \mathsf{A} &\to \mathsf{a} \mathsf{b} \\ \mathsf{B} &\to \mathsf{c} \mathsf{B} \\ \mathsf{B} &\to \mathsf{c} \end{split}$$

Bad example: left recursion

$$B \rightarrow Bc$$

 $B \rightarrow c$

CFGs

Example of a CFG II — Bracketing

 $\begin{array}{l} \mathsf{Proc} \to \mathsf{Wh}\mathsf{Proc} \mid \mathsf{If}\mathsf{Proc} \\ \mathsf{Wh}\mathsf{Proc} \to \mathsf{while} \ \mathsf{Cond} \ \mathsf{do} \ \mathsf{Proc} \\ \mathsf{If}\mathsf{Proc} \to \mathsf{if} \ \mathsf{Cond} \ \mathsf{then} \ \mathsf{Proc} \\ \mathsf{Cond} \to \ldots \end{array}$

$$\begin{split} S &\rightarrow [\text{ NP VP }] \\ VP &\rightarrow [\text{ vb (NP) }] \\ NP &\rightarrow [\text{ det AP n }] \\ AP &\rightarrow [\text{ adj } | \text{ adj AP }] \\ [[\text{ det adj n }] [\text{ vb } [\text{ det adj n }]]] \end{split}$$

Closure Properties I

Union

- Type 3 languages are closed (lpha|eta)
- Det. cf. languages are not closed $(L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2})$
- Type 2 languages are closed

Concatenation

- Type 3 languages are closed $(\alpha\beta)$
- Det. cf. languages are not closed $\{a^n b^n + b^m c^m\}$
- Type 2 languages are closed

Complementation

- Type 3 languages are closed (FSA: final states \leftrightarrow non-final states)
- Det. cf. languages are closed
- Type 2 languages are not closed

Closure Properties II

Kleene star

- Type 3 languages are closed (α^*)
- Det. cf. languages are not closed $\{a^n a^n + a^n a^n\}$
- Type 2 languages are closed

Intersection

- Type 3 languages are closed $(L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}})$
- Det. cf. languages are not closed $\{a^nb^nc^m\} \cap \{a^nb^mc^m\} = \{a^nb^nc^n\}$
- Type 2 languages are not closed
- The intersection of a det. cf. language with a regular language is also det. cf.

Decision Properties I

Word problem

- Type 3 languages: decidable (FSA: final state reached?)
- Type 2 languages: decidable (CYK algorithm)

Emptiness problem

- Type 3 languages: decidable (FSA: path from initial to final state?)
- Type 2 languages: decidable (marking of symbols in grammar) Finiteness problem
 - Type 3 languages: decidable (FSA: path from initial state to cycle?)
 - Type 2 languages: decidable (cycles in grammar-graph)

Decision Properties II

Equivalence problem

- \bullet Type 3 languages: decidable (compare minimized DFAs of L(G1) and L(G2))
- Det. cf. languages: decidable (proved 1997)
- Type 2 languages: not decidable

Intersection problem

- Type 3 languages: decidable (Emptiness of L(G)=L(G₁)∩L(G₂)?)
- Det. cf. languages: not decidable (not closed unter intersection)
- Type 2 languages: not decidable (not closed unter intersection)

Again: Pumping Lemma for Regular Languages

uvw theorem:

For each regular language L there is an integer n such that for each $x \in L$ with $|x| \ge n$ there are u, v, w with x = uvw such that

1
$$|v| \ge 1$$

$$|uv| \leq n,$$

• for all $i \in \mathbb{N}_0$: $uv^i w \in L$.

Pumping Lemma for Context Free Languages

uvxyz theorem:

For each context free language *L* there is an integer *n* such that for each $a \in L$ with $|a| \ge n$ there are u, v, x, y, z with a = uvxyz such that

$$|vy| \geq 1,$$

$$|vxy| \leq n,$$

• for all $i \in \mathbb{N}_0$: $uv^i xy^i z \in L$.